An Active Output Filter with a Novel Control Strategy for Passive Output Filter Reduction

Kyusik Choi† and Bo-Hyung Cho*

†,*Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

Abstract

This paper presents a novel control strategy for passive output filter reduction using an active output filter. The proposed method achieves the dual-function of regulating the output voltage ripple and output voltage variation during load transients. The novel control strategy allows traditional simple voltage controllers to be used, without requiring the expensive current sensors and complex controllers used in conventional approaches. The proposed method is verified with results from a 125-W forward converter.

Key words: Passive output filter reduction, Voltage ripple, Load transient, Efficiency

NOMENCLATURE

\(A_P \quad \text{Area product.} \)
\(C_A \quad \text{AOF capacitor [F].} \)
\(C_O \quad \text{Output capacitor [F].} \)
\(C_P \quad \text{Post regulator input capacitor [F].} \)
\(d_A \quad \text{Duty ratio of AOF.} \)
\(\hat{d}_A \quad \text{Small signal value of } d_A. \)
\(D_A \quad \text{DC value of } d_A. \)
\(\Delta D_{A,\text{OFF}} \quad \text{Ideal } D_A \text{ variation for forward SW-OFF.} \)
\(\Delta D_{A,\text{ON}} \quad \text{Ideal } D_A \text{ variation for forward SW-ON.} \)
\(d_F \quad \text{Duty ratio of forward converter.} \)
\(\hat{d}_F \quad \text{Small signal value of } d_F. \)
\(D_F \quad \text{DC value of } d_F. \)
\(f_C \quad \text{Bandwidth of feedback controller [Hz].} \)
\(f_{CA} \quad \text{Bandwidth of AOF controller [Hz].} \)
\(f_{CF} \quad \text{Bandwidth of forward converter controller [Hz].} \)
\(f_{CP} \quad \text{Bandwidth of post regulator controller [Hz].} \)
\(f_{Ct} \quad \text{Critical bandwidth [Hz].} \)
\(F_A \quad \text{Switching frequency of AOF [Hz].} \)
\(F_{EF} \quad \text{Switching frequency of forward converter [Hz].} \)
\(F_{EP} \quad \text{Switching frequency of post regulator [Hz].} \)
\(i_A \quad \text{Current from AOF [A].} \)
\(\hat{i}_A \quad \text{Small signal value of } i_A [A]. \)
\(\langle i_A \rangle \quad \text{Average } i_A \text{ during switching period, } T_{sw} [A]. \)
\(i_{CO} \quad \text{Current into } C_O \text{ [A].} \)
\(i_{CA} \quad \text{Current into } C_A \text{ [A].} \)
\(i_{LF} \quad \text{Current of } L_F \text{ [A].} \)
\(i_{LF,\text{ppk}} \quad \text{Peak to peak value of switching ripple of } i_{LF} \text{ [A].} \)
\(i_o \quad \text{Output current [A].} \)
\(\hat{i}_o \quad \text{Small signal value of } i_o \text{ [A].} \)
\(I_o \quad \text{DC value of } i_o \text{ [A].} \)
\(I_{O,\text{max}} \quad \text{Maximum } I_o \text{ [A].} \)
\(\Delta I_o \quad I_o \text{ variation during a load transient [A].} \)
\(I_{OF} \quad \text{Output current of separate model [A].} \)
\(\hat{i}_{OF} \quad \text{Small signal value of } I_{OF} \text{ [A].} \)
\(K_{CO,\text{sw}} \quad \text{Output capacitor ratio for switching voltage ripple regulation.} \)
\(K_{EF,D4} \quad \text{AOF duty feedforward gain.} \)
\(K_{AP} \quad \text{Area product constant.} \)
\(L_A \quad \text{AOF inductor [H].} \)
\(L_F \quad \text{Forward converter inductor [H].} \)
\(L_P \quad \text{Post regulator inductor [H].} \)
\(n \quad \text{Transformer turn ratio.} \)
\(P_{EGB} \quad \text{Effective power handled by AOF [W].} \)
\(T_{sd} \quad \text{Switching period of AOF [s].} \)
\(T_{sF} \quad \text{Switching period of forward converter [s].} \)
\(T_v \quad \text{Closed loop gain of } v \text{ [s].} \)
\(T_{vO} \quad \text{Closed loop gain of } v_o \text{ [s].} \)
\(V_A \quad \text{AOF capacitor voltage [V].} \)
\(\hat{V}_A \quad \text{Small signal value of } V_A [V]. \)
\(V_o \quad \text{Output voltage [V].} \)
\(\hat{V}_o \quad \text{Small signal value of } V_o [V]. \)

© 2016 KIPE

Manuscript received Oct. 19, 2015; accepted Dec. 7, 2015
Recommended for publication by Associate Editor Honnyong Cha.
*Corresponding Author: ez2top84@snu.ac.kr
Tel: +82-2-880-1785, Fax: +82-2-878-1452, Seoul National University
†Dept. of Electrical and Computer Eng., Seoul Nat’l University, Korea

ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718
ΔV_{O,sw} \quad \text{Output voltage switching ripple [V].}
ΔV_{O,sw,max} \quad \text{Output voltage regulation of switching ripple [V].}
ΔV_{O,TTr,max} \quad \text{Output voltage regulation of load transient [V].}

I. INTRODUCTION

As power semiconductor technology matures, passive output filters (POF), such as LC-filters, accounts for a more significant part of the cost and volume of power converters. Therefore, reducing the POF is one of the most important issues in the design of power converters. However, this reduction is becoming increasingly difficult due to the demanding requirements of digital devices in terms of voltage regulations and efficiency [1]-[3]. Typically, voltage regulations are constraints on the output voltage ripple and on the output voltage fluctuations during load transients [1], [2]. High-frequency switching satisfies both of these regulations. However, the switching frequency is practically upper-bounded due to a proportionally increasing power loss. Thus, a number of studies have been conducted to reduce the POF without high-frequency switching.

For voltage ripple regulation, a passive ripple filter (PRF), an active ripple filter (ARF), and an active output filter (AOF) have been introduced [4]-[13]. The PRF and the ARF show good performance with regard to reducing ripples. However, these methods are overly sensitive to parameter errors [4]-[7], are ineffective owing to their dissipative schemes [8]-[10], or require complex and expensive components [11]-[13]. In addition, they are not suitable for the voltage fluctuation regulation. For voltage fluctuation regulation during a load transient, enhanced-control methods and auxiliary converter methods are typical. Enhanced control methods, such as the V^2 control method [14]-[16], the sliding mode control method [17]-[18], and the linear-and-nonlinear control method [19]-[21], improve the load transient responses under identical hardware conditions. Nevertheless, the enhanced control methods have a limitation given the slew-rates of their output-inductor-currents. To overcome this slew-rate limitation, auxiliary converter methods have been suggested [22]-[25]. Several approaches change the slew-rate using a coupled-inductor for the output-inductor [22]-[23], while the AOF methods inject transient current directly into the output [24]-[25]. These methods are efficient because auxiliary converters handle only a small amount of power. As a result, the auxiliary converters can operate with high-frequency switching and small passive components. However, there are many problems with these devices, such as an expensive coupled inductor [22]-[23] and costly complex controller and current sensors [24], [25]. In addition, these approaches are only for voltage fluctuation regulation. In brief, existing studies provide a single-function for one of the two voltage regulations. Unfortunately, single function methods are generally not sufficient for POF reduction. Although post regulators [26]-[28] have a dual-function for both regulations, they show poor efficiency levels given their series structure.

The conventional AOFs [11], [24], [25] fundamentally share the same structure, indicating that this structure is able to operate for both functions. However, conventional studies have failed to achieve the dual-function because they do not include a proper voltage control strategy or a stability analysis. Moreover, previous studies were not optimized for their own single-functions in spite of their costly current sensors and the complex control methods concealed in their digital controllers.

In this paper, a novel control strategy is proposed for a dual-function AOF. The AOF has the potential for a wide bandwidth control loop given its high-frequency switching. To utilize this property, the main output voltage is controlled by the AOF rather than the main converter. As a result, the output voltage is tightly regulated naturally and a reduced output capacitor is sufficient for load transients. The main converter, on the other hand, controls the voltage of the AOF capacitor. Because there is no given regulation of the voltage, a wider voltage range is available and a small capacitor is sufficient. In addition, the output inductor of the main converter can be reduced because the inductance of the main output inductor is free from the switching voltage ripple due to the proposed method. The switching ripple current from the main converter is cancelled by the AOF and is absorbed into the AOF capacitor. To enhance the switching ripple current cancellation without a current control scheme, a duty feedforward control scheme is also proposed. Finally, it is demonstrated that the proposed dual-function AOF achieves a truly reduced POF.

In Section II, the operation principle of the proposed control strategy is introduced. A small signal analysis and the controller design characteristics are described in Section III. In Section IV, the passive filter reduction process is analyzed and compared to the conventional methods, after which a design guideline for the AOF is described. Section V shows hardware verification results obtained through a 125-W forward converter prototype. Finally, some conclusions are given in Section VI.

II. OPERATION PRINCIPLE

Fig. 1 shows the structure of the proposed system. The main converter is a forward converter and the AOF is a synchronous buck converter. This structure offers two benefits. First, because \(v_c \) is not supplied externally, its voltage level is optimized for an efficient AOF [25]. Second, the switching voltage ripple is minimized because the current entering the output capacitor is continuous. In Fig. 2, the control strategies of the conventional AOFs and the proposed AOF are briefly described. The advantages and disadvantages are indicated in green and red, respectively. The conventional AOF for voltage ripple regulation [11]-[13] senses ripple current from the main converter and tracks the sensed current using a hysteresis controller, as shown in Fig. 2(a). The operation of the conventional AOF as a load transient assister [24], [25] is...
Fig. 1. Structure of the proposed system.

Fig. 2. AOF control strategy and its advantages (green) and disadvantages (red) of, (a) the conventional AOF ripple filter, (b) the conventional AOF load transient assister, (c) the proposed method (w/o feedforward), (d) the proposed method (w/ feedforward).

Fig. 3. Key waveforms of, (a) inductor-currents under steady states, (b) currents into the output capacitor w/ and w/o the proposed method, (c) the output voltage, the AOF capacitor voltage, and the average inductor-currents during a step-up (ΔI₀) load transient at t₀. The proposed duty feedforward control scheme is utilized to effectively cancel the ripple current without the need for current sensors (see Fig. 2(d)). Detailed descriptions of these processes are given in Section IV.

Fig. 3 shows the key waveforms of the proposed method.
Under steady state conditions, i_t is controlled, and becomes a counter current of the switching ripple current from the forward converter, as shown in Fig. 3(a). As a result, i_{CO} follows the small switching ripple current of the AOF, as indicated in Fig. 3(b). Thus, a reduced C_0 satisfies the requirement of $AV_{O,F_{max}}$. In addition, L_F can be reduced because $L_{F,pk}$ does not affect i_{CO}. During a load transient event, the dynamic response is greatly improved because the output voltage is controlled by the AOF, which has a wide bandwidth controller according to its high switching frequency.

| TABLE I
| TRANSFER FUNCTIONS OF THE SEPARATE UNTERMINATED MODEL |
|---|---|
| $G_1 = \frac{\dot{v}_{G}}{\dot{d}_F}$ separate | $= n \frac{V_{in}(1 + s/w_{ZO})}{\text{den}_F}$ |
| $G_2 = \frac{\dot{i}_t}{\dot{v}_{G}}$ separate | $= -s C_i / D_s \text{den}_s$ |
| $G_3 = \frac{\dot{v}_{G}}{\dot{d}_s}$ separate | $= 1 + \frac{s}{w_{ZO}} \left(1 + \frac{s}{w_{ZO}}\right)$ |
| $G_4 = \frac{\dot{i}_t}{\dot{d}_s}$ separate | $= \frac{s C_i V_A}{D_s \text{den}_s}$ |
| $G_5 = \frac{\dot{v}_{G}}{\dot{v}_{G}}$ separate | $= 1 + \frac{s}{w_{ZO}} \left(1 + \frac{s}{w_{ZO}}\right)$ |

![Fig. 4. Separate unterminated model for small signal analysis.](image)

![Fig. 5. Structure of the opened-loop small signal model.](image)

In order to ensure the stability of the control system, C_0 is set to 1. The transfer functions are derived as follows:

$$ w_{ZO} = \frac{1}{R_{CO} C_0} $$

$$ w_{ZL} = \frac{1}{R_{L} C_i} $$

$$ w_{ZF} = \frac{1}{R_{L} C_i} + \frac{1}{R_{ZL} L_F C_0} $$

III. SMALL SIGNAL ANALYSIS OF THE AOF

A. Small Signal Model

A small signal model of the AOF is derived in this section to guarantee the stability of the proposed method. An analysis is initially conducted of a separate unterminated model, as shown in Fig. 4, after which the results are combined for the sake of convenience, as shown in Fig. 5. The main parameters, including the equivalent series resistors (ESRs) are shown in Fig. 4. The transfer functions of the separated parts are arranged in Table I. Using the results of the partial analysis, a total small signal model of the power system is derived and shown in Table II.

B. Controller Design

The corresponding closed loop gains of the proposed method are derived as follows:

$$ T_{i_{CO}} = H_{i_{CO}} G_{CO}, \quad (1) $$

$$ T_{i_{L}} = H_{i_{L}} G_{L}, \quad (2) $$

$$ T_{\dot{v}_O} = \frac{\dot{v}_O}{\dot{x}} = T_{i_{CO}} - H_{i_{CO}} H_{i_{CO}} G_{CO}, \quad (3) $$

$$ T_{\dot{v}_L} = \frac{\dot{v}_L}{\dot{v}_{i_{L}}} = T_{i_{L}} - H_{i_{L}} H_{i_{L}} G_{L}, \quad (4) $$

The closed-loop small signal diagrams are shown in Fig. 6. $H_{i_{CO}}$ and $H_{i_{L}}$ are the voltage feedback controllers for v_O and v_L, respectively. Unlike the conventional cases, the proposed control strategy
Fig. 6. Diagram of the transfer function of the closed-loop-system with the proposed control strategy.

Fig. 7. Proposed system including the duty feed forward.

shows unusual phenomena in the design of the controllers. \(T_1 \) shows a zero DC gain owing to the zero DC gain of \(G_{vOdA} \). This phenomenon occurs due to the presence of a non-external voltage source. Fortunately, it disappears after the \(v_A \) control loop is closed. Therefore, only the high-frequency gain is considered in the \(v_O \) controller design. Finally, \(T_{vO} \) has an infinite DC gain and a wide bandwidth. During the \(H_{vO} \) design, \(T_2 \) shows two unnatural resonant-points. Due to these resonances, there is no phase margin of \(T_2 \). However, these resonant points are removed by the other parts of \(T_{vA} \) in Equ. (4). This procedure will be shown in detail in Section IV.

C. Duty Feedforward

A traditional voltage feedback controller may not achieve switching ripple current cancellation due to the finite bandwidth of the feedback control loop. Thus, a duty feedforward control method is proposed. The proposed duty feedforward control achieves simultaneous ripple current cancellation with only one additional voltage sensing instance at the rectified point, as shown in Fig. 7. To cancel the ripple current of \(i_{LF} \), the slew rate of \(<i_d> \) should be matched to the slew rate of \(i_{LF} \), as follows:

\[
\frac{di_{LF}}{dt} = -\frac{d<i_d>}{dt},
\]

where \(<i_d> \) refers to the average \(i_d \) during a switching period, \(T_{sd} \). The slew rate of \(i_{LF} \) is shown below.

\[
\frac{di_{LF}}{dt} = \begin{cases} \frac{V_{IN} - V_O}{L_F} & \text{(Forward SW – ON)} \\ \frac{V_O}{L_F} & \text{(Forward SW – OFF)}. \end{cases}
\]

The variation of \(d_t \) to satisfy Equ. (5) during the forward-switch-on and switch-off times is derived as follows:

\[
\frac{V_{IN} - V_O}{L_F} = \frac{V_O - (D_d + \Delta D_{d, ON})V_d}{L_d},
\]

\[
\frac{-V_O}{L_F} = \frac{V_O - (D_d + \Delta D_{d, OFF})V_d}{L_d},
\]

\[
\Delta D_{d, OFF} - \Delta D_{d, ON} = K_{VF-dd}V_d n,
\]

where \(K_{VF-dd} = \frac{L_d}{V_{LF}} \).

As a result, \(-i_d \) is matched to the switching ripple current from the forward converter. This method is even valid when there are certain errors in the parameters, such as the transformer turn ratio, the input voltage, and the leakage inductor. In addition, the proposed feedforward scheme rarely affects the \(H_{vO} \) design because the feedforward scheme enhances the average model in the small signal analysis of the forward converter, as presented in Section III. A. Although the feedforward affects \(v_A \), the voltage variation is attenuated as the gain of \(T_{vA} \) at \(f_{SF} \). Finally, the proposed feedforward scheme does not affect the stability of the system.

IV. CONVERTER DESIGN

As mentioned earlier, an AOF with high-frequency switching is possible because the power loss of an AOF is insignificant due to its low effective power as follow:

\[
P_{EC} = V_O \langle |i_d| \rangle,
\]

where \(\langle |i_d| \rangle \equiv \frac{1}{T_{sd}} \int_{T_{sd}} |i_{LF} - i_d| dt = \frac{1}{4} I_{LF,pk,pk}. \)

As a result, the power loss of the AOF is determined by \(I_{LF,pk,pk} \) rather than by \(I_d \). For example, \(P_{EC} \) is only 5% of the rated power, under the condition of \(I_{LF,pk,pk} = 0.2 I_d, \text{max} \).

A. Capacitor Reduction

The output voltage is determined by \(i_{CO} \), as follows:

\[
v_O = V_O + \int \frac{i_{CO}}{C_O} dt + R_{CO} i_{CO}.
\]

Through the cancellation of the switching ripple current, the switching voltage ripple is determined by the AOF as:

\[
\Delta V_{O,pk} = \frac{1}{L_d C_O} \frac{V_d D_d (1 - D_d)}{8 F_{sd}^2} + R_{CO} \frac{V_O (1 - D_d)}{L_d F_{sd}},
\]

and the result should satisfy \(\Delta V_{O,pk} \leq \Delta V_{O,sw, max} \). From Equ. (14), the minimum output capacitance of the switching voltage
ripple regulation, $C_{O_{sw}}_{\text{min}}$ is determined as follows:

$$C_{O_{sw}}_{\text{min}} = \frac{1}{\Delta V_{O_{sw}}_{\text{max}}} \frac{V_d D_s (1-D_f)}{8L_i F_s d^2}. \quad (15)$$

If the ESR of the output capacitor, R_{CO} is negligible, a comparison of the minimum output capacitances of the proposed system, $C_{O_{sw, AOF}}_{\text{min}}$ and the conventional system, $C_{O_{sw, SF}}_{\text{min}}$ proceeds as follows.

$$C_{O_{sw, AOF}}_{\text{min}} = K_{CO_{sw}} C_{O_{sw, SF}}_{\text{min}}, \quad (16)$$

where $K_{CO_{sw}} = L_s F_s d^2 V_d D_s (1-D_f) / L_a F_s d^2 V_d n D_s (1-D_f)$.

Fig. 8 shows an example of $K_{CO_{sw}}$ versus the inductance ratio, L_a/L_F, and the frequency ratio, $F_s A/F_s F$, under the $D_s=0.5$ and $D_f=0.25$ conditions. $K_{CO_{sw}}$ decreases dramatically when $F_s A/F_s F$ increases even when L_a/L_F is 0.2.

According to [29], the peak output voltage variation during a load transient is derived as follows.

$$\Delta V_{O_{Tr}}_{\text{max}} \begin{cases} \frac{1}{8} C_{O_{Tr}} f_C & \text{when } f_C < f_{C_{\text{crit}}} \\ R_{CO} \Delta I_o & \text{when } f_C \geq f_{C_{\text{crit}}} \end{cases} \quad (18)$$

where f_C is the bandwidth of the feedback controller and $f_{C_{\text{crit}}}$ is the critical bandwidth, which is determined as follows.

$$f_{C_{\text{crit}}} = \frac{1}{4R_{CO} C_o}. \quad (19)$$

Thus, the minimum output capacitance, $C_{O_{Tr, AOF}}_{\text{min}}$ for a load transient when $f_C < f_{C_{\text{crit}}}$ is:

$$C_{O_{Tr, AOF}}_{\text{min}} = \frac{1}{8 \Delta V_{O_{Tr, AOF}}_{\text{max}} f_C} |\Delta I_o|. \quad (20)$$

As is well known, the bandwidth of a feedback controller is proportional (1/10th approximately) to the switching frequency. Therefore, the bandwidth of the proposed method is higher by as much as $F_s A/F_s F$ when compared to the forward converter, and $C_{O_{Tr, AOF}}_{\text{min}}$ is reduced.

Finally, the minimum output capacitance is determined with the following criterion:

$$C_{O_{AOF}} \geq \max \{C_{O_{Tr, AOF}}_{\text{min}}, C_{O_{sw, AOF}}_{\text{min}}\}. \quad (21)$$

The minimum AOF capacitance of the load transients, $C_{A_{Tr, min}}$ is designed using the same equations for the C_o design, Eqs. (13)-(21), while the maximum variation is set to ±20% rather than ±5%, as follows.

$$C_{A_{Tr, min}} = \frac{1}{8 \Delta V_{A_{Tr, max}} f_{CT}} \Delta I_o D_a. \quad (22)$$
A. Inductor Reduction

First, the inductance of L_F is designed. The inductance of L_F for a conventional forward converter is greater than that of the other cases because the output capacitance is limited for practical reasons, such as a start-up issue.

The start-up issue is when an over-current problem can occur for charging the output capacitor if its capacitance is large. Thus, this inductance is greater than the optimum value given for the voltage ripple. On the other hand, L_F in the proposed method is not affected by this issue. Therefore, its inductance can be reduced. The minimum inductance of the proposed method with the given specification, L_F, is determined as follows:

$$L_F = \frac{(1-D_F) V_o}{F_s I_{F, pk}}. \quad (23)$$

In this paper, the inductance of L_F is designed for the peak value of $i_{F, pk}$ to be less than 120% of $I_{O, \text{max}}$. In general, the core of an inductor is established using the following criterion [30]:

$$A_p \geq K_d L I_{F, pk}^2 \text{ [cm}^4], \quad (24)$$

where K_d is a constant value [30], and the area product, A_p, is a parameter which determines the core size. The minimum A_p value of the output inductor L_F is reduced as shown below.

$$\Delta A_{F, \text{pk}} = K_d \left(I_{F, \text{pk}}^2 - I_{O, \text{ms}}^2 \right), \quad (25)$$

where:

$$I_{F, \text{pk}} = I_{F, \text{pk}} + \frac{1}{2} I_{O, \text{ms}}^2, \quad (26)$$

$$A_{p, \text{pk}} = \left(\frac{1}{2} I_{O, \text{ms}}^2 \right) A_{p, \text{pk}}, \quad (27)$$

An A_p comparison between the proposed method ($A_{p, \text{AOF, min}}$) and the post-regulator method ($A_{p, \text{PR, min}}$), for additional inductors, is given below.

$$A_{p, \text{AOF}} = \left(\frac{1}{2} I_{O, \text{ms}}^2 \right) A_{p, \text{PR}}. \quad (28)$$

Fig. 9 shows the A_p-values of the additional inductors, L_F and L_P, versus the switching frequency of the forward converter. The A_p-value of L_F is less than 2% of that of L_P, even in the worst case, while that of the L_P is 10~30% of that of the main converter. The A_p result does not satisfy the ‘$I_{F, \text{pk}} < 1.2 I_{O, \text{ms}}$’ condition. The normalized total A_p value of the proposed method is shown in Fig. 10. The proposed method shows an A_p-value which is reduced by half, even with the lower output inductance and lower switching frequency of the forward converter.

To verify the analysis of the proposed method, a hardware prototype of a 125-W forward converter with an AOF and a post-regulator is built and tested. First, the passive parameters are determined following the criteria in Section III. A. The results are compared with a conventional single-forward converter (SF) and a forward converter with a post-regulator (PR). Next, proper voltage controllers are designed based on the results in Section III. B. The target specifications are shown in Table IV.

C. Controller Design

Fig. 11 shows the transfer functions G_{AVP} and G_{AVDA} of the hardware. As mentioned in Section III, G_{AVDA} shows a zero DC gain due to the +20 dB/decade slope of the low-frequency region. Thus, conventional voltage controllers with an integrator, such as a type-3 compensator, cannot achieve an infinite DC gain for a zero steady state error. Fortunately, this problem will be corrected after the v_A control loop is closed. Thus, only the high-frequency characteristic is an issue. After the design of H_{AVB}, T_2 is designed with a proper H_{AVB}. Because H_{AV} was previously designed, H_{AV} is designed using the total v_A voltage loop, T_{AV}. Two-pole-two-zero with one integrator controllers are utilized for H_{AV} and H_{AV}. These results are shown in Fig. 12.

\[\text{TABLE III}\]

<table>
<thead>
<tr>
<th>Passive Component Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_F (AOF)</td>
</tr>
<tr>
<td>L_F (SF)</td>
</tr>
<tr>
<td>L_F (PR)</td>
</tr>
<tr>
<td>L_F</td>
</tr>
<tr>
<td>L_F</td>
</tr>
<tr>
<td>L_F (AOF)</td>
</tr>
<tr>
<td>L_F (SF)</td>
</tr>
<tr>
<td>L_F (PR)</td>
</tr>
<tr>
<td>C_F</td>
</tr>
<tr>
<td>C_F (AOF)</td>
</tr>
<tr>
<td>C_F (SF)</td>
</tr>
</tbody>
</table>

\[\text{TABLE IV}\]

<table>
<thead>
<tr>
<th>Parameter Values of the Converters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>V_{IN}</td>
</tr>
<tr>
<td>$V_{O, \text{ref}}$</td>
</tr>
<tr>
<td>V_A</td>
</tr>
<tr>
<td>$I_{O, \text{max}}$</td>
</tr>
<tr>
<td>$\Delta V_{O, \text{sw, max}}$</td>
</tr>
<tr>
<td>$\Delta V_{O, \text{tr, max}}$</td>
</tr>
<tr>
<td>$I_{O, \text{max}}$</td>
</tr>
<tr>
<td>F_s</td>
</tr>
<tr>
<td>F_{CF}</td>
</tr>
<tr>
<td>f_{CF}</td>
</tr>
</tbody>
</table>

where $\Delta V_{A, \text{tr, max}} = 0.2 V_A$. Table III shows the passive component results with a reference to the design margin.
V. EXPERIMENTAL RESULTS

To verify the proposed method, a forward converter hardware prototype is built and tested. The parameters follow the results shown in Section IV. A typical forward converter and a forward converter with a post-regulator are also built for comparison with the proposed method. The tests focus on three points: the voltage regulation, the volume, and the power efficiency. Fig. 13 shows the key waveforms under the steady state with the proposed method. The output voltage ripple satisfies the switching voltage ripple regulation range, 50 mV. In addition, Fig. 14 shows a 5 A step-up load transient response, which satisfies the voltage regulation, 250 mV. A comparison of the volumes between the proposed method and the conventional methods is briefly described in Fig. 15. The total volume of the inductors and capacitors of the proposed method is reduced by about 31.5% (20.9 cm³) and by approximately 13.1% (8.7 cm³) when compared to the conventional forward converter method and the post-regulator method, respectively. Fig. 16 shows the results of a power efficiency comparison. The efficiency of the proposed method is between those of the conventional forward converter method and the post regulator method. The proposed method shows only a 1% lower efficiency when compared to the conventional single forward converter case. The efficiency of the proposed method is 1~3% higher than that of the fast switching conventional single forward converter case and 2~8% higher than that of the post-regulator case, which are conventional approaches for passive component reduction. As a result, the proposed method achieves a passive component reduction without significantly losing efficiency.
Fig. 14. Key waveforms during a step-up load transient.

Fig. 15. Passive component volume comparison. (SF: a conventional single forward converter case, PR: a conventional post-regulator case, AOF: the proposed method case).

Fig. 16. Power efficiency comparison.

VI. CONCLUSION

In this paper, a novel POF reduction method is presented and analyzed. The proposed method reduces the POF while satisfying the output voltage regulations and demands for improved power efficiency. The proposed control strategy makes AOFs feasible for the voltage regulation of both the switching voltage ripple and voltage variations which arise during a load transient. A small signal analysis was done to ensure a stable and optimized system, and a design guideline was described. The volume of the POF is significantly reduced while the total efficiency is only slightly reduced. In addition, the results can be extended to other buck-type topologies such as buck converters and half/full-bridge converters, because operation algorithms and small signal models of these converters are practically the same. In addition, the proposed method can be extended to other PWM-based-converters by a similar procedure.

REFERENCES

