개방형 인터페이스가 적용된 OBS 망의 관리계계 및 분산 망 관리 모델

권태현* · 김춘희* · 차영욱**

요 약

장 베스트 스위칭(OBS) 기술은 장 회선 스위칭에서 발생하는 자원의 비효율적인 사용을 개선시키며, 채 재인 장 베스트링의 요구사항에 최소화한다. GSPM는 제어기와 레이블 스위치 사이에서 연결, 구성, 관리, 장애 관리 및 동기화 기능을 제공하는 개방형 인터페이스이다. OBS 망을 위한 GSPM 개방형 인터페이스 모델은 OBS 망의 전달링원과 제어링원의 분리를 실현하여 OBS 스위치의 구성을 단순화한다. 본 논문에서는 GSPM 개방형 인터페이스가 적용된 OBS 망의 연결, 구성, 관리 및 동기화를 위한 관리체계를 제안하였으며, 이들 관리모델과 관리 기능으로 OBS 스위치와 제어기에 소통하여 양주되는 분산 망 관리 툴을 제안하였다. GSPM과 OBS 관리체계를 사용한 관리 기능의 구현을 통하여 GSPM 개방형 인터페이스가 적용된 OBS 망에서의 분산 망 관리 모델에 이용할 수 있는 연결관리의 필요성을 확인하였다.

키워드 : GSPM, OBS, MIB, 개방형 인터페이스, 망 관리

Managed Object and Distributed Network Management Model in
Open Interface of OBS Network

TaeHyun Kwon* · ChoonHee Kim** · YoungWook Cha***

ABSTRACT

Optical burst switching (OBS) overcomes the inefficient resource usage of optical circuit switching and minimizes the optical buffering requirement of optical packet switching. General switch management protocol (GSPM) is an open interface between a label switch and a controller, and it provides connection, configuration, performance, event management and synchronization. GSPM open interface in the OBS network allows the implementation of OBS switch to be simple by separating the data forward plane from the control plane. We defined managed objects to support connection, configuration, performance, and fault management for the management of OBS network in the GSPM open interface. We proposed the network management model, in which the above managed objects are distributed in a controller and an OBS switch according to network management functions. We verified the possibility of connection management using distributed network management model in the GSPM open interface of OBS network by implementing GSPM and network management functions with managed objects of OBS.

Key Words : GSPM, OBS, MIB, Open Interface, Network Management

1. 서 론

네트워크 기술은 종래의 단일 시스템에서 컨포넌트 기반의 개방형 인터페이스 시스템으로 전이하고 있다[1]. 컨포넌트 기반의 환경에서 GSPM(Generic Switch Management Protocol)은 전달링원과 제어링원의 분리를 실현하며, 데이터 전달 기술과 제어기능 간의 독자적인 개발 자유도를 최대화할 수 있는 네트워크 개방형 인터페이스 기술이다. IEEE PIP(Pro-

* 부산대학교 컴퓨터공학과
** 동아대학교 컴퓨터공학과
*** 정경대학교 컴퓨터공학과
**** 정경대학교 컴퓨터공학과
***** 정경대학교 컴퓨터공학과
****** 정경대학교 컴퓨터공학과
******* 정경대학교 컴퓨터공학과
******** 정경대학교 컴퓨터공학과
********* 정경대학교 컴퓨터공학과
********** 정경대학교 컴퓨터공학과
*********** 정경대학교 컴퓨터공학과
************ 정경대학교 컴퓨터공학과
************* 정경대학교 컴퓨터공학과
************** 정경대학교 컴퓨터공학과
*************** 정경대학교 컴퓨터공학과
************** 정경대학교 컴퓨터공학과
************* 정경대학교 컴퓨터공학과
************ 정경대학교 컴퓨터공학과
*********** 정경대학교 컴퓨터공학과
********** 정경대학교 컴퓨터공학과
********* 정경대학교 컴퓨터공학과
**** 정경대학교 컴퓨터공학과
*** 정경대학교 컴퓨터공학과
** 정경대학교 컴퓨터공학과
* 정경대학교 컴퓨터공학과
그리고 OBS(Optical Burst Switching)이 있다. OCS와 OPS의 중간 단계인 OBS는 1990년대 초반 유럽성장을 위하여 제안되었던 비스트 스위칭 메커니즘을 둔 인터넷에 적합한 기술이다. OBS 기술은 OCS에서 수행하는 호 단위의 연결설정 및 해제에 따른 채널 사용의 비효율성을 개선시키며, 때로는 단위 시간의 스위칭이 아닌 비스트 단위로 스위칭함으로서 OCS에서 이동하는 비터밍의 요구사항을 최소화할 수 있는 기술이다[4].

North Carolina 주립대학의 JumpStart 프로젝트에 의한 OBS 포함 장치에서 OBS에 대한 신호 프로토콜 및 스위칭 구조 등의 연구가 진행 중에 있다. 국내에서는 OIRC(Optical Internet Research Center)를 중심으로 여러 대학에서 연구가 진행 중에 있으며, 삼성전자에서는 2004년에 ITU-T SG15 회의에서 AS0N에 OCS 개념의 도입을 위한 지연간고속을 발표하였다. 하지만 국내에서의 OBS에 대한 많은 연구가 스위칭 구조 및 연결설정을 위한 제어기능에 집중되어 있으며, OBS 장에 대한 맵 관리의 연구결과는 전반적인 상태이다.

OBS 제어를 위한 GSMP 개방형 인터페이스 도입은 OBS 맵의 설계과정과 제어환경의 분리를 실현하여 OBS 스위치의 구성을 단순화한다. 또한 OBS에 의한 비스트 스위칭을 위한 연결설정 지연을 최소화할 수 있으며, 연결설정 실제에 대하여 신속한 우회 경로를 설정할 수 있는 메커니즘을 제공한다. 본 논문에서의 GSMP 개방형 인터페이스는 채널의 OBS 맵 관리로 매핑하여 제어기와 OBS 스위치에 관리 경로가 분산되어 설계되는 관리 경로 모델로 제안하였으며, OBS의 연결, 구성, 성능 및 장애관리에 대한 관리체계를 정의하였다. 관리 및 GSMP의 구성을 통하여 본 논문에서 제안한 관리 모델 관리 모델에서 OBS 맵의 관리체계를 이용한 관리체계의 설계를 확인하였다.

본 논문의 2장에서는 GSMP 인터페이스 및 OBS 기술에 대하여 기술하였으며, 3장에서는 OBS 맵의 관리 서비스를 위한 관리체계를 정의한 후, 이들 관리정보가 관리 기능으로 GSMP 개방형 인터페이스의 제어기로 OBS 스위치에 분산되어 설계되는 관리 모델을 제안한다. 4장에서는 본 논문에서 제안한 OBS 맵의 관리체계 및 관리 모델을 사용하여 관리체계의 설계에 대하여 기술한다. 마지막 5장에서는 결론 및 향후 연구가에 대하여 기술한다.

2. GSMP 인터페이스 및 OBS 기술

본 장에서는 개방형 인터페이스인 GSMP와 OBS 기술의 연구동향에 대하여 기술한다.

2.1 GSMP 인터페이스

GSMP는 (그림 1)과 같이 제어기의 마스터 기능을 담당하며, 스위치에는 슬레이트 기능이 탑재되는 비대칭적인 구조로 갖는 IETF의 개방형 인터넷 인프라 프로토콜이다.

GSMP는 제어구의 레이블 스위치 사이에서 연결, 구성, 성능, 장애관리 및 동기화 기능을 제공한다. 연결, 구성 및 성능관리에 대한 외부의 CCM과 FCM에 대한 별도의 CSB 및 FSB 등이 요구된다.

(그림 2) OBS 맵 및 각 노드의 주요 기능

입구 에지 노드는 기존 맵으로부터 스위팅을 수행하여 버스트 어셈블러를 수행한다. 버스트 어셈블러는 다수의 패킷을 모아 OBS 네트워크의 전송단위인 데이터 버스트로 생성하는
과정이다. 버스트 아생볼의 과정을 통해 데이터 버스트를 생성한 후, 입구 에지 노드는 연결 설정을 위한 BCP를 생성한 다. 생성된 BCP는 데이터 버스트 갑각, 오프셋 타이밍 등의 정보를 포함하여 제어 채널을 통하여 전송한다. 데이터 버스트는 오프셋 타이밍만큼 더미가 향후, BCP가 설정된 뒤는 정보를 따라 데이터 버스트 채널을 통하여 전송된다. 입구 에지 노드에서 전송된 BCP와 데이터 버스트는 다수의 코어 노드를 거쳐서 출구 에지 노드로 도달한다. 출구 에지 노드에서는 도착한 데이터 버스트를 패킷들로 해체한 후, 기존으로 전송하고 해당 데이터 버스트의 BCP를 소멸시키게 된다.

GSMP 개방형 인터페이스에서 제어기는 하나의 스위치를 제어하거나 여러 개의 스위치들로 제어할 수 있다. (그림 3)은 하나의 제어기와 여러 개의 OBS 스위치를 제어하는 GSMP 개방형 인터페이스가 적용된 OBS 네트워크를 나타낸다.

(그림 3) GSMP 개방형 인터페이스 기반의 OBS 제어

OBS 스위치의 핵심적인 기술 중 하나는 입구 에지 노드에서 출구 에지 노드까지 가능한 빠른 연결 설정을 완료하여 입구 에지 노드에서 버스트의 비럽핑을 최소화시키는 것이다. OBS 제어를 위한 GSMP 개방형 인터페이스 도입은 OBS 망의 전달편리도와 제어편리도의 균형을 실현하여 OBS 스위치의 구현을 단순화하며 망에서의 다양한 용도성을 제공한다. 그 외 개방형 인터페이스 프로토콜의 추가적인 구현으로 전통적인 스위치-대-스위치 제어에서 비어 있는 연결 설정의 공간을 단순화한다. OBS 망의 개방 성과 충돌의 버스트 트래픽을 위한 연결 설정 공간을 기존의 스위치-대-스위치 제어보다 충만할 수 있다. 연결 설정 메커니즘은 (그림 3)에서 제어기가 신호 프로토콜의 연결 설정(Setup) 메커니즘을 수행하면, 제어기가 관리하는 OBS 노드들에게 동시에 GSMP의 연결 설정(Add Branch) 메커니즘을 수행한다.

3. 개방형 인터페이스 기반 OBS 망의 왕관리 서비스

본 장에서는 GSMP 개방형 인터페이스가 적용된 OBS 망의 왕관리 서비스를 제공하기 위하여 OBS의 연결, 구성, 성능, 장애관리를 위한 관리체계를 정의하였다. 정의한 관리체계 체계를 관리 기능별로 GSMP 개방형 인터페이스의 제어기와 OBS 스위치에 분산 배치되는 왕 관리 모델을 제안한다.

3.1 OBS 왕관 관리체계 정의

본 장에서는 GSMP 개방형 인터페이스를 제공하기 위하여 요구되는 관리체계들과 관리 기능별 서비스 제공 방안에 대하여 기술한다. OBS 에제는 (그림 4)와 같이 OTN(Optical Transport Network)의 채널(Och) 중에 대하여 기술한다. OTN의 채널을 위한 관리에 대해서는 ITU-T SG15의 G.874.1 규정에 정의되어 있다. ITU-T SG15의 2004년 4월 회의에서 OBS 기술을 제안한 자성기관6에 OBS 기술에 대한 프레임워크를 제안하고 있으나, OBS 개방형 왕관리는 주로 연구사항으로 되어있다.

(그림 4) OTN과 OBS 채널의 관계

3.1.1 연결 관리

OBS 채널의 연결 관리 체계를 정의하기 위하여 JumpStart 프로토콜 신호 규격[7], 기존 MPLS LSR(Label Switching Router) MIB[8]와 MPLS FID(Forewarding Equivalence Class To Next Hop Label Forwarding Entry) MIB[9]를 참고하였다. (그림 5)는 OBS 코어 노드에서 연결관리 테이블의 연관 관계를 나타낸다.

(그림 5) OBS 코어 노드에서 연결관리 테이블 연관 관계

크로스-컨넥트 테이블 연관 관계는 입력 및 출력 세그먼트 테이블, 연결 속성 테이블, 엘리멘트의 연관 관계를 구성한다. 버스트 트래픽 전송을 위한 레이블이 정의되는 입력 및 출력 세그먼트 테이블 연관 관계는 인터페이스 테이
블 엔트리와 크로스-컨텍트 테이블 엔트리와 연관된다. 크로스-컨텍트 테이블 엔트리는 인덱스로 크로스-컨텍트 인덱스, 크로스-컨텍트 입력 세그먼트 인덱스, 크로스-컨텍트 출력 세그먼트 인덱스 그리고 크로스-컨텍트 연결 속성 인덱스를 사용하며, 연결 속성 테이블 엔트리에 의해 연결 속성들이 기술된다. <표 1>은 크로스-컨텍트 테이블 엔트리에 대한 연결 속성을 나타내는 연결 속성 테이블 엔트리의 관리체계를 나타낸다.

<table>
<thead>
<tr>
<th>관리체계</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAINdex</td>
<td>연결 속성 테이블 엔트리의 인덱스</td>
</tr>
<tr>
<td>dataBurstLength</td>
<td>데이터 버스트 길이</td>
</tr>
<tr>
<td>offsetTime</td>
<td>오프셋 타임</td>
</tr>
<tr>
<td>conversionFlag</td>
<td>파장 변환 플래그</td>
</tr>
</tbody>
</table>

버스트 예상값과는 OBS 입구 예지 노드의 중요한 기능 중 하나이다. (그림 6)은 버스트의 예상값과 예상값을 위하여 입력 예지 노드에서 연결관리 테이블과 FTN 테이블의 관리체계를 나타낸다.

<table>
<thead>
<tr>
<th>관리체계</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchingControlMode</td>
<td>자원 예약 및 해제 시점을 결정</td>
</tr>
<tr>
<td></td>
<td>- explicitSetupAndExplicitRelease</td>
</tr>
<tr>
<td></td>
<td>- estimatedSetupAndExplicitRelease</td>
</tr>
<tr>
<td>maxDataBurstNumber</td>
<td>지원될 수 있는 버스트의 최대 개수</td>
</tr>
<tr>
<td>maxDataBurstSize</td>
<td>지원될 수 있는 버스트의 최대 크기</td>
</tr>
<tr>
<td>minDataBurstSize</td>
<td>지원될 수 있는 버스트의 최소 크기</td>
</tr>
</tbody>
</table>

3.1.2 성능관리

성능관리를 위하여 제어기와 OBS 스위치에 각각 생성되는 성능정보들을 이용한다. <표 3>은 제어체계 성능 테이블과 연결관리의 관리체계들을 나타낸다. 제어체계 성능 테이블은 제어기에 탑재되어 제어 체계로 송신되는 BCP 및 연결체계 서버가 OBS 스위치에 연결실정을 요구하는 GSMP의 연결실정 메시지에 대한 성능정보들을 제공한다.
<표 3> 제어 패킷 생성 데이터

<table>
<thead>
<tr>
<th>관리자</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgpTotalReceiveCounter</td>
<td>BCP의 총 수신 개수</td>
</tr>
<tr>
<td>bgpHeadErrorCounter</td>
<td>헤더에러가 있는 BCP의 수신 개수</td>
</tr>
<tr>
<td>setupMessageReceiveCounter</td>
<td>연결설정 BCP의 수신 개수</td>
</tr>
<tr>
<td>releaseMessageReceiveCounter</td>
<td>연결체결 BCP의 수신 개수</td>
</tr>
<tr>
<td>connectionSetupAttemptCounter</td>
<td>연결설정 시도한 개수</td>
</tr>
<tr>
<td>connectionSetupFailureCounter</td>
<td>연결설정 실패한 개수</td>
</tr>
</tbody>
</table>

<표 4> 데이터 비트스트 설정 데이터

<table>
<thead>
<tr>
<th>관리자</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataBurstTotalReceiveCounter</td>
<td>비트스트의 총 수신 개수</td>
</tr>
<tr>
<td>connectionSetupPrevDropCounter</td>
<td>연결 설정 전에 드롭된 비트스트의 수</td>
</tr>
<tr>
<td>connectionSetupAfterDropCounter</td>
<td>연결 설정 후에 드롭된 비트스트의 수</td>
</tr>
<tr>
<td>dataBurstAverageDuration</td>
<td>비트스트의 평균 지속 시간</td>
</tr>
</tbody>
</table>

3.1.4 장애관리

| <표 5> GSMP 이벤트와 Notification |
|-----------------|-------------------|
| GSMP Event | Notification |
| Port Up | gsmPortUpEvent |
| Port Down | gsmPortDownEvent |
| Invalid Label | gsmInvalidLabelEvent |
| New Port | gsmNewPortEvent |
| Dead Port | gsmDeadPortEvent |
| Adjacency Update | gsmAdjacencyUpdateEvent |

3.2 분산 관리 모델
GSMP 개방형 인터페이스에서 장애 관리 기능의 위치가 제어기에만 위치한 것처럼 보이지만, 제어기의 관리자 및 관리자간에 명확하게 정의되어 있지 않다. GSMP 개방형 인터페이스 환경의 제어기는 시그널링과 라우팅을 지원하는 제어력의 기능을 구현하여진다. (그림 7)은 GSMP 개방형 인터페이스가 적용된 OBS 망의 장 관리 서비스를 제공하기 위해 본 논문에서 제안하는 분산 관리 모델을 나타낸다.

(그림 7) 분산 관리 모델

분산 방 관리 모델에서 관리정보의 관리주체 및 생성되는 위치에 따라서 관리 기능은 제어기와 OBS 스위치에 분산되어 다르게 된다. GSMP 개방형 인터페이스에서는 시그널링과 라우팅 프로토콜에 의하여 지원되는 제어력의 기능들은 제어기에서 수행된다. 제어기는 제어력의 기능들과 연동에 의해서 연결설정 및 해제와 관련된 메시지를 OBS 스위치에서 전달하며, OBS 스위치는 처리된 결과만을 응답하게 된다. 즉, 연결수락 제어 및 스위치의 구성이 제어기에 의하여 수행되므로 연결 및 구성관리 기능들은 제어기에 맡겨진다. OBS 망에서의 성능정보는 제어 채널 및 데이터 비트스트 채널과 관련될 때, GSMP MIB에 정의된 Notification과 관련된다. GSMP MIB는 장애 및 이벤트 정보는 제어기에 OBS 스위치에 각각 발생할 수 있으며 장애발생 후에 OBS 스위치에도 제어기와 OBS 스위치에 분산되어 담겨진다. 분산 방 관리 모델에서 SNMP 에이전트의 위치 및 맡는 기능은 <표 6>과 같다.

| <표 6> SNMP 에이전트의 위치 및 맡는 기능 |
|-----------------|-------------------|
| 위치 | 관리 기능 |
| 제어기 | 연결 및 구성관리 기능 |
| 제어기의 관리진 성능 및 장애관리 기능 |
| OBS 스위치 | OBS 스위치에 관련된 성능 및 장애관리 기능 |

(그림 8)은 NMS(Network Management System) 및 제어기와 OBS 스위치간의 각 관리 기능에 대한 정보 호름도를 나타낸다.
(그림 8) 관리 기능별 정보 흐름도

(a)는 연결관리에 대한 정보 흐름도를 나타낸다. 연결은 구성연결(provisioned connection)과 동적연결(dynamic connection)으로 구분할 수 있다. 구성연결은 관리 기능에 의하여 설정되며 동적연결은 제어기에서 관리할 신호 프로토콜의 결과에 의하여 설정된다. 실시간으로 버스트의 스위칭을 수행하여야 하는 OBS 망의 특성상 NMS는 구성연결을 설정하기에는 적합하지 않다. NMS는 제어기에 제어된 신호 프로토콜의 결과에 의하여 설정된 메시지를 설정된 동적 연결의 상태를 관리할 수 있다. (b)는 구성관리에 대한 정보 흐름도 (c)는 제어기와 OBS 스위치의 신호관리에 대한 정보 흐름도를 나타낸다. (d)는 장애관리에 대한 정보 흐름도로 OBS 스위치에 장애가 감지되면 OBS 스위치에서 제어된 관리 기능은 NMS로 Notification을 보내며, GSMP 슬레이트는 제어기로 GSMP 이벤트 메시지를 전송하여 장애가 감지되었음을 알린다. 제어기의 관리 정보는 장애정보는 연결설정시의 연결수락 제어 및 경로 계산시에 사용된다. 제어 베타를 전송하는 제어 베타의 장애가 감지되면 제어기에 제어된 관리 기능은 NMS로 Notification을 보내어 제어 베타의 장애를 알린다.

4. 구현

본 장에서는 개방형 인터페이스가 적용된 OBS 망의 관리 서비스를 위하여 개발한 관리 및 GSMP의 기능에 대하여 기술한다.

4.1 구현구조

(그림 9) 소프트웨어 구현 구조

4.2 망 관리 메니저 및 에이전트

(그림 9)의 구현구조에서 망 관리 메니저인 NMS는 UI(Interface User), SS(Supplement Service), SNMP API 그리고 FCAPS 모듈로 구성되어 있다. 관리자가 NMS의 사용자 인터페이스인 UI를 통해서 망 관리 서비스를 요청한다. 요청한 서비스에 따라 UI는 망 관리 기능들을 수행하는 FCAPS 또는 부가적인 기능을 수행하는 SS 모듈로 요청 메시지를 보낸다. SS 모듈에서 제공하는 기능에는 특성 코드까지의 정보를 사용적으로 표시할 수 있는 Trace Route 기능과 Ping 기능 등이 있다. UI로부터 요청을 받은 FCAPS 또는 SNMP API를 통해 에이전트 또는 OBS 스위치에 담긴 SNMP 에이전트에게 관리 서비스를 요청하게 된다.

SNMP 에이전트는 MM(Main Module)과 PDU-RH(PDU Request Handler) 그리고 ORH(Object Request Handler)로 구성되어 있다. MM은 NMS 또는 망 관리 데이터베이스의 서버를 위한 서비스 요구 명령의 SNMP PDU(Protocol Data Unit)의 타당성을 검사하여 오류가 없을 때 SNMP PDU를 PDU-RH로 보낸다. PDU-RH는 NMS PDU를 분석한 다음, 관리데이터에 대해 SET 또는 GET 명령을 처리하는 해당 ORH를 호출하여 NMS로부터 받은 명령을 처리한다.

망 관리 데이터베이스에서 OBS의 연결관리를 위한 사용자 인터페이스는 (그림 10)와 같다.
(그림 10) 연결관리를 위한 사용자 인터페이스

실시간을 요구하는 OBS 망의 특성상 NMS로 구성연결을 설정하기에는 적합하지 않으므로 NMS는 등록연결에 대한 정보를 결계하며 저장 및 인쇄가 가능하도록 구현하였다.

4.3 GSMP 마스터 및 슬레이브

GSMP 마스터는 Master-TX와 Master-RX 채스트 및 Timer 채스트로 구성된다. Master-TX 채스트는 GSMP 메시지를 생성하여 메시지를 OBS 스위치로 전달하는 역할과 제어기와 OBS 스위치 사이에 동기를 설정하고 유지하는 기능을 수행한다. OBS 스위치로부터 응답 받은 메시지를 처리하는 기능은 Master-RX 채스트에서 수행한다. Timer 채스트는 GSMP 프로토콜의 타이머 기능을 지원한다. GSMP 마스터와 SNMP 제어트와의 프로세스간 통신을 IPC를 위해 메시지를 사용하였다.

GSMP 슬레이브는 Slave 채스트와 시스템 처리기(System Handler) 채스트로 구성된다. Slave 채스트는 GSMP 마스터에 메시지를 수신하여 시스템 처리기 채스트로 중계하는 기능을 수행한다. 시스템 처리기는 GSMP 메시지를 처리하여 시스템 관리기능과의 상호 작용을 수행한 후, 처리된 결과를 GSMP 마스터로 전달한다.

5. 결론

국내외에서의 OBS에 대한 많은 연구가 신호 프로토플, 스위칭 구조 및 연결설정을 위한 제어 기능에 집중되어 있으며, OBS 망에 대한 망 관리에 대한 연구 결과는 전무한 상태이다. 본 논문에서는 GSMP 개방형 인터페이스가 적용된 OBS 망에서의 망 관리 서비스를 제공하기 위한 방안으로 OBS의 연결, 구성, 성능, 장애관리를 위한 관리체계를 정의하였으며, 이들 관리체계들로 관리 기능별로 제어기와 OBS 스위치에 분산되어 탐색되는 분산 망 관리 모듈을 제안하였다.

연결수락 제어 및 스위치 구성이 제어기에 의하여 수행되므로 연결관리 및 구성관리를 위한 관리 기능은 제어기에 탐색하였다. 장애 및 성능정보는 스위치 및 제어기에 모두 발생하는 정보이므로 장애 및 성능관리의 관리 기능은 OBS 스위치와 제어기에 분산하여 탐색하였다. 망 관리 메니저 및 이벤트와 GSMP 마스터 및 슬레이브의 구현을 통하여 본 논문에서 제안한 분산 망 관리 모듈에서 연결관리에 대한 실현을 확인할 수 있었다.

향후 연구의 개요는 초기적으로 정의해야 할 관리정보들에 대한 연구가 더불어 본 논문에서 제안한 분산 망 관리 모듈을 기반으로 망 관리 기능의 성능을 측정하여 분석하는 것이 다.

참고문헌

권태현
e-mail: taehyun@andong.ac.kr
2001년 안동대학교 컴퓨터공학과(학사)
2003년 안동대학교 대학원 컴퓨터공학과
(공학석사)
2003년~현재 안동대학교 대학원 컴퓨터공학과(박사과정)
 관심분야: 광 인터넷, 개방형 인터페이스, 망 관리 등

김춘희
e-mail: chkim@deu.ac.kr
1988년 전남대학교 전산통계학과(학사)
1992년 전남대학교 전자계산학과(학사)
2000년 경북대학교 컴퓨터공학과(공학석사)
1988년~1996년 한국전자통신연구원 연구원
2002년~현재 대구사이버대학교 컴퓨터정보학과 조교수
 관심분야: 고속통신망, 트래픽 측정, 망 관리

차영욱
e-mail: ywchoa@andong.ac.kr
1987년 경북대학교 전자공학과(학사)
1992년 충남대학교 계산통계학과(학사)
1998년 경북대학교 컴퓨터공학과(공학석사)
1987년~1990년 한국전자통신연구원 선임
연구원
2003년~2004년 메시지메시지 주립대학 방문교수
1999년~현재 안동대학교 컴퓨터공학과 부교수
 관심분야: 광 인터넷, 개방형 통신망, 망 관리