HA/Ti 복합층 코팅한 Ti-30Ta-(3~15)Nb 합금의 전기화학적 특성

정용훈, 최한철*, 고영무
조선대학교 치과대학 생체재료학교실, 2단계 BK 21

Electrochemical Properties of Ti-30Ta-(3~15)Nb Alloys Coated by HA/Ti Compound Layer

Yong-hoon Jeong, Han-Cheol Choe*, Yeong-Mu Ko
Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, College of Dentistry, 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju 501-759, Korea

(Received April 11, 2008; accepted April 24, 2008)

Abstract

Electrochemical properties of Ti-30Ta-(3~15)Nb alloys coated by HA/Ti compound layer have been studied by various electrochemical method. Ti-30Ta binary alloys contained 3, 7, 10, and 15 wt% Nb contents were manufactured by the vacuum furnace system. The specimens were homogenized for 24 hrs at 1000°C. The samples were cut and polished for corrosion test and coating. It was coated with HA/Ti compound layer by magnetron sputter. The HA/Ti non-coated and coated morphology of Ti alloy were analyzed by x-ray diffractometer (XRD) and filed emission scanning electron microscope (FE-SEM). The corrosion behaviors were investigated using potentiodynamic method in 0.9% NaCl solution at 36.5±1°C. The homogenized Ti-30Ta-(3~15 wt%)Nb alloys showed the α+β phase, and β phase peak was predominantly appeared with increasing Nb content. The microstructure of Ti alloy was transformed from needle-like structure to equiaxed structure as Nb content increased. HA/Ti composite surface showed uniform coating layer with 750 nm thickness. The corrosion resistance of HA/Ti composite coated Ti-alloys were higher than those of the non-coated samples in 0.9% NaCl solution at 36.5±1°C. Especially, corrosion resistance of Ti-Ta-Nb system increased as Nb content increased.

Keywords: Electrochemical Properties, Ti-30Ta-(3~15)Nb alloy, Hydroxyapatite, Magnetron sputter

1. 서 론

Ti 합금은 생체 적합성이 뛰어나고 우수한 내식성, 피로특성 및 비강도를 가지고 있어 치료용 임플란트를 비롯하여 각종 생체재료로 널리 이용되어 왔다. 현재 생체용 금속재료로 많이 쓰이는 재료로는 Cp-Ti와 Ti-6Al-4V 합금 등이 있지만, Cp-Ti는 기계적 성질이 부족하고 Ti-6Al-4V 합금은 Al (aluminium)이 압착화이머를 유발하고 V (vanadium)이 세포독성을 유발될 수 있다고 보고되었다. 또 한 이러한 합금은 뼈와의 탄성계수 차이에 의해 응력차폐현상(stress shielding)을 일으킨다는 문제점이 있다. 이러한 이유로 구조의 탄성계수 차이를 줄일 수 있는 Mo, Ta, Nb 같은 β형 안정화 원소를 첨가한 β형 Ti 합금 개발에 연구가 집중되고 있다. 일반적으로 Ti 합금이 대기 중에서 노출되면 TiO2 산화막을 형성하여 내식성을 향상시키나, 표면에 생성 된 TiO2 산화막은 두께가 많고 파괴되는 경향이 있어 결국 생체재료로서의 기능성을 상실하는 경우가 있다. 이러한 문제점을 개선하기 위해 합금의 표면 개질처리를 함으로써 이온의 용출을 억제하고 생체 적합성을 개선하는 효과가 있다. HA(hydroxyapatite)는 뼈와 mineral 구조가 비슷하여 차과나 외과적 응용에 있어 공통점이 뛰어나 금속표면에 증착하였을 때 우수한 효과를 발휘한다. 그러나 HA를 금속 표면에 증착하여 생체재료로 이용하였을 때 뼈와
HA 코팅막 사이의 접착력은 우수하지만, 금속기질과 HA 사이에는 선평창율과 단열율의 차이로 접착력이 떨어져서, 시간이 지날수록 HA 코팅막이 벗겨지거나 HA를 빠르게 흡수하여 코팅의 효과를 발휘하지 못하는 경우가 있다. 일반적인 HA 코팅법은 플라즈마 용사법이나 플라즈마의 고효율은 낮은데, 플라즈마 코팅법의 비효율적 성격을 개선하기 위해 DC 및 RF magneton sputtering법이 최근에 있어 사용되고 있으며, 경제적 및 성능상의 이상성을 향상시키는데 중요한 역할을 한다고 보고되어 왔다.

본 연구에서는 이러한 단점을 보완하기 위해 HA/Ti 코팅층을 코팅하는 방법에 있어서, 기질과 배 사 이에 생물적합성과 접착력을 동시에 높이는 효과를 나타내기 위해 제조된 Ti-30Ta-(3, 7, 10, 15 wt%)Nb 합금에 magneton sputtering을 이용하여 Ti 합금 기질에 HA/Ti 코팅 코팅층 형성한 후 전자현미경을 통해 표면과 박막층을 분석하고 0.9%NaCl 용액에서 동 전위 분석시험을 통해 코팅층 코팅된 합금의 전기 화학적 특성을 조사하였다.

2. 실험

본 실험에 사용할 Ti-30Ta-(3, 7, 10, 15 wt%)Nb 합금 제조를 위해 Cp-Ti(G&S TITANIUM, Grade 4, USA), Ta(Kurt J. Laker Company, 99.95% pure, USA) 및 Nb(Kurt J. Laker Company, 99.95% pure, USA)를 각각 준비하였다. 먼저 Ti-30Ta-xNb 싱크달을 가공하여 제조한 Ti의 조성을 30 wt%, Nb 원소를 3, 7, 10 및 15 wt%로 치명하여 수병 동(Cu) 하스(Heath)에 장입하였다. 10,000 Torr의 진공분위기에서 치명된 Ar 가스를 챗바에 충전하고, 다시 진 공을 유지하는 방법으로 챗바 내의 분위기를 조정 하였다. 또한 챗바 내의 산소량을 최소화 하기 위해 합금 용해시 스콘티지상의 Ti를 용해하였으며 합금의 금연한 용해를 위하여 탕스턴 전극용을 이용하여 6회 이상 반복 용해하였다. 제조된 시편은 전기로 이용하여 1000°C 온도 Ar 분위기에서 24 시간 동안 유지하여 합금의 균질화 처리를 하였으 며 미세조직 관찰은 직경 10 mm 크기로 치단한 후 단계적으로 미세먼지의 후 측면 세척기로 이용하 여 10분 동안 세척하였다. 준비된 시편은 Keller’s solution에서 예성하여 SEM을 이용하여 미세조직을 관찰하였다. 시편의 결정구조는 XRD를 사용하였으 며 스펙범위는 20~90도의 2θ 구간을 분석하였다. 실험에 쓰인 태온은 Ti(99.99% William Advanced Materials, USA)과 HA의 최일 분말 99.99%를 사용하였다. Ti/HA 코팅층을 형성하기 위해 먼저, 합 금 기질에 Ti를 DC-magneton sputtering을 이용하여 100 W의 파워로 Ar의 혼합가스의 양을 40 sccm으로 유지한 후 40분 동안 증착하였다. 그 후 Ti와 HA의 혼합층을 형성하기 위해, Ti의 파워를 50 W로 줄이고, RF magneton sputtering을 이용하여 HA를 40 W의 파워로 30분 동안 동시에 sputtering하였다. 마지막으로 Ti의 파워를 완전히 없앤 후 HA를 40 W의 파워로 1시간 동안 증착하고 증착 시 온도는 150°C로 하였다. 모든 증착을 마친 후 HA 코팅층의 결정구조를 향상시키기 위해 550°C의 온도에서 1시간 동안 열처리 하였다. 본 연구에서 HA 코팅층을 얻기 위한 증착 조건은 표 1에 나타내었 다. 박막의 코팅층을 형성하기 위해 Ti/HA 코팅층의 코팅을 이용하여 XRD를 이용하여 형성된 박막의 성분을 확인하였다. FE-SEM으로 박막의 표면 형상과 절단 면을 관찰하였다. 실험 물리적 특성을 전기 화 학적 방법을 통해 실험적으로 평가하기 위해 전 전위 시험을 실행하였다. 본 연구에 사용된 전극와 비교로 36.5±1°C의 0.9% NaCl 전액액에서 1.67 mV/sec의 주사속도로 동전위 분석시험을 실시하였으며, PARSTAT 2273(EG&G, USA) 임프기를 사용하여 시험하였다.

<table>
<thead>
<tr>
<th>Table 1. The coatings condition of sputtering targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating condition</td>
</tr>
<tr>
<td>Target</td>
</tr>
<tr>
<td>Base pressure</td>
</tr>
<tr>
<td>Working pressure</td>
</tr>
<tr>
<td>Gas</td>
</tr>
<tr>
<td>Operation temperature</td>
</tr>
<tr>
<td>Pre-sputtering</td>
</tr>
<tr>
<td>Deposition time</td>
</tr>
<tr>
<td>Power supply</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. The condition of electrochemical corrosion test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolyte</td>
</tr>
<tr>
<td>Working electrode</td>
</tr>
<tr>
<td>Counter electrode</td>
</tr>
<tr>
<td>Reference electrode</td>
</tr>
<tr>
<td>Scan rate</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Frequency range</td>
</tr>
<tr>
<td>A.C amplitude</td>
</tr>
<tr>
<td>Point</td>
</tr>
</tbody>
</table>
4. 결 과

4.1 Ti 함금의 미세조직 관찰 및 상분석

그림 1은 1000℃에서 24시간 동안 균질화 처리한 Ti-30Ta-(3~15 wt%)Nb 합금을 주사전자미경을 이용하여 미세조직을 관찰한 사진이다. (a)의 경우 Nb가 3 wt% 첨가된 합금에서 β상과 α상으로 구성된 점성구조를 보였고, (b)의 경우는 (a)보다는 점성각이 감소하여 나타난 양상을 보였다. (c)에서 Nb가 10 wt% 첨가되면 β상의 조직이 현저하고 동축조직으로 변화됨을 보이고 있다. (d)에서 보이 증가하는 바와 같이 Nb의 15 wt% 첨가된 경우 완전한 동축성의 β상 조직을 나타내었는데 이는 Nb 함량이 증가함에 따라 α+β상에서 β상의 구조로 상변태 한다는 보고와 일치하였다[9]. 이를 확인하기 위해 1000℃에서 24시간 동안 균질화 처리한 Ti-30Ta-(3~15 wt%)Nb 합금을 X-선 회절기(FCPDSWIN, JCPDS)를 이용하여 조사한 것이 그림 2이다. 여기에서 보이는 전체적으로 β상 파크와 α상 파크가 겹쳐져 있다. (a)의 Nb 함량이 3 wt% 첨가된 경우에는 α상의 파크가 관찰되었으나 (d)의 Nb 함량이 15 wt% 첨가된 경우, Nb 함량이 증가함에 따라 α상의 파크가 현저히 감소되고 β상 파크가 관찰됨으로부터, Nb가 증가함에 따라 α상으로부터 β상으로 상변태를 촉진하고 있음을 확인할 수 있다. 이는 Ta과 Nb 같은 β안정화 원소임에 기인한 것으로 이러한 결과는 미세조직변화와 연관되어 기계적 특성과 전기화학적인 특성에 영향을 미칠 것으로 예측할 수 있다[9].

4.2 HA/Ti 복합 코팅한 합금의 미세조직 및 상분석

그림 3은 Si waffer를 이용하여 HA/Ti 복합코팅 후 그 단층을 주사전자미경을 이용하여 관찰한 사진이다. 사진에서 볼 수 있듯이 약 750 nm 두께의 주상형 형태의 HA/Ti 복합 코팅막을 관찰할 수 있었다. 복합 코팅막의 성장은 하이퍼 표면에서 기지의 수직방향의 주상형 조직으로 성장한 모습을 관찰할 수 있다.

그림 4는 1000℃에서 24시간 동안 균질화 처리한 Ti-30Ta-(3~15 wt%)Nb 합금에 RF-magnetron sputter를 이용하여 HA/Ti 복합 코팅한 후 550℃에서 한 시간 동안 표면 HA의 결정화처리한 표면의 주사전자미경 사진이다. Nb 함량에 관계없이 (a), (b), (c) 및 (d) 합금 모두 약 20~50 nm 크기의 균일한 입자가 형성되어 표면에 HA의 결정화가 이루어졌음을 확인할 수 있다. 표면의 결정화를 XRD를 이용하여 조사한 것이 그림 5이다. 자세한 HA 회절기의 분석을 위해 30°~45° 구간을 선

Fig. 1. FE-SEM showing the microstructure of Ti-30Ta-xNb alloys; (a) Ti-30Ta-3Nb (X 500), (b) Ti-30Ta-7Nb (X 1000), (c) Ti-30Ta-10Nb (X 500), (d) Ti-30Ta-15Nb (X 500).

Fig. 2. XRD patterns of Ti-30Ta-(3~15 wt%)Nb alloys.

Fig. 3. FE-SEM micrographs showing the HA/Ti coated layer on the Si wafer.
택하여 분석(PCPDFWIN, JCDS)하였으며, 결정학적
위는 31.74° 방위에서 (211)면, 32.22° 방위에서
(112)면, 32.20° 방위에서 (300)면 그리고, 34.06°
방위에서 (202)면에서形象하여 HA의 성분임을 확
인할 수 있었다. Ti(110)면의 피크가 증가함을 알
수 있는데 이는 HA/Ti 복합코팅의 결과, Ti의 영향
으로 생각된다.

4.3 합금의 전기화학적 특성

그림 6은 1000°C에서 24시간 동안 균질화 처리
한 Ti-30Ta-(3-15 wt%)Nb 합금의 표면 코팅에 따
른 전기화학적 특성을 36.5±1°C의 0.9% NaCl 용
액에서 동정해 분극은과로 나타낸 것이다. 합금
관찰한 결과 코팅하지 않은 합금의 경우 Nb 함량
이 15 wt% 경우 가장 낮은 부식 전류밀도 값을 나
타내었으나, 매우 불안정한하고 일정하지 않은 분
극은과를 나타내었다. 이는 표면에 생성된 TiO2나
Ta2O5 등의 막이 없고 불안정해 용액내의 Cl-이온
이 침투되어 국부적으로 파괴가 진행되며 연속적인
공식(pitting)이 일어나기 때문이라고 생각된다. HA/Ti
복합 코팅한 경우 코팅하지 않은 시편에 비
해 전체적으로 안정적인 분극은과를 나타내어 복합
코팅막의 내식성에 크게 기여한 것으로 생각된다.

그림 7과 8은 전기화학적 시험 후 주사전자
현미경을 이용하여 부식된 표면을 관찰한 사진이다.
광학현미경을 이용하여 관찰한 사진은 1차원의 표
면관찰을 통하여 검은 점 부분이 불순물인지 공식
인지 구별이 되지 않아 주사전자현미경을 통하여
관찰한 결과 공식임이 확인되었다. 그림 7에서 합
금표면에서 부식된 표면에서 검은 점 부분이 국부
적으로 발생된 퍼드 임을 관찰할 수 있었지만, HA/
Ti 복합 코팅한 시편에서는 코팅하지 않은 시편에
비해 표면에서 HA코팅에 의하여 표면이 매끄럽고

Fig. 4. FE-SEM showing the HA/Ti coated surface of
Ti-30Ta-xNb alloys; (a) Ti-30Ta-3Nb (X 50k), (b)
Ti-30Ta-7Nb (X 50k), (c) Ti-30Ta-10Nb (X 50k),
(d) Ti-30Ta-15Nb (X 50k).

Fig. 5. XRD patterns of HA/Ti coated Ti-30Ta-(3-15
wt%)/Nb alloys.

Fig. 6. Potentiodynamic polarization curves of Ti-30Ta-xNb alloys after potentiodynamic test in 0.9% NaCl solution at 36.5±1°C.
결론

Ti-30Ta-(3-15 wt%)Nb 합금을 제조하여 HA/Ti 복합층을 Magnetron sputter를 이용하여 증착한 후 코팅층의 영향을 전기화학적 방법으로 조사한 결과 다음과 같은 결론을 얻었다.

1. 제조된 합금의 X-선 희석 분석 결과, 전체적으로 α-β 상을 나타내었고, Nb 함유가 증가함수로 β 상으로 상변태됨을 관찰할 수 있었다.

2. 미세구조를 관찰한 결과, Nb 함유가 증가함수로 질심 조직에서 등방 조직으로 변화함을 알 수 있었다.

3. HA/Ti 복합 코팅층을 분석한 결과, 약 750 nm의 균일한 코팅층을 얻을 수 있었다.

4. 전기화학적 결과 HA/Ti 복합 코팅된 시편의 경우 코팅하지 않은 시편에 비해 부식 안정성이 우수하였다.

결론적으로, HA/Ti 복합 코팅된 Ti-30Ta-(3-15 wt%)Nb 합금의 내식성은 코팅하지 않은 시편에

<table>
<thead>
<tr>
<th>Coating</th>
<th>Unit</th>
<th>Alloys</th>
<th>Ti-30Ta-3Nb</th>
<th>Ti-30Ta-7Nb</th>
<th>Ti-30Ta-10Nb</th>
<th>Ti-30Ta-15Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non</td>
<td>Ecorr (mV)</td>
<td>-480</td>
<td>-860</td>
<td>-1030</td>
<td>-520</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Icorr (A/cm²)</td>
<td>2.57×10⁻⁵</td>
<td>4.67×10⁻⁶</td>
<td>5.34×10⁻⁶</td>
<td>1.24×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Icorr (A/cm²)</td>
<td>1.68×10⁻⁶</td>
<td>7.10×10⁻⁶</td>
<td>1.67×10⁻⁶</td>
<td>9.16×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>HA/Ti</td>
<td>Ecorr (mV)</td>
<td>-390</td>
<td>-360</td>
<td>-370</td>
<td>-350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Icorr (A/cm²)</td>
<td>2.60×10⁻⁶</td>
<td>1.01×10⁻⁶</td>
<td>1.08×10⁻⁶</td>
<td>4.20×10⁻⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Icorr (A/cm²)</td>
<td>1.53×10⁻⁵</td>
<td>6.62×10⁻⁶</td>
<td>4.24×10⁻⁶</td>
<td>2.08×10⁻⁶</td>
<td></td>
</tr>
</tbody>
</table>
비해 부식안정성이 향상됨을 알 수 있었다. 이는 HA 코팅층과 기저 상호간의 Ti 중간층이 완충층 (buffer layer) 작용을 하고 HA/Ti 복합층 코팅막이 HA 단층 코팅막보다 더 우수한 표면안정성을 보여 생체용 입플란트 합금 재료로 적용이 가능하다고 생각된다.

참고문헌