무선 이동 망에서 PMRSVP를 이용한 효율적인 자원 관리

한 승 진•박 양 재•임 기 융•이정현

요 약
오늘날 무선 이동 망의 빠른 기술 발전으로 인해 이동 인터넷 서비스의 시장이 급속히 팽창하고 있다. 본 논문에서는 무선 이동 망에서 이동 호스트의 QoS 보장에 대한 효율적 자원 예약 프로토콜인 Proxy MRsVP(PMRSVP)를 제안한다. PMRSVP는 사용된 지역 위치 정보를 이용하여 보다 바람직한 Effort 서비스의 개선책으로 제시되고 있는 프로토콜들의 문제점이 사라질 수 있다. 또한, Mobile Agent(MA) 등의 Corresponding Host(CH)의 역할을 향상함으로써 신호 메시지 발생 업과 자원 예약 비용이 MRsVP와 Hierarchical MRsVP(HMRsVP) 방법에 비해 낮다는 것을 보인다. 본 논문의 우수성을 보여주는 PMRSVP와 HMRSVP 그리고 PMRSVP를 포함한 인터넷(Interdomain)의 위치 동록 비용을 포함한 자원 예약 비용을 비교한다.

An Efficient Resource Reservation Schemes using PMRSVP in Wireless Mobile Networks

Seung-Jin Han•Yang-Jae Park•Kee-Wook Rim•Jung-Hyun Lee

ABSTRACT

Today’s market share of mobile internet service is growing rapidly in internet due to the rapid advances in wireless mobile networks. To guarantee for QoS of Mobile Nodes in wireless mobile networks, we propose the Proxy MRsVP (PMRSVP) which is efficient resource reservation protocol. The PMRSVP using a modified regional registration restraints excessive message generation from existing protocols that propose an alternative plan of existing best effort service in wireless mobile networks. We show that signaling message generation quantities and resource registration costs of the PMRSVP are lower than MRsVP and Hierarchical MRsVP (HMRsVP) because as Mobile Agent (MA) plays a proxy role instead of Corresponding Host (CH). We evaluate resource reservation cost with registration cost of intradomain and interdomain of the proposed method in the paper by comparing to that of the MRsVP and HMRsVP.

키워드 : 핸드오프(Handoff), 위치동록(Registration), 프록시(Proxy), QoS(Quality of Service), 자원 예약 프로토콜(RSVP : Resource ReSerVation Protocol), MRsVP(Mobile RSVP), HMRsVP(Hierarchical MRsVP), PMRSVP(Proxy MRsVP)

1. 서 론

* 성회인 (인하대학교 컴퓨터공학부 강 wahun 조교수)
* 성회인 (인하대대학교 산업공학과 교수)
* 성회인 (인하대학교 컴퓨터공학부 교수)
* 논문채수 : 2003년 11월 6일, 심사채수 : 2003년 4월 28일
2. 무선 이동 망에서의 QoS 문제

유선 망에서의 RSVP는 수신 노드가 송신 노드로부터 전송 받은 PATH 메시지를 근거로 QoS를 보장 받기 위해 필요한 양 자원을 예약한다. 수신 노드는 송신 노드에서 전송한 PATH 메시지 경로의 반대 방향으로 대역폭과 경로를 따라 존재하는 라우터에서의 자원 처리 등이 담긴 RESV 메시지를 전송한다.[1]

유선 망에서는 노드(또는 호스트)가 이동을 하지 않기 때문에 송신 노드와 수신 노드가 최초의 자원 결정시 결정하였던 자원만을 이용하여 패킷을 송신할 수 있다. 그러나 무선 이동에서는 노드가 이동을 하기 때문에 송신 노드와 수신 노드가 최초로 결정한 자원을 이용하여 패킷을 송신하더라도 노드가 다른 지역으로 이동을 하게 되면 새로운 지역에서 송신 노드와 수신 노드는 자원에 대해 재협상이 하여야 한다. 협상이 성립되면 동안에는 이 이동구간에 RSVP 세션을 제설산하기 때문에 deviations 프로토콜이 발생되고 이는 서비스 질의 저하를 초래하게 된다.

이러한 문제점을 해결하기 위해 Tahukdar et al.[2]는 기존의 RSVP에 MA의 이동성을 고려하여 MRSPV를 제안하였다. MRSPV는 MA가 현재 위치지역을 중심으로 MA가 이동 가능한 주변 지역의 Mobile Agent(MA)에 자원을 예약할 수 있는 Passive PATH 메시지와 PASSIVE RESV 메시지를 추가하였다. MA가 새로운 지역으로 이동할 경우, 이동한 지역에서는 Passive 메시지를 이용하여 자원 협상이 끝난 상태가 되면 MA에게 예산이 필요한 패킷을 송신할 수 있다. 또한 MA가 이전 지역으로 되돌아가야 하는 경우에 대비하여 이전 지역에서 Active 상태에서 Passive 상태로 스위칭한다.

그리고 MRSPV는 MA가 이동구간별로 빈번히 한다면 MA 혹은 MA로부터 Corresponding Host(CH)로(또는 역으로) 전달되는 메시지가 과도하게 발생한다.[7]

3. PMRSPV를 이용한 MH의 QoS 보장

본 논문은 우선 PMRSPV에서 MA의 이동성을 관리하는 모델이 대체로 일관된 지역 위치등록을 확장한다. 다음에 MA가 GFA 내에서 움직일 경우로 GFA간 움직임을 하였을 경우로 나누어 MRSPV, HMRSPV, 그리고 PMRSPV 방법을 각각 설명하고, 평가한다.
3.1.2 동일한 MFA 내에서 MH가 이동한 경우
MH가 HA에서 위치 동록을 마친 후 FA1으로 이동을 합니다. MH의 이동 사실을 보고 받은 FA1은 이 정보를 HA와 부모가 같은 MFA1까지 오브젝트 한다. MFA1은 MH의 위치 정보를 라우팅 테이블에 저장합니다. CH에서 전송하는 패킷은 GFA1을 거쳐 MFA1에 도착하며, MFA1은 라우팅 테이블을 이용하여 MH의 위치가 HA에서 FA1으로 변경된 사실을 알게 되고 패킷을 FA1으로 전송합니다.

3.1.3 동일한 GFA 내에서 서로 다른 MFA간 MH의 이동한 경우
(그림 2)에서 MH가 FA1에서 FA2로 이동하였다면 GFA는 동일하지만 MFA는 서로 다르다. 즉 FA1과 FA2와 동일한 부모는 GFA1이 된다. 이 경우는 MH의 위치 정보를 MFA1을 거쳐 GFA1까지 보고된다. CH에서 전송하는 패킷은 GFA1에 도착하고, GFA1은 라우팅 테이블을 이용하여 MFA2로 패킷을 전달한다. MFA2는 FA2에서 위치한 MH로 이 패킷을 전송한다.

3.1.4 다른 GFA로 MH가 이동한 경우
MH가 FA2에서 FA3으로 이동하였다면 MH가 이전에 위치한 FA와 동일한 부모를 존재하지 않는 다. 그러나 FA3의 CH에서 사용하던 IP 주소를 이용하여 GFA2는 MH가 GFA1에 위치있었던 사실을 알 수 있다. 따라서 GFA2는 GFA1의 MH가 GFA2 지위로 이동한 사실을 통보한다. 이 사실을 통보 받은 GFA1은 MH의 위치 정보를 갱신한다. CH로부터 전송된 패킷은 GFA1에 도착을 하고, 이 패킷은 GFA2로 전달된다. GFA2에 도착한 패킷은 MFA3을 거쳐 FA4로 전송된다.

수정된 지역 위치등록(6)은 MH의 위치를 홍망의 GFA가 지정된 위치등록을 하지만, mobile IP 지역 위치등록(20)은 홍망의 HA까지 위치등록을 해야 한다.

3.2 GFA 내에서 MH가 핸드오프된 경우의 효율적인 자원 관리

(그림 2)의 채널 오프에 따른 MH의 위치 정보의 동보 방법

(그림 3)과 같이 MH가 MFA2에서 위치 등록을 하게 되
먼, MH는 MFA2 내의 MA와 MFA2, GFA1을 통해 CH2에 접속을 요청한다. CH2는 Active PATH 메시지를 GFA1과 MFA2를 통해 MH에 전송한다. 이를 수신한 MH는 Active RESV 메시지를 MFA2를 통해 GFA1에게 전송한다. GFA1은 CH2에게 Receiver_MSPEC = [GFA1]를 Active RESV 메시지에 포함시켜 전송한다. GFA1은 MH가 위치한 지역을 중심으로 주변 지역에 Passive PATH 메시지를 전송하고, 주변 지역의 MA들은 GFA1에게 Passive RESV 메시지를 응답한다.

3.2.1 동일한 MFA 내에서 서로 다른 FA간 이동한 경우

MH가 MFA2에서 처음으로 위치 등록을 하였기 때문에 MFA2 내의 MA가 HA를 가한다. MFA2 내의 다른 지역으로 이동을 하게 되면 PMIPv6는 MH의 이동 사항을 동일한 지역의 FA와 MFA2, 그리고 GFA1을 거쳐 CH2로 알린다. CH2는 MH가 이동한 지역을 중심으로 주변 지역의 자원을 예약하는 과정을 거친다. HMRSPV는 MH의 이동 사항을 GFA1까지 보고하고, CH2로 보고하지 않는다. 따라서 GFA1은 MH의 주변 지역으로 PATH 메시지를 전송하고, MH의 주변 지역은 CH2가 아닌 GFA1으로 RESV 메시지를 전송한다. 그러나 PMIPv6는 GFA1에 보고하는 정의는 없기 때문에 경계의 MH의 위치 정보는 MFA2만 알고 있다. MFA2의 라우팅 테이블에는 MH가 HA에서 할당 받은 주소와 FA(MH가 이동한 지역의 MA)에서 할당 받은 주소를 바인딩시킨다. HA와 MH가 이동한 지역의 FA간에 Active와 Passive 관계가 스위칭되고, CH2에서 전송되는 자원 예약 메시지는 GFA1을 통해 MFA2 내의 라우팅 테이블을 이용하여 HA를 거치지 않고, MH가 위치한 FA로 직접 전달된다.

3.2.2 동일한 GFA 내에서 서로 다른 MFA간 이동한 경우

(그림 3)와 같이 MH가 MFA2에서 MFA3로 이동하게 되면, PMIPv6는 MH의 위치 정보를 GFA1까지 보고하고, CH2로 MH의 이동 사항을 보고하지 않는다. GFA1은 MH가 MFA3의 FA에서 할당 받은 주소와 MFA2의 FA에서 할당 받은 주소를 바인딩시킨다. MH의 MFA간 이동 사항을 보고 받은 GFA1은 이 사항을 CH2에게 전송하지 않고, MFA2와 MFA3 사이의 Active와 Passive 관계를 스위칭한다. 또한 CH2로부터 전송되는 패킷은 MH의 바인딩 정보가 저장된 GFA1의 라우팅 테이블을 이용하여 MFA3의 MH가 존재하는 FA로 전달된다. MRSVP와 HMRSPV는 3.2.1과 동일하게 작동한다.

3.3 MH가 GFA간 핸드오프한 경우의 효율적인 자원 관리

(그림 4)와 같이 MH가 MFA2에서 최초로 위치 등록 후 MFA3를 경유하여 MFA4로 이동한 경우, MRSVP는 3.2.1과 동일하게 작동한다. HMRSPV에서는 Receiver_MSPEC 메시지의 목록에 GFA1과 GFA2를 추가하여 MH2에 전송하고, CH2는 PATH 메시지를 GFA1과 GFA2에게 모두 전송한다. GFA1과 GFA2는 RESV 메시지로 응답한다. 그러나 PMIPv6는 GFA2로 이동하더라도 Receiver_MSPEC 메시지를 생성하지 않고, GFA1이 CH2의 포스트 연락을 한다. 즉, PATH와 RESV 메시지 생성과 처리를 CH2에만 GFA1이 대행한다. GFA2는 MH가 자신의 영역으로 이동한 사항을 세룹케 할당 받은 MH의 주소와 함께 GFA1에게 알린다. 이 정보를 전달 받은 GFA1은 자신의 라우팅 테이블에 MH의 위치 정보를 갱신하고, GFA2에 ACK 메시지를 전송한다. (그림 4)에서 GFA1과 GFA2 사이의 Passive PATH과 Passive RESV 메시지는 MH가 MFA2에서 GFA2에 연결한 MFA3 지역으로 이동할 GFA1이 MH가 GFA2로 이동한 MH의 위치 정보를 GFA2에게 Passive PATH 메시지를 전달하고, GFA2는 GFA1에게 Passive RESV 메시지를 응답한다. GFA1과 GFA2 사이의 경로는 MH가 GFA2로 이동한 후 Active 상태로 스위칭되고, GFA2와 MFA4 사이의 경로는 Active 상태로 스위칭된다. 그리고 GFA1과 MFA3 사이의 경로는 Passive 상태로 스위칭된다.

[9]에 의하면 MH는 이웃하는 지역을 경유하지 않고 다른 지역으로 이동할 수 없으므로 CH2에서 GFA2까지의 거리는 GFA1에서 GFA2까지의 거리보다 최소한 짧거나 같다. 따라서 PMIPv6는 HMRSPV와 같이 Receiver_MSPEC 메시지를 생성하지 않고, CH2에서 GFA1까지는 이미 CH2에서 GFA2까지 새로운 자원을 확보하는 것보다는 GFA1에서 GFA2 사이의 경로에서 자원을 확보하는 것이 유리하다.

(그림 4) GFA간 MH의 핸드오프(interdomain)

여기서, MH가 (그림 5)와 같이 GFA1에서 최종적으로 GFA5까지 이동을 한다면 경로 확장에 따른 루핑 문제가 발생할 수 있다. 이러한 문제를 방지하기 위한 방법은 다음과 같다.
4. 성능 평가

본 논문에서 제안하는 방법의 성능 평가는 MRSVP, HM RSVP 그리고 PMR-SVP를 비교한다. 평가는 세 가지 방법에 대해 각각 MH에 대한 자원 예약 비용을 계산한다.

![그림 5] MH의 경로 확정에 따른 평가 문제

GFA1 GFA2 GFA3 GFA4 GFA5 GFA6

MH는 새로운 지역(‘그림 5’에서 GFA5)으로 이동한 후, 고도 메시지를 토대로 CoA를 획득한다. 그 후 HA로 위치동록을 한다. MH의 위치동록 메시지를 수신한 GFA5는 MH의 위치동록 메시지에 있는 허 주소를 보고 MH가 최초로 위치했던 지역의 GFA 주소를 알 수 있다. 이 정보를 바탕으로 GFA5는 GFA1과 차원 예약을 통한 경로 형성을 시작한다. GFA1과 GFA5가 형상에 성공한다면, 차원 예약 경로는 GFA1에서 GFA5로 직접 설정되기 때문에 (‘그림 5’)에서 보여지는 무한 경로 확장에 따른 평가 문제는 해결된다.

4.1 전송 지연

본 논문에서 제안하는 방법의 성능 평가를 위해 MRSVP, HM RSVP 그리고 PMR-SVP의 버퍼 관리를 기준으로 사용한 방법을 이용한다. TAIL 기법을 이용하면 버퍼에 세부를 수용할 수 있는 슬롯(n)은 1이다. 여기서 n은 0 ≤ n ≤ B - 1이다. 전송 지연을 구하기 위해 버퍼는 FIFO(First-In-First-Out)로 가정한다. FIFO에 대한 큐 모델은 다음과 같이 표현할 수 있다.

![그림 6] FIFO 큐

여기서, 성능 평가를 위해 사용하는 기호의 정의 및 가정은 다음과 같다.

- \(\lambda \): 패킷들의 도착을 기반으로 하는 포아송 프로세스의 평균 도착 간격 속도 비율
- \(\mu \): 버퍼에서 임의의 서비스를 받고 지수 분포 속도로 출력되는 패킷의 속도
- \(B \): 각 호스팅의 버퍼 크기

시스템에 제공되는 트래픽 밀도(\(\rho \))는 다음과 같다.

\[\rho = \frac{\lambda}{\mu} \]

버퍼에 패킷이 도착하는 시간 간격과 패킷이 서비스를 받는 시간은 모든 패킷이 동일하다고 가정한다. 또한 버퍼에 있는 패킷은 미러프 체인 중 발생 및 소멸 과정을 따른다. 즉, 패킷은 상수 \(\lambda_0(n) \)의 속도로 발생되고, \(\mu(n) \)로의 속도로 소멸된다[10]. 따라서 버퍼 내부의 정상 분포(Stationary Distribution)는 다음과 같이 계산된다[12].

\[\pi(n) = \pi(0) \rho^n \sum_{i=0}^{\infty} a(i) \]

여기서,

\[\pi(0) = \left[\sum_{n=0}^{B} \rho^n \sum_{i=0}^{\infty} a(i) \right]^{-1} \]

각 환의 큐에 \(n \)개의 패킷이 있다면, 각 환의 큐에서 기대되는 지연 시간은 다음과 같이 계산된다.

\[D = \frac{1}{\mu} \left(1 + n \right) \pi(n) a(n) \]

(1)

본 논문에서 버퍼 관리 기법은 TAIL 기법을 이용하기 때문에, 식 (1)에서 \(a(n) = 1 \)이다. 여기서, \(n \)은 0 ≤ n ≤ B - 1이다. 버퍼의 크기가 10일 때 \(\rho \)값에 따른 각 환에서의 폐쇄 지연은 (‘그림 6’)과 같다.

<table>
<thead>
<tr>
<th>기호</th>
<th>정의</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWa</td>
<td>부선 링크 대역폭</td>
<td>(그림 1)</td>
</tr>
<tr>
<td>BWc</td>
<td>유선망 대역폭</td>
<td>(그림 1)</td>
</tr>
<tr>
<td>La</td>
<td>부선 링크 지연</td>
<td>7ms</td>
</tr>
<tr>
<td>Lc</td>
<td>유선 링크 지연</td>
<td>0.5ms</td>
</tr>
<tr>
<td>Spr</td>
<td>자원 예약 메시지(PATH, RESV) 크기</td>
<td>50bytes</td>
</tr>
<tr>
<td>Tk</td>
<td>MH가 부선 링크를 획득하는데 소요하는 시간</td>
<td>20ms</td>
</tr>
<tr>
<td>Tc</td>
<td>자원 예약 메시지(PATH, RESV) 또는 등록 패킷을 수신하여 처리하는 시간</td>
<td>3ms</td>
</tr>
<tr>
<td>Tsum</td>
<td>현재 MA로부터 차원 예약 메시지(PATH, RESV)를 생성하는 시간</td>
<td>5ms</td>
</tr>
<tr>
<td>Tr</td>
<td>인터넷에서 화긴 패킷 전달 시간</td>
<td>30ms</td>
</tr>
</tbody>
</table>
42 자원 예약 비용

자원 예약에 의한 총 시간은 MH가 각 지역으로 이동 후 위치동록 및 ACK 메시지를 송수신하는 비용, MH 내부의 자원 예약 메시지 처리 시간을 포함한 무선 구간과 MA를 포함한 상위 계층의 유선 구간에서 소요되는 시간을 합한 것이다.

무선 구간은 MH가 무선 채널을 획득하는 시간(\(T_{\text{req}}\)), 무선에서의 자원 예약 패킷 전송 시간(\(S_{\text{req}}/B_{\text{m}}\)), 그리고 무선 링크의 지연(\(L_{\text{m}}\))과 같은 요소로 이루어진다.

무선 채널을 이용하여 MH가 자원 예약 패킷(PATH 혹은 RESV 메시지)을 생성하기 위한 비용

\[T_{\text{req}} = T_{\text{req}} + (S_{\text{req}}/B_{\text{m}}) + L_{\text{m}} + T_{\text{req}}. \]
(2)

유선 구간은 유선에서의 자원 예약 패킷 전송 시간(\(S_{\text{req}}/B_{\text{m}}\)), 그리고 유선 링크의 지연(\(L_{\text{m}}\)), 인터넷 망내의 노드간의 휴 수와 노드간 시간의 휴 수와 노드간 통신(PATH, RESV) 또는 위치 동록 패킷 처리하는데 소요되는 시간을 합한 요소로 이루어진다.

유선으로 예약 패킷(PATH 혹은 RESV 메시지)을 처리 하는 비용

\[T_{\text{req}} = (S_{\text{req}}/B_{\text{m}}) + L_{\text{m}} \times \text{휴수} + T_{\text{req}}. \]
(3)

당 환경(그림 1)과 같이 MH가 편트로프였을 경우 발생하는 자원 예약 비용은 식 (2)와 식 (3)을 이용하여 식 (4)의 식 (11)과 같이 유도한다. 단, 인터넷 망내에서 발생하는 휴 수 네트 경로와 분할된 RSVP 세션 등에 수용하기 위한 비용은 각 레이어별에서 발생하는 비용으로 구성된 경로 요소에서는 제외한다. CH2에서 인터넷 망 내에서 진 GFA1까지의 hop 수과 CH2에서 GFA2까지의 hop 수는 동일하다고 정정한다.

hop 수를 고려한 이유는 3장에서 언급한 바대로 CH2에서 GFA1까지는 이미 자원이 확보된 상태이므로 CH2에서 GFA2까지 새로운 자원을 확보하기 위해 여러 휴의 중간 노드(라우터)를 거쳐 메시지가 전송되는 것보다는 GFA1에서 GFA2까지의 경로에서 자원을 확보하는 것이 유리하다는 것을 보이기 위함이다.

MRSPVP는 MH가 HA에서 FA1 지역으로(또는 FA1에서 FA2로) 이동 후 HA로 위치동록 및 ACK 메시지를 송수신하는 비용, MH가 CH2에게 Receiver_MSPEC 메시지를 전송하는 비용, CH2가 이동하기 전에 위치했던 지역과 이동한 후의 지역을 제외한 나머지 5개의 지역에 Passive PATH 메시지를 전송하는 비용, 5개 지역의 FA가 CH2로 Passive RESV 메시지를 전송하는 비용, 그리고 이동하기 전에 위치했던 지역과 이동한 후의 지역간 Active와 Passive 관계를 수신하는 비용을 합한다. 여기서 \(k\)는 인터넷 망내의 노드간의 휴 수이다.
PMRSVP는 MH가 MFA가 동일한 지역에서 이동하는 경우(HA에서 FA1으로 이동)와 동일하지 않은 지역에서 이동하는 경우(FA1에서 FA2로 이동)에 대해 각각 비용이 다르다. PMRSVP에서 MH가 서로 다른 MFA 지역으로 이동하는 경우의 비용은 MRMRSP와 동일하다.

PMRSVP에서 FA1으로 이동하는 MH가 FA1 지역으로 이동 후 MFA2로 위치동적 및 ACK 메시지를 송수신하는 비용, MFA에게 Receiver_MSPEC 메시지를 전송하는 비용, MFA가 MH가 위치한 주변 지역 5곳으로 Passive PATH 메시지를 전송하는 비용, 5개 지역의 FA가 MFA로 Passive RESV 메시지를 전송하는 비용, 그리고 이동하기 전에 위치했던 지역과 이동한 후의 지역간 Active와 Passive 관계를 스위칭하는 비용을 합한 것이다.

\[
\text{Cost}^{\text{PMRSVP}} = (T_{\text{wimrset}}(\text{RegFA1toMAF2}) + T_{\text{wimrset}}(\text{AckFA1toMAF2}))
+ (T_{\text{wimrset}}(\text{FA1toMAF2}) + T_{\text{wimrset}}(\text{FA1toMAF2}))
+ (T_{\text{wimrset}}(\text{FA1toMAF2}) + T_{\text{wimrset}}(\text{MAF2toHA}))
+ (T_{\text{wimrset}}(\text{MAF2toHA}))
+ (T_{\text{wimrset}}(\text{MAF2toFA1}))
+ (T_{\text{wimrset}}(\text{MAF2toFA1}))
+ (T_{\text{wimrset}}(\text{MAF2toMAF2}))
+ (T_{\text{wimrset}}(\text{MAF2toMAF2}))
\]

PMRSVP에서 FA2로 이동하는 MH가 FA1에서 FA2 지역으로 이동 후 MFA3로 위치동적 및 ACK 메시지를 송수신하는 비용, GFA1을 경유하여 MFA2와 MFA3에게 Receiver_MSPEC 메시지를 전송하는 비용, MFA2와 MFA3가 MH가 위치한 주변 지역 5곳으로 Passive PATH 메시지를 전송하는 비용, 5개 지역의 FA가 MFA2와 MFA3로 각각 Passive RESV 메시지를 전송하는 비용, 그리고 이동하기 전에 위치했던 지역과 이동한 후의 지역간 Active와 Passive 관계를 스위칭하는 비용을 합한 것이다.

\[
\text{Cost}^{\text{PMRSVP}} = (T_{\text{wimrset}}(\text{RegFA2toGFA1}) + T_{\text{wimrset}}(\text{AckGFA1toFA2}))
+ (T_{\text{wimrset}}(\text{FA2toGFA1}) + T_{\text{wimrset}}(\text{FA2toMAF2}))
+ (T_{\text{wimrset}}(\text{FA2toMAF2}) + T_{\text{wimrset}}(\text{GFA1toFA2}))
+ (T_{\text{wimrset}}(\text{MAF2toGFA1}))
\]

(5)
HMRSVP는 MA의 주변 지역이 GFA1과 GFA2에 나누어져 있으며, Receiver_MSPEC에 GFA1과 GFA2를 추가해서 보낸다(HMRSVP_g68). MB의 주변 지역이 GFA2에만 있으면 GFA2만 추가해서 보낸다(HMRSVP_g66).

제 단계의 경우 MRVSP와 HRMRSVP는 MA가 FA3 지역으로 이동 후 HA로 위치동 및 ACK 메시지를 송신하는 비용, MA가 CH2에게 Receiver_MSPEC 메시지를 전송하는 비용, CH2가 GFA1과 GFA2에 Passive PATH 메시지를 전송하는 비용, GFA1과 GFA2가 CH2에게 Passive RESV 메시지를 전송하는 비용, GFA1과 GFA2가 MA를 중심으로 주변 지역의 MA로 Passive PATH 메시지를 전송하는 비용, MB를 중심으로 주변 지역의 MA들이 GFA1과 GFA2로 Passive RESV 메시지를 전송하는 비용, 그리고 이동하기 전에 위치했던 지역과 이동한 후의 지역간 Active와 Passive 관계를 스위칭하는 비용을 합한다.

$$\text{Cost}_{HMRSVP_{g68}} \text{inter GFA} = (T_{\text{Waiting}}(\text{Reg}(\text{FA}_3, \text{HA}_1)) + T_{\text{Waiting}}(\text{Ack}(\text{HA}_1, \text{FA}_3))) + T_{\text{Waiting}}(\text{FA}_3) \times T_{\text{Waiting}}(\text{FA}_3, \text{MFA}_4) \times D + T_{\text{Waiting}}(\text{MFA}_4, \text{GFA}_2) \times D + T_{\text{Waiting}}(\text{GFA}_2, \text{GFA}_1) \times D)$$

(9)

두 번째의 경우 MRVSP와 HMRSVP는 MA가 FA3로 이동 후 HA로 위치동 및 ACK 메시지를 송신하는 비용, MA가 CH2에게 Receiver_MSPEC 메시지를 전송하는 비용, CH2가 GFA2에 Passive PATH 메시지를 전송하는 비용, GFA2가 CH2에게 Passive RESV 메시지를 전송하는 비용, GFA2가 MA를 중심으로 주변 지역의 MA로 Passive PATH 메시지를 전송하는 비용, MA를 중심으로 주변 지역의 MA들이 GFA2로 Passive RESV 메시지를 전송하는 비용, 그리고 이동하기 전에 위치했던 지역과 이동한 후의 지역간 Active와 Passive 관계를 스위칭하는 비용을 합한다.

$$\text{Cost}_{HMRSVP_{g66}} \text{inter GFA} = (T_{\text{Waiting}}(\text{Reg}(\text{FA}_3, \text{HA}_1)) + T_{\text{Waiting}}(\text{Ack}(\text{HA}_1, \text{FA}_3))) + T_{\text{Waiting}}(\text{FA}_3) + T_{\text{Waiting}}(\text{FA}_3, \text{MFA}_4) \times D + T_{\text{Waiting}}(\text{MFA}_4, \text{GFA}_2) \times D + T_{\text{Waiting}}(\text{GFA}_2, \text{GFA}_1) \times D)$$

(10)
4.3 결과 분석

(그림 8(a)) MH가 HA에서 FA1으로 이동한 경우

(그림 8(b)) MH가 FA1에서 FA2로 이동한 경우

(그림 8(c)) MH가 FA2에서 FA3로 이동한 경우 (interdomain)

(그림 8(d)) 테이블레이션 결과

<table>
<thead>
<tr>
<th>Delay</th>
<th>0.216</th>
<th>1.28</th>
<th>1.463</th>
<th>1.705</th>
<th>2.037</th>
<th>2.482</th>
<th>3.069</th>
<th>3.797</th>
<th>4.536</th>
<th>5.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1</td>
<td>9.24</td>
<td>3.45</td>
<td>5.15</td>
<td>4.83</td>
<td>4.43</td>
<td>4.04</td>
<td>3.69</td>
<td>3.33</td>
<td>3.09</td>
<td>2.93</td>
</tr>
<tr>
<td>HP1</td>
<td>1.25</td>
<td>1.37</td>
<td>1.37</td>
<td>1.39</td>
<td>1.40</td>
<td>1.41</td>
<td>1.42</td>
<td>1.43</td>
<td>1.44</td>
<td>1.45</td>
</tr>
<tr>
<td>MP2</td>
<td>6.92</td>
<td>3.62</td>
<td>3.39</td>
<td>3.14</td>
<td>2.37</td>
<td>2.06</td>
<td>2.34</td>
<td>2.13</td>
<td>1.97</td>
<td>1.87</td>
</tr>
<tr>
<td>HP2</td>
<td>1.17</td>
<td>1.07</td>
<td>1.07</td>
<td>1.06</td>
<td>1.05</td>
<td>1.04</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.02</td>
</tr>
</tbody>
</table>
로 이동한 경우를 PMRSVP를 기준으로 MRSVP와의 차원 예약에 대한 소요 비율을 나타낸 것이다. HP1과 HP2도 MH가 각각 HA에서 FA1로, FA1에서 FA2로 이동한 경우를 PMRSVP를 기준으로 HRSPV와의 차원 예약에 대한 소요 비율을 나타낸 것이다. 표 2에 따르면 각 노드의 delay 값이 커질수록 HP1을 제외하고 차원 예약 비가 작아진다. 이 이유는 (그림 1)에서 MFA2와 FA1간의 전송 속도가 HA에서 GFA1까지의 속도보다 10배 느리게 가정했기 때문이다.

(그림 8(e)는 (그림 8(c)에 대해 PMRSVP를 기준으로 했을 때 두 방법의 차원 예약 비율을 나타낸 것이다. 표 3)과 같이 MRSVP는 PMRSVP에 비해 세 가지 경우 모두 차원 예약 비율이 높다. 그러나 HMRSPV는 HP1에서 GFA1과 GFA2간의 Hop 수가 9 이상인 경우와 HbHP에서 Hop 수가 10 이상인 경우에 대해서는 PMRSVP 보다 차원 예약 비율이 낮다.

5. 결 론

향후 수년 내에 무선 인터넷의 사용자와 유선 인터넷 사용자의 비율이 대등하게 될 것이다. 그러나 사용자의 다양 한 요구를 고려하지 않은 Best Effort 서비스는 무선 인터넷에서 인터넷의 트래픽에 대한 QoS를 보장할 수 없다.

본 논문에서는 MRSVP의 방법을 문제점으로 지적된 과다한 메시지 발생 문제를 해결하였고, MHA가 헬드오프시 설정된 지역 위치등록 방법을 이용하여 MH가 HA로 위치등 록을 하지 않고, MH가 이동하기 전의 MA와 현재의 MA간 가장 가까운 공통된 부모 노드까지만 위치등록을 하도록 하였다. (그림 1)과 같은 환경에서 실험한 결과 GFA 내에서 는 PMRSVP가 MRSVP와 HMRSPV에 비해서 차원 예약 비율이 높다는 것을 보였고, GFA 간에서는 HbHP에서 Hop 수가 9 이상인 경우와 HbHP에서 Hop 수가 10 이상인 경우를 제외하고는 PMRSVP가 HMRSPV 보다 신호 메시지 발생 양과 차원 예약 비율이 낮다. 따라서 CH와 MH가 같은 지역에 위치한 상태에서 서비스를 시작하여 MH가 9번 이상의 도메인간 헬드오프를 하는 특수한 경우를 제외하고는 PMRSVP가 HMRSPV에 비해서 신호 메시지 발생 양과 차원

<table>
<thead>
<tr>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| MIP | 1.29 | 1.32 | 1.35 | 1.37 | 1.40 | 1.42 | 1.45 | 1.48 | 1.50 | 1.53 | 1.55 | 1.58 | 1.61 | 1.63 | 1.66 |
| MIP | 2.29 | 2.30 | 2.32 | 2.34 | 2.36 | 2.38 | 2.40 | 2.42 | 2.44 | 2.46 | 2.48 | 2.50 | 2.52 | 2.54 | 2.56 |
| MIP | 3.46 | 3.50 | 3.54 | 3.58 | 3.62 | 3.66 | 3.70 | 3.74 | 3.78 | 3.82 | 3.86 | 3.90 | 3.94 | 3.98 | 4.02 |
| MIP | 1.19 | 1.16 | 1.13 | 1.10 | 1.07 | 1.04 | 1.01 | 0.98 | 0.95 | 0.92 | 0.90 | 0.88 | 0.86 | 0.84 | 0.82 |
| MIP | 1.96 | 1.94 | 1.92 | 1.90 | 1.88 | 1.86 | 1.84 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.70 | 1.68 |
| MIP | 2.12 | 2.10 | 2.08 | 2.06 | 2.04 | 2.02 | 2.00 | 1.98 | 1.96 | 1.94 | 1.92 | 1.90 | 1.88 | 1.86 | 1.84 |
| MIP | 1.67 | 1.65 | 1.63 | 1.61 | 1.59 | 1.57 | 1.55 | 1.53 | 1.51 | 1.49 | 1.47 | 1.45 | 1.43 | 1.41 | 1.39 |
| MIP | 2.19 | 2.17 | 2.15 | 2.13 | 2.11 | 2.09 | 2.07 | 2.05 | 2.03 | 2.01 | 1.99 | 1.97 | 1.95 | 1.93 | 1.91 |

(그림 8(e)에서의 시뮬레이션 결과)
예약 비용이 낮다.

항후 연구과정에는 MH가 다른 지역으로 이동시 이전에 자원을 예약한 지역에 다시 자원 예약 예지지를 전달하지 않는 방법의 연구가 필요하다. [13,14]과 같은 방법을 적용하여 MH의 이동 성향 및 환경 변화를 파악할 수 있다면, MH의 주변 지역 모두에 자원 예약을 요청하는 것이 아니고 MH의 전筐 방향에 따라 해당 지역만 자원을 예약할 수 있는 연구가 필요하다.

참고 문헌

한 승 진

e-mail: sofman@inha.ac.kr
1985년~1990년 인하대학교 전자계산학과 (이학사)
1990년~1992년 인하대학교 일반대학원 전자계산공학과 (공학석사)
1999년~2002년 인하대학교 일반대학원 전자계산공학과 (공학박사)
1992년~1996년 대우통신 종합연구소 환경연구관
1996년~1998년 SK텔레콤 디지털 사업본부
2002년~현재 인하대학교 컴퓨터공학부 컴퓨터전산 조교수
관심분야: Mobile IP, MANET, 멀티미디어통신, IMT-2000, 음성실태처리, 원격통화, 네트워크보안

박 양 재

e-mail: yjpark@gec.ac.kr
1999년 인하대학교 공과대학 전자공학과 (공학사)
1999년 인하대학교 산업대학원 정보공학과 (공학석사)
2003년 인하대학교 대학원 전자계산공학과 (공학박사)
1984년~1985년 주식회사 서양 전자사업부 기술개발부 근무
1985년~1993년 인하공업전문대학 전자과 조교
2001년~2002년 주식회사 이데미아 원서익연구소 연구소장
1993년~현재 김해창업대학교 공학정보학과 부교수
관심분야: 이동 통신, 네트워크, 이동 컴퓨팅, 파이어벽, 네트워크 보안, 음성실태처리
임 기옥

e-mail : rim@omega.sunmoon.ac.kr
1977년 인하대학교 공과대학 전자공학과
졸업
1987년 한국전기공학연구소 석사
1994년 인하대학교 전자전기공학 박사
1977년~1983년 한국전자기술연구소 선임
연구원
1983년~1988년 한국전자통신연구소 시스템소프트웨어 연구실장
1988년~1989년 미국 캘리포니아주립대학(Irvine) 방문 연구원
1989년~1997년 한국전자통신연구원 시스템연구부장
주전산기 III, IV 개발사업책임자
1997년~2000년 정보통신연구진흥원 정보기술 전문위원
2000년~현재 삼성전자 산업공학과 교수
 관심분야 : 실시간 데이터베이스시스템, 운영체제, 컴퓨터구조

이 정현

e-mail : jhlee@inha.ac.kr
1977년 인하대학교 전자공학과
1980년 인하대학교 대학원 전자공학과
(공학석사)
1988년 인하대학교 대학원 전자공학과
(공학박사)
1979년~1981년 한국전자기술연구소 시스템연구원
1984년~1989년 경기대학교 교수
1989년~현재 인하대학교 전자전기컴퓨터공학부 컴퓨터공학전공
교수
관심분야 : 자연어 처리, HCL, 정보검색, 음성인식, 음성합성,
 컴퓨터구조, 컴퓨터특성