Development of Access Point Supporting Multiple Network Interfaces

SangHak Lee†· TaeChoong Chung††

ABSTRACT

Increasing popularity of WLAN and advancement of WPAN allow user to connect to the Internet easily today. The increasing number of networking mobile device such as laptop and PDA requires computing devices to share high speed Internet line or work on networks in most cases. This has stimulated the demand of access point that supports multiple network interfaces. This paper describes the process of design, implementation and test of the wired/wireless integrated access point that supports multiple network interfaces such as wired LAN, wireless LAN, Bluetooth, and Broadband network. We designed and developed the hardware system and protocol software to integrate heterogeneous network. The system has shown compatibility with standard specification and good performance through testing with various network devices.

키워드 : 홈 게이트웨이(Residential Gateway), 임베디드 시스템(Embedded System), 액세스 포인트(Access Point), 무선 현(Wireless LAN), 블루투스(Bluetooth)

1. 서 론

가정이나 오피스에서 PC, PDA, 그리고 네트워크 접속이 가능한 컴퓨터 및 디바이스들의 수가 증가되고 무선 네트워크의 활용이 점차 증대되고 있다. 이러한 단말기와 네트워크의 변화는 기기들 간에 네트워크의 구성하여 작업하고 인터넷이라는 자원을 공유하여 사용할 수 있도록 하는 환경을 필요로 한다. 이를 위해서 무선 네트워크 인터페이스를 공시에 지원하며 인터넷 접속을 가능하게 하는 네트워크 시스템에 대한 연구가 임계 중심으로 활발히 진행 중이다.

기존에 고속 인터넷 라인을 공유하기 위한 유선 IP 공유기와 무선 LAN의 네트워크 접속을 위한 액세스 포인트가 통합된 제품이 있다. 이들은 유무선 LAN 기능을 갖춘 PC와 노트북의 인터넷 접속과 네트워크 구성을 가능하게 한다. 또한, 이와는 별개로 다양한 홈네트워크 기기간의 접속을 위한 홈 게이트웨이에 대한 연구와 제품 개발이 활발히 이루어지고 있다. 본 논문에서는 유무선 LAN을 통해 접속가능하며 무선 개인 네트워크(WPAN: Wireless Personal Area Network) 표준인 터무니스를 지원하는 홈네트워크로서 사용될 수 있는 다중 네트워크 인터페이스를 지원하는 유무선 액세스 포인트를 개발하였다.

액세스 포인트는 외부 링크로는 xDSL, 케이블, 그리고 전용선 등의 고속 인터넷 라인을 지원하고 내부 링크로는 유선 LAN, 무선 LAN, 블루투스 등 여러 유형의 네트워크와 연결되어 이들 간의 연결 기능을 수행한다. 이와 같은 네트워크 구성을 위한 다음 (그림 1)로 나타낼 수 있다.

다양한 유무선 네트워크를 동시에 지원하는 성능은 보장하기 위해 하드웨어 플랫폼 설계, 구현, 그리고 프로토콜
포팅 및 개발 작업을 수행하여 하드웨어, 소프트웨어 플랫폼을 개발 완료하였고, 다양한 기기 접속을 통한 기능 및 성능 평가를 수행하였다.

(그림 1) 네트워크 동작 환경도

본 논문은 다음과 같이 구성되어 있다. 2장에서 액세스 포인트를 구성하는 다양한 네트워크 기술과 시스템 개발 기술에 대해 알아보고, 3장에서 시스템을 개발하기 위한 환경에 대해 기술한다. 4장에서는 실제 시스템을 설계하고 구현한 과정을 알아본다. 5장에서는 개발 완료된 시스템의 기능 및 성능 시험에 대한 결과를 보이고 마지막으로 6장에서는 결론 및 향후 연구 방향으로 끝을 맺고자 한다.

2. 관련 연구

개발된 시스템은 다양한 유무선 네트워크 기술을 통합하고 있다. 이 장에서는 각각의 네트워크 기술들과 이를 통합하기 위한 업베이드 시스템 및 프로토도 개발동향에 대해 기술한다. 최근 국내 유전자변형 사업자들이 무선 네트워크를 대표적으로 선보이는 점차 다양한 모바일 단말기에서 손쉽게 무선 랜이 이용할 수 있다. 무선 랜 환경을 구축하기 위해서는 단말기에 들어가는 무선 랜 카드와 무선 랜과 유선 랜을 연결해 주는 액세스 포인트를 필요로 한다. 현재 시장의 제품들은 IEEE802.11b를 주로 이용하고 있으며, 검지 IEEE802.11g나 IEEE802.11a의 고속 무선 대역의 제품들이 선보이고 있다. 이들은 대부분 유선 랜 접속 포트도 함께 지니고 있다.

FDA, 휴대전화, 패드 컴퓨터 등 저전력 모바일 기기들은 마우스, 키보드 등의 주변장치 유선을 무선으로 대체하고 기기를 간의 간단한 무선 데이터 전송을 쉽게 수행하기 위해 개발된 네트워크 인프라가 발달하고 있다. 단순 유선의 대체뿐만 아니라, 네트워크 구조의 최대 7단의 동적 기기(Slave)의 동시 접속이 가능한 블루투스는 RAN 액세스 포로파일(LAP: Lan Access Profile)을 통해 인터넷 접속 기능을 제공할 수 있다. 현재 개발된 시스템들은 블루투스를 통해 유선 랜에 접속하거나 전화망의 모델을 통해 인터넷에 접속할 수 있도록 하는 블루투스 앱세스 포인트 등이 있다.

3. 개발 환경

본 논문에서 개발한 유무선 통합 시스템은 자립형 시스템으로 개발을 위해서는 일반 PC나 클라이언트/서버와는 다른 개발환경을 필요로 한다. 우선적으로 개발하려고 하는 목표 시스템에 맞는 운영체계 버전이 있어야 한다. 상용 업베이드 운영체계인 경우는 관련 개발 라이브러리 배포를 제공하고 업베이드 리눅스는 오픈소스를 가지고 개발환경을 구축해야 한다. 본 논문의 시스템에서는 업베이드 리눅스를 기반으로 개발되었으며 목표 시스템 운영체계 키널, 디바이스 드라이버, GNU 통해 채인 등 오픈소스로 개발환경을 구축하였다. 본 시스템에서는 ARM940T 개발 S3C2510 프로세서와 ARM과 리눅스를 사용하여 개발하였다. S3C2510 프로세서는 기기 관리 장치가 없는 특징을 가지고 있다. 기기 관리 장치가 없는 프로세서를 지원하는 업베이드 리눅스로서 uC/OS가 있으며, 본 개발에서는 이를 수정한 uC/Linux를 사용하였다. 아래 그림에서 시스템 개발 환경을 나타내었다.

(그림 2) 시스템 개발환경
우선 목표 시스템의 기능에 따른 성능 요구사항 분석을 거쳐 적합한 프로세서를 선정한 결과, 다중 네트워크 인터페이스 지원하는 액세스 포인트에서 유선네트워크는 외부 인터넷과 내부의 랜 접속을 위한 2개 이상의 유선 랜, 무선 네트워크는 무선 랜과 블루투스를 지원하도록 하였다. 무선 랜은 PCMCIA 카드 형태로, 블루투스는 USB 동글 형태로 추가할 수 있도록 설계하였다. 따라서 2개 이상의 유선 랜을 지원하고 PCMCIA와 USB를 연결할 수 있는 삼성 S3C2510 프로세서를 선정하였다. 프로세서 신경 이후, ARM 기반 프로세서와 비교할 때, 손쉽게 포팅이 가능하고, 디바이스 드라이버 및 프로토콜 개발에 용이한 리눅스를 운영체제로 선정하였다.

4. 시스템 설계 및 개발

이번 장에서는 시스템의 하드웨어와 소프트웨어의 개발 내용을 기술한다. 네트워크 접속 장치의 특성상 여러 단말이 동시에 접속하여 사용하는 환경이 비교적 복잡하게 시스템의 안정성과 성능을 보장할 수 있도록 각 블록을 개발, 통합하였다. 특히, 개별 네트워크 인터페이스는 통합하기 위한 네트워크 브리지 기능을 개발하여 일관된 성능을 유지하도록 하였다.

4.1 하드웨어 시스템 설계 및 구현

프로세서가 설치된 후 웹용 애플리케이션의 작동이 실제로 이루어질 수 있도록 메모리, 플래시, 시리얼 핀, 이더넷 핀 등의 부품을 선정하여 시스템을 설계하였다. 아래 그림은 본 시스템의 하드웨어 블록도이다.

![하드웨어 블록도](image)

제조사는 16Mbyte 플래시 메모리와 64Mbyte SDRAM을 사용하여 시스템 소프트웨어를 저장 및 동작하도록 하였다. 유선 네트워크는 기본적으로 프로세서에 내장되어 있는 두 개의 MAC을 사용하고 RT8201 PHY 칩을 연결하여 내부 망과 외부망에 각각 접속하도록 하였다. 개발단계에서 호스트 시스템과의 통신을 위한 시리얼 포트를 위해 MAX232 칩을 사용하였다. 아래 그림은 개발 완료된 플랫폼의 사전 사양이다.

![사전 사양](image)

무선 랜과 블루투스 모듈은 각각 PCMCIA와 USB 인터페이스를 통해 연결되었다. 무선 네트워크 모듈은 외장형으로 설계한 이유는 무선 네트워크 모듈이 시스템 내에 내장되며 무선 통신 성능과 일관성을 위해 있는 안테나의 설계 문제가 발생할 수 있기 때문에 이를 배제하고함 네트워크 모듈 업그레이드 시 용이하도록 하기 위해서하였다.

4.2 시스템 소프트웨어 설계 및 구현

본 장에서는 이기종 네트워크의 상호연동을 이루고 외부 망과의 통신을 위한 시스템 소프트웨어의 설계 및 구현에 대해 기술한다. 시스템의 네트워크 프로토콜은 주로 시스템 커널 모드에서 동작하며, 기능별 네트워크 모듈로 구성되는 데 우선 랜, 블루투스, 소프트웨어이다. 네트워크 하드웨어 모듈은 각기 다른 디바이스 드라이버를 통해 연결되고 이는 유선 브리지 기능 동작 상호 연동된다. 이는 802.2 LLC 계층을 통해 IP 계층으로 연결하고 NAT를 통해 외부 망과의 연동이 이루어진다. 다음 그림은 시스템 소프트웨어 블록도이다.

무선 랜 소프트웨어의 개발내용은 액세스 포인트의 역할을 수행하기 위한 유무선 브리지 기능의 구현이다[10]. 본 시스템에서는 무선 랜 카드 드라이버를 구성하는 PCMCIA Core 드라이버, PCMCIA Socket 드라이버, PCMCIA Card Service 드라이버와 유무선 브리지 기능을 수행하기 위한 브리지 레이어관리, NAT를 개발하였다[12]. 그 밖에 보안을 위해 WEP(Wired Equivalent Privacy)를 지원하도록 하였다[8,9].

블루투스 스케인을 모든 인터페이스 계층, 코어 스크립 계층, 애플리케이션 레벨 프로토콜 계층, 그리고 애플리케이션 계층 1)

1) WEP은 유선 링에서 제공하는 것과 유사한 수준의 보안 및 기밀 보호를 무선 판계 제공하기 위해 Wi-Fi 표준이 정의되어 있는 보안 프로토콜이다.
여 계층으로 구성하였다[3]. 블루투스 모듈 인터페이스 계층에서는 CSR Class1 타입의 블루투스 칩을 사용한 USB 모듈과의 통신을 위해 USB 1.1 드라이버 및 HCI(Host Controller Interface)를 개발하였으며 코어 스택 계층에서는 L2CAP, RFCOMM을 구현하고 네트워크 링크와 보안을 위한 계층이 제공된 통신을 위한 소켓 인터페이스를 개발하였다[2,7]. 상위 계층인 에뮬레이션 레벨 프로파일 계층에서는 블루투스 기기의 네트워크 접속을 위한 LAP(Lan Access Profile)과 PAN(Personal Area Network) 프로파일을 구현하였다[2,4]. 본 시스템에서 개발된 프로토콜은 표준인 1.1을 준수하였으며 동시에 클라이언트의 수는 최대 7대 까지 가능하다[5].

![그림 5] 시스템 소프트웨어 복록도

CompAct(Compact) 라우터(혹은 미니 라우터)는 내부의 유무선 네트워크를 통해 외부의 고속 인터넷을 공유하기 위한 NAT를 구현하였다. DSL 라인에서 인증 및 접속을 위한 PPP/PPPoE를 구성하였고, 내부 네트워크의 사용 IP를 분배하기 위한 DHCP 서버와 어드레스 반환을 위한 NAT를 개발하였다.

이와 같은 프로토콜의 개발이외에 시스템의 소프트웨어를 탐색하기 위한 플래시메모리 파일 시스템을 개발하였다. MTD/JFFS2(Memory Technology Device Journaling Flash File System)는 플래시메모리 파일 시스템으로 사용하기 위해 반드시 구현되어야 하며 플래시메모리는 부트로더(Bootloader). 커널이거나, 터미나리 이미지를 포함하고 남은 메모리 영역이 플래시 파일 시스템 영역에 해당한다. 커

널 내부에서 플래시메모리를 복구하여 각각의 영역으로 나누어 사용하였다.

5. 시험 평가

개발된 다중 네트워크 인터페이스 지원 앱스에 포인트의 기능 및 성능 측정을 위한 시험 평가를 수행하였다. 네트워크 측면에서 다중 네트워크 인터페이스 지원이 가능하게 이루어졌는지를 점증하기 위해 새로운 유형의 네트워크 디바이스, 즉 테스터를 PC, 노트북, PDA, 다른 네트워크 인터페이스를 통해 접속하여 인터넷 접속과 내부 네트워크를 등록하고 보고하였다. 다음 그림은 시험평가 구조도이다.

![그림 6] 시스템 시험 평가 환경도

시험에 사용된 네트워크 접속 단말들은 각각 다른 네트워크 인터페이스를 통해 송수신 앱스에 포인트에 접속하여 접속한 이후에는 유무선 네트워크의 구분 없이 동일한 네트워크 환경으로 IP 기반의 다양한 통용 애플리케이션들을 실행할 수 있다. 네트워크의 성능 측정을 위해 인터페이스별로 두 가지 이상의 제품을 사용하여 전송 속도를 측정하였다. 다음 <표 1>은 네트워크 종류별로 사용된 인터페이스 카드 제품과 전송 속도를 나타낸다.

<table>
<thead>
<tr>
<th>구분</th>
<th>사용선 네트워크 모듈</th>
<th>성능</th>
</tr>
</thead>
<tbody>
<tr>
<td>무선 LAN 카드</td>
<td>SAMSUNG MagicLAN PCMCIA Card</td>
<td>4~5Mbps</td>
</tr>
<tr>
<td></td>
<td>Linksys Network PC Card Ver.3</td>
<td>4~5Mbps</td>
</tr>
<tr>
<td>블루투스 모듈</td>
<td>HP iPAQ 5450</td>
<td>450Kbps</td>
</tr>
<tr>
<td></td>
<td>WIndows Bluetooth USB Dongle</td>
<td>600Kbps</td>
</tr>
<tr>
<td></td>
<td>Blueberry Bluetooth USB Dongle</td>
<td>600Kbps</td>
</tr>
<tr>
<td>IP 공유기</td>
<td>3COM OfficeConnect DualSpeed Switch</td>
<td>17~20Mbps</td>
</tr>
</tbody>
</table>
기능 시스템은 시스템의 호환성을 점검하기 위해 여러 업체 제품을 통해 다양한 네트워크 인터페이스 지원 예세스 시스템에 접속하여 네트워크의 연결성과 성능을 측정하였다. 여러 업체의 제품들과의 통신 실험을 통해 표준 규격과 호환성에 대해 연구하였다. 본 연구의 경우 위 표에 언급된 업체 제품을 도토록 접속하여 개발된 예세스 포트에 접속한 후 속도 측정 등을 통해 전송속도를 측정하였다. 표의 측정값은 여러 차례의 실험을 통해 평균값을 보였다.

클라우드는 기기마다 접속방식에 차이가 있어 여러 절차의 호환성을 확보하기 어려웠으나 시험에 사용된 제품들은 모두 접속에 성공하였다. 특히 규격상에 마스터에 따른 예세스 포트에 동시 접속 가능한 종류가 7대로 명시되어 있어 이에 대한 만족도를 비교하였다. 클라우드 시스템으로는 클라우드가 내장된 PDA인 iPod와 노트북에 접속할 수 있는 블루투스 USB 모듈을 사용하였다. 네트워크 기기에서는 저비용을 입증하기 위해 클라우드 내부의 시장에 작은 클라우드 기기에서 사용이 가능한 네트워크를 통한 접속 실험이 필요하였다. 클라우드의 성능 측정은 여러 차례의 클라우드로 동시에 접속하여 측정하였다.

네트워크의 성능 측정은 각기 개별적으로 이루어졌으며, 각 개발이 완료된 상태가 아니므로 향후 시스템의 안정화가 이루어졌을 때 동일 실험을 동일 시스템 전체의 성능을 측정해야 할 것이다.

6. 결론 및 향후 연구

본 논문에서는 각기와 오피스에서 많은 수가 예상되는 다양한 네트워크 인터페이스 지원 예세스 포트를 실험에서 개발하였다. 현재의 네트워크 발전현황은 초고속 인터넷의 경우 100 Mpbs급으로 정상화되고, 그리고 네트워크에서는 무선 네트워크의 사용이 증가하고 있는 추세이다. 이와 같은 네트워크 환경에 적합하도록 외부 네트워크는 xDSL, Cable, 전문성을 자체가 하는 네트워크는 무선 랜, 블루투스, 유선 랜 인터페이스를 통합하여 시스템을 구현하였다. 무선 랜, 블루투스는 외장형 카드를 사용하여 개발하였다. 예세스 포트로서의 성능을 최적화하기 위해 시스템 하드웨어의 설계 단계부터 적합한 프로세서 및 기타 부품을 선정을 하였다. 또한, 표준 유닛을 만드는 하위 프로토콜 및 상위 프로토콜을 개발 완료하였다. 이에 따라 단일기기 네트워크 접속 시험을 통해 개발된 시스템의 기능과 성능이 우수함을 검증하였다.

현재 개발된 플랫폼이 상용화까지 고려한 부품 선택과 설계가 이루어졌지만 개선의 여지가 남아있다. 무엇보다 무선 네트워크의 변화에 빠르게 대처할 수 있도록 시스템이 유연하게 업그레이드될 수 있어야 할 것이다. 무선 랜이 급격하게 확산되고 있는 상황에서 현재 IEEE802.11b에서 IEEE802.11g 또는 IEEE802.11a로의 진화가 이루어질 것으로 예상된다. 또한 블루투스도 현재 표준화 작업이 완료된 1.1 버전에서 차기 버전인 2.0으로 빠르게 이동할 것이다. 본 시스템에서는 이와 같은 네트워크의 변화를 수용할 수 있도록 지속적인 기능 및 성능이 개선되어야 할 것이다.

참고 문헌

이 상 혁

이메일: shlee@ketti.re.kr
1993년 천주대학교 수학과(이학사)
1997년 경희대학교 대학원 컴퓨터공학과
(공학석사)
2000년 경희대학교 대학원 컴퓨터공학과
(박사수료)
2000년-현재 전자부품연구원 융합벨리어스컴퓨팅연구센터 신임 연구원
관심분야: Sensor Network, Combinatorial Optimization, Meta-
Heuristic Algorithm

정 대 충

이메일: techung@khu.ac.kr
1980년 서울대학교 전자공학과(공학사)
1982년 한국과학기술원 대학원 전자계산
공학과(공학석사)
1987년 한국과학기술원 대학원 전자계산
공학과(공학박사)
1987년-1988년 KIST 시스템 공학센터 산업연구원
2001년 미국 Iowa 대학 교환교수
1988년-현재 경희대학교 컴퓨터공학과 정교수
관심분야: 인공지능, 지능에이전트, 블라인드戈리즘

114 정보처리학회논문지 A 제11-1권 제3호(2004.6)