This study investigated knowledge browsing behavior as the factor affecting the increase of knowledge sharing intention. To conduct this study in the specific context of knowledge seeking and sharing behavior of virtual community members, literature on knowledge seeking behavior, meta-knowledge, and knowledge sharing intention was reviewed. Structural Equation Modeling was conducted to analyze survey data to test the research model of this study. The result showed that knowledge browsing have positive effects on creating of virtual community members’ subject knowledge and meta-knowledge, which, in turn, affected positively their knowledge sharing intention. One of the main contributions of this study is that knowledge seeking behavior influence one’s knowledge sharing intention in a virtual community. Organization managers should consider knowledge seeking behavior as not only a self-interested, consuming activity, but also a productive one through its function of constructing subject knowledge and meta-knowledge.

Keyword : Knowledge Browsing, Knowledge Sharing, Virtual Community, Meta-Knowledge
1. Introduction

Organizations consist of social, technical, human, and organizational systems. Organizational knowledge held within these systems has become one of the most important strategic resources and capabilities for organizations [15], strengthening innovation capability, competitive advantage, and dynamic capabilities [63]. Despite the enormous efforts and investments in knowledge management systems (KMS), it has generally been said that the knowledge retained within organizations is not fully utilized through these knowledge management (KM) initiatives [62].

According to the socio-technical perspective of information systems, the optimal performance of systems achieved through optimizing both the social and technical systems and the role of the human agent in the study of knowledge management system (KMS) is potential of critical importance because the people involved ultimately determine the system’s success or failure due to their willingness to use the system by creating, sharing and utilizing knowledge [53].

Lack of attention on human aspect in knowledge management causes several deficiencies in current KM research literature. One deficiency this study investigated is that most of KM research has focused on knowledge sharing behavior, whereas activities such as knowledge seeking, acquisition and creation that occur earlier in the KM process have been ignored [23, 26].

Therefore, this study addresses two shortcoming in the KM literature that have received little attention: (1) the role of knowledge seeking behavior in KM process and (2) the relationship between generated knowledge as the results of knowledge seeking behavior and one’s knowledge sharing intention. To examine the nature of knowledge seeking and knowledge generation, and those effects on knowledge sharing behavior in virtual communities, this study focuses on the following research questions: 1) Can knowledge seeking behavior be identified in virtual communities? 2) Can knowledge seeking behavior actually produce subject knowledge and meta-knowledge? and 3) How does subject knowledge and meta-knowledge relate to knowledge sharing intention?

2. Literature Review

2.1 Activities in Virtual Communities

The existing literature indicates that virtual

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Traditional Virtual Community</th>
<th>Online virtual community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity and development for affiliation or companionship</td>
<td>McClelland [44] Roberts [57] Rubenstein and Shaver [58]</td>
<td>Furlong [19], Hiltz [25], Meyer [47], Rheingold [55], Walther [64]</td>
</tr>
<tr>
<td>Sharing information, knowledge, idea</td>
<td>Kaufer and Carley [32]</td>
<td>Abbot [1], Kraut and Attewell [35], Wellman [69]</td>
</tr>
<tr>
<td>Accessing to information, knowledge, idea</td>
<td>Kaufer and Carley [32]</td>
<td>Constant [11], Finholt and Sproull [16], Whittaker [72]</td>
</tr>
<tr>
<td>Social, emotional support</td>
<td>Wellman and Whortley [69, 70] Wellman [67]</td>
<td>King [34], McCormick and McCormick [45], Rice and Love [56], Walther [65]</td>
</tr>
<tr>
<td>Collective action</td>
<td>Ostrom [52]</td>
<td>Organ [51]</td>
</tr>
<tr>
<td>Influencing people</td>
<td>Winter [72]</td>
<td>N/A</td>
</tr>
</tbody>
</table>
communities show varying social activities such as contributing and seeking of help, feedback, information resources through the reflection and monitoring in social interaction in terms of topical conversation [8, 13, 39, 47]. Table 1 shows the benefits of joining traditional and virtual communities.

2.2 Knowledge Seeking and Sharing in Virtual Communities

Virtual communities provide places for the creation and sharing of knowledge on the Internet. Although the level of social interaction within virtual communities are lower comparing to that of traditional communities, ICT-enabled virtual community still shows that emotional attachment can grow and similar benefits can be achieved. Members who are interested in certain subject matters are the main resource of the virtual community since they represent the availability of resources. In terms of knowledge related behavior, the role of virtual community members can be categorized as knowledge seekers and sharers.

Based on the use of email and post in the community Blanchard and Markus [4] identify four types of virtual community membership as: (1) members who do not use both (labeled as lurkers) but browse the posted messages, (2) members who use only email, (3) members who post only messages, and (4) members who use both mail and post. She found that lurkers who show the least sense of virtual community still play important roles, but only in different ways from other more interactive members. Knowledge sharers are VC members who post information, opinion, experiences and respond to other members’ request. They have knowledge and spend time, energy and other resources while involved in VC.

Knowledge seekers are another type of resource as audiences in virtual communities. Virtual community participants who are attracted by the main subject matters expect the virtual community has enough resources. They browse or search relevant information throughout the virtual community. One of such important roles of knowledge seekers would be their implication of audience of other members. If the information is not available or unclear in the existing format, seekers may post their questions or requests in the virtual community expecting the structure (through other members) to respond with proper answers or information. Responding to such inquiries, members provide information and knowledge (in the form of advice and their experiences).

2.3 Subject Knowledge and Meta-Knowledge

The results of knowledge seeking efforts in virtual communities are two forms of knowledge. As people seek knowledge in either directed or undirected way, they filter and sort the information, and construct their own understanding as knowledge about the subject matter. In addition, they also reflexively monitor and continuously gather information throughout the virtual community itself to make sense out of it during the knowledge seeking process [22]. This type of knowledge is called meta-knowledge defined as knowledge about knowledge available to an individual. Nevo and Wand [49] identified four
different types of meta-knowledge: conceptual, cognitive, persuasive, and conceptual. Cognitive meta-knowledge \cite{17} is the understanding about our own knowledge and abilities. Persuasive meta-knowledge is about source credibility, expertise, trustworthiness \cite{24, 27}. Conceptual meta-knowledge is the information about ontology and the set of concepts needed to describe a domain. Descriptive meta-knowledge \cite{31} deals with author information, scope of the knowledge, intended audience, cost of attaining the knowledge, format of the knowledge, and the date of knowledge. Cress et al. \cite{12} also define prospective meta-knowledge as knowledge about the importance of one’s own information to others. Meta-knowledge is also created by combining several types of knowledge (factual, experiential, and performance) during the knowledge seeking process \cite{10}.

Having high certainty on what others know as well as one’s own knowledge is also valuable in terms of collaboration within organizations where members mutually rely on their expertise. Descriptive meta-knowledge will decide the appropriateness of one’s knowledge to the collaborative task, while persuasive meta-knowledge helps accepting others expertise \cite{43}. Table 2 lists the type of meta-knowledge.

2.4 Knowledge Sharing Intention

According to Ajzen \cite[p. 1981]{2}, intentions “are assumed to capture the motivational factors that influence a behavior; they are indications how hard people are willing to try, of how much of an effort they are planning to exert, in order to perform the behavior.” Knowledge sharing intention is a crucial variable for virtual community service providers in seeking to maintain or gain the main source \cite{42}. Lee et al. \cite{41} defined knowledge sharing intention as a user’s intention to share knowledge. Thus, knowledge sharing intention in this study is defined as individuals’ intention to share knowledge within the virtual communities.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
| Category | Examples | Reference |
\hline
Introspective Meta-knowledge	Cognitive Meta-knowledge	Meta-memory: meta-cognitive knowledge–knowledge about our own knowledge and abilities	Flavell \cite{17} Wegner \cite{66}
	Prospective Meta-knowledge	Knowledge about the importance of one’s own information to the others	Cress et al. \cite{12}
	Persuasive Meta-knowledge	Source credibility, expertise, trustworthiness	Higgins \cite{24} Hovland et al. \cite{27}
	Conceptual Meta-knowledge	Ontology: set of concepts needed to describe a domain. Meta-models: formalized descriptions of generalized concepts	Kalfouglo et al. \cite{29} Plant and Gamble \cite{54} Schwartz \cite{60}
	Descriptive Meta-knowledge	Author information, scope of the knowledge, intended audience, cost of attaining the knowledge, format of the knowledge, date of knowledge, etc.	Basch \cite{3} Katz \cite{31} Stoker and Cooke \cite{61}
\hline
\end{tabular}
\caption{Categories of Meta-knowledge (Modified from Nevo and Wand \cite[p.554]{49})}
\end{table}
3. Hypotheses Development

[Figure 1] presents the research model of this study. The hypotheses are developed based on the literature review and research framework.

3.1 Effect of Knowledge Seeking on Subject Knowledge

In KM process of varying studies such as Kuhlthau’s ISP model [37, 39] and cognitive learning theory models [7, 14, 33], subject knowledge is constructed as the result of process either. Serendipitous knowledge acquisition and creation is also witnessed [9], implying knowledge browsing can generate certain unexpected acquisition or creation of subject knowledge. Therefore, I propose,

\[H1: \text{A virtual community member's knowledge seeking is positively related to the level of subject knowledge.} \]

3.2 Effect of Knowledge Seeking on Meta-Knowledge

In addition to subject knowledge during the knowledge seeking process, varying types of meta-knowledge are also acquired or created. By engaging in knowledge seeking in virtual communities, members continuously build and refresh a set of concepts needed to understand the target knowledge (conceptual meta-knowledge). To evaluate the value of posted knowledge, virtual community members also check who posted it, whether posted knowledge is understandable, how difficult it is to obtain or whether it is valid and useful (descriptive meta-knowledge). During this evaluation in knowledge seeking, members continuously compare their existing knowledge with the newly presented knowledge to update or discard their own knowledge (cognitive meta-knowledge). In this process, they may realize whether posted knowledge is credible or worth to acquire in terms of accuracy and other subjective measures (persuasive meta-knowledge). Therefore, in knowledge seeking, varying types of meta-knowledge are not only created, but also utilized to evaluate and acquire the subject knowledge.

Connell [10] investigated the experienced users’ meta-knowledge usage in subject searching tasks in online library catalogs and identified meta-knowledge rules users created for better search results. He argued that knowledge is
defined as factual, experiential, and process
and meta-knowledge in the search process
comes from the integration of these varying
aspects of knowledge. The result indicated that
meta-knowledge ‘rules’ were found based on
the nature of search tasks and the progress of
the search, which means that meta-knowledge
is created during the search process by using
knowledge of objects (factual knowledge), know-
ledge of events (experiential knowledge), and
knowledge of performance.

Knowledge browsing also would produce meta-
knowledge in a similar way. In the browsing
mode, members actively seek knowledge, but in
an undirected way by looking for a suitable
source of knowledge they may acquire. In know-
ledge monitoring, members may have a certain
direction of knowledge they want to obtain to
achieve their objectives. While they browse or
monitor the directories of the virtual community,
they adopt a trial and error approach depending
on the purpose of the search. Factual and ex-
periential knowledge are gathered in addition to
the subject knowledge even without knowing
them consciously. Therefore, knowledge seek-
ing through searching, browsing, and monito-
ing modes would increase the level of meta-
knowledge. Hence, the following hypotheses are
proposed,

\[H2 : A \text{ virtual community member's knowledge seeking is positively related to the level of meta-knowledge.} \]

3.3 Effect of Subject Knowledge on Knowledge Sharing

Unlike knowledge seeking behavior which is
natural and embedded in our basic instinct,
knowledge sharing requires more effort to con-
duct. First, to give or present our knowledge
to other members, we should be confident on
the truthfulness (content authority) of our exis-
ting knowledge. If we are not sure whether
our contributing (sharing) knowledge is ac-
tually truthful, we may not share that know-
ledge. Thus, the following hypothesis is pro-
posed.

\[H3 : A \text{ virtual community member's subject knowledge is positively related to his/her knowledge sharing intention within the virtual community.} \]

3.4 Effect of Meta-Knowledge on Knowledge Sharing

Virtual community members also have at
least some knowledge about the importance of
their information for others. This type of meta-
knowledge is prospective meta-knowledge de-
\[H2 : A \text{ virtual community member's knowledge seeking is positively related to the level of meta-knowledge.} \]

3.3 Effect of Subject Knowledge on Knowledge Sharing

Unlike knowledge seeking behavior which is
natural and embedded in our basic instinct,
H4: A virtual community member’s meta-knowledge is positively related to his/her knowledge sharing intention within the virtual community.

4. Research Methodology

4.1 Measurement Development

Several research methods are employed for the empirical portion of this dissertation. First, previous studies relating to knowledge seeking and sharing are reviewed to develop a research model that consists of following research variables: 1) knowledge searching, 2) subject knowledge, 3) meta-knowledge, and 4) knowledge sharing intention. Second, a survey was prepared to test the research model. Items were generated based on the literature review and initial qualitative interviews with 20 people using virtual community service to identify additional factors which were not developed through the literature review.

Finally, two statistical tools, SPSS 21 and Amos 21, were used to test 4 hypotheses of the research model. SPSS 21 was employed for the reliability test with values of Cronbach’s α, and Amos 21 was applied for the validity tests, confirmatory factor analysis, path analysis through structural equation modeling (SEM) and goodness of fit tests of the research model. SEM is a statistical tool for developing multiple regression functions in a more complex way. There are many advantages of SEM when compared to multiple regression. Some of these advantages include: 1) use of confirmatory factor analysis can reduce measurement error, 2) tests of models with multiple dependent variables can be performed, 3) models with mediating variables can be tested rather than being restricted to an additive model, and 4) model error terms can be measured. Moreover, SEM compares alternative models to evaluate relative model fit where regression is highly susceptible to error in interpretation due to misspecification [20].

4.2 Data Collection and Sample Description

Five virtual communities in South Korea were randomly contacted by e-mail. A virtual communities granted permission for the investigator to collect data in its website. A hyperlink to the internet survey webpage was randomly announced to the members and visitors of the virtual community. 182 questionnaires were returned and 169 questionnaires were usable. Summary statistics for the respondents are shown in <Table 3>.

<table>
<thead>
<tr>
<th>(Table 3) Description of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic information</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Education</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Occupation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Usage duration of Virtual Community</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
4.3. Analysis of Reliability and Validity

As this study used a survey method to gather data for analysis, two types of errors related to survey measurement need to be examined: random error and systemic error. Random errors are statistical fluctuations in the measured data due to the accuracy limitations of the measurement instrument. Systemic errors are reproducible inaccuracies due to any problems that occur consistently in the same direction [58]. In general, reliability and validity analyses are used to evaluate these two errors.

Reliability is the consistency of a set of measurements. Reliability is the degree to which a variable or concept is measured consistently. Validity is the degree to which the intended variables are actually measured. Reliability and validity were examined by utilizing Cronbach’s α and factor analysis. The desired lower limit for Cronbach’s α is .7 [50]. Thus, the internal consistency of the measurement scales is verified. In other words, the various questions for each construct measured the same construct. <Table 4> shows the results of the reliability analysis.

4.4 Convergent and Discriminant Validities

Reliability tests look only at the items in the scale and do not compare across constructs. To compare one variable with other variables, a validity test should be performed. Confirmatory factor analysis was performed to establish factorial validity in SEM as Gefen and Straub [21] suggested. Confirmatory factor analysis measured construct validity. After the dropout and modification of measures from the previous confirmatory factor analysis, two additional va-

<table>
<thead>
<tr>
<th>Latent Constructs</th>
<th>Item</th>
<th>Factor Loading</th>
<th>Cronbach’s α</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Browsing</td>
<td>KB 1</td>
<td>In general, I just click and read messages posted in the virtual community without realizing what I am looking for.</td>
<td>0.766</td>
<td>0.775</td>
<td>0.748</td>
</tr>
<tr>
<td></td>
<td>KB 2</td>
<td>I am interested in SUBJECT 1 or SUBJECT 2 broadly, but don’t have specific information.</td>
<td>0.838</td>
<td>0.775</td>
<td>0.748</td>
</tr>
<tr>
<td></td>
<td>KB 4</td>
<td>I routinely go to topic boards to find any interesting news, opinions, information, or events.</td>
<td>0.626</td>
<td>0.775</td>
<td>0.748</td>
</tr>
<tr>
<td>Meta-knowledge</td>
<td>MK 2</td>
<td>I am aware of interesting topics in the community, but don’t do actual seeking effort.</td>
<td>0.840</td>
<td>0.885</td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td>MK 3</td>
<td>I am interested in SUBJECT 1, 2, 3 or SUBJECT 4, but don’t exactly know where I can find the information in the community.</td>
<td>0.885</td>
<td>0.885</td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td>MK 4</td>
<td>I know what I am looking for in general, but seldom ask questions to find it.</td>
<td>0.825</td>
<td>0.885</td>
<td>0.850</td>
</tr>
<tr>
<td>Subject Knowledge</td>
<td>SK 2</td>
<td>In this virtual community, I learned a lot about SUBJECT 2.</td>
<td>0.818</td>
<td>0.837</td>
<td>0.849</td>
</tr>
<tr>
<td></td>
<td>SK 3</td>
<td>In this virtual community, I learned a lot about SUBJECT 3.</td>
<td>0.879</td>
<td>0.837</td>
<td>0.849</td>
</tr>
<tr>
<td>Knowledge Sharing Intention</td>
<td>KSI 1</td>
<td>I intend to share my knowledge in the community.</td>
<td>0.913</td>
<td>0.892</td>
<td>0.832</td>
</tr>
<tr>
<td></td>
<td>KSI 2</td>
<td>I intend to share my experience knowledge in the community.</td>
<td>0.913</td>
<td>0.892</td>
<td>0.832</td>
</tr>
<tr>
<td></td>
<td>KSI 3</td>
<td>I plan to share my opinion frequently.</td>
<td>0.979</td>
<td>0.892</td>
<td>0.832</td>
</tr>
<tr>
<td></td>
<td>KSI 4</td>
<td>I intend to keep posting news about SUBJECT 1 and other issues in this virtual community</td>
<td>0.707</td>
<td>0.892</td>
<td>0.832</td>
</tr>
</tbody>
</table>

Table 4> Individual Item Reliability and AVES for Latent Constructs
Convergent validity adopts the measure of Average Variance Extracted (AVE) to gauge the percentage of explained variance by indicators relative to measurement errors. To establish convergent validity, AVE should be greater than 0.5 as suggested by Fornell and Larcker [18].

AVE value can also be used to measure the amount of variance that a latent variable component captures from its indicators. Fornell and Larcker [18] suggest AVE should be greater than 0.5 to account for 50% or more variance of indicators. Table 4 lists Cronbach’s α and AVEs for all latent variables.

4.5. Discriminant Validity

The way to establish discriminant validity is to compare the square root of the AVE of each construct to the correlations of this construct to all other constructs. Fornell and Larcker [18] suggest that the square root of AVE should be greater than the corresponding correlations among the latent variables. The result shown in Table 5 demonstrate all latent variables exhibit high discriminant validity since each construct had a square root of AVE bigger than its correlations with other constructs. This result ensures that the measurement model has the discriminant validity.

4.6 Structural Model

The structural model investigates the strength and direction of the relationships among theoretical latent factors. The structural model and hypotheses are tested by examining the path coefficients. In addition to the individual path tests, the explained variance in the dependent factors is assessed as an indication of the overall predictive strength of the model.

Table 5: Correlation Matrix and AVE for Latent Variables

<table>
<thead>
<tr>
<th>Component</th>
<th>Knowledge Browse</th>
<th>Meta-knowledge</th>
<th>Subject Knowledge</th>
<th>Knowledge Sharing Intention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Browse</td>
<td>0.748</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-knowledge</td>
<td>0.310</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject Knowledge</td>
<td>0.364</td>
<td>0.214</td>
<td>0.849</td>
<td></td>
</tr>
<tr>
<td>Knowledge Sharing Intention</td>
<td>0.317</td>
<td>0.378</td>
<td>0.251</td>
<td>0.832</td>
</tr>
</tbody>
</table>

Table 6: Results of Path Analysis

<table>
<thead>
<tr>
<th>Path relationship</th>
<th>Estimate</th>
<th>Standardized Error</th>
<th>T-value</th>
<th>P</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1. Knowledge Browsing →</td>
<td>0.285</td>
<td>0.080</td>
<td>3.572</td>
<td>***</td>
<td>Supported</td>
</tr>
<tr>
<td>Meta-Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2. Knowledge Browsing →</td>
<td>0.499</td>
<td>0.125</td>
<td>3.988</td>
<td>0.003</td>
<td>Supported</td>
</tr>
<tr>
<td>Subject Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3. Meta-Knowledge →</td>
<td>0.228</td>
<td>0.032</td>
<td>4.355</td>
<td>***</td>
<td>Supported</td>
</tr>
<tr>
<td>Knowledge Sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4. Subject Knowledge →</td>
<td>0.086</td>
<td>0.036</td>
<td>2.390</td>
<td>.017</td>
<td>Supported</td>
</tr>
<tr>
<td>Knowledge Sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on the research model in [Figure 1], four hypothesized paths are tested. \[\text{Figure 2}\] and [Figure 2] show the results of the structural model. The path coefficients indicate the strength of paths. The t-values were used to determine if the hypothesized relationships were significant.

4.7 Goodness of Fit of the Research Model

There are several indexes for goodness of fit. In this study, chi-square, CFI, NFI, and SRMR were used to test the goodness of fit of the research model as recommended by Kline [35]. In this study, the overall fitness of the proposed research model is satisfactory on several measures for goodness of fit \(x^2/df = 0.075, \text{CFI} = 0.987, \text{NFI} = 0.946, \text{RMSEA} = 0.043\). \[\text{Table 7}\] summarizes the results of goodness of fit indicators.

5. Discussion

This study dealt with knowledge seeking and sharing behavior in the virtual community. Based on previous studies, three knowledge seeking behaviors were identified to study their relationships with knowledge sharing intention. Knowledge seeking behaviors were found to be key factors influencing on gains of subject knowledge and meta-knowledge.

This study also identified the indirect positive relationship between knowledge seeking behavior and knowledge sharing via one’s gain of subject knowledge and meta-knowledge. Knowledge management is composed of varying activities such as knowledge seeking, acquiring, storing, sharing, and utilization, and the relationships among these activities had been unexplored. Even among existing literature on knowledge sharing, no studies had studied from the knowledge seeking pers-
On the practical side, this study provides a better understanding of knowledge behavior for virtual community operators in detail, and for KM managers of organizations at large. While managers and operators have clear understanding why community members visit virtual communities (seeking valuable subject knowledge), and objectives of the virtual community (providing valuable subject knowledge with critical mass of the traffic), the way to achieve these objectives are not clear. This study provides one of many mechanisms why members intend to share knowledge. As members seek specific subject knowledge, they also gain meta-knowledge. These two types of knowledge encourage people to share knowledge on to the virtual community. While knowledge seeking is a main concern of virtual community members, knowledge sharing from community member is the main concern of virtual community operators. By providing a mechanism how these two contrasting concerns could work harmoniously, a virtuous circle of seeking and sharing knowledge in VC could be achieved. In summary, the operators of virtual communities should understand the important role of knowledge seeking behavior which leads to sustaining and growing virtual community. The finding of this research could improve operational effectiveness of the virtual communities in that sense.

6. Limitation and Future Research

Although the findings are meaningful and useful, this study has certain limitations which require future research. Data used in this study may not be representative of the population of virtual community members as the survey was conducted within a single site, which is male-dominated (94.8%). This is a definite weakness of this research in term of generalizability of the study. Thus, future studies need to collect data from a wide population from varying virtual communities, then investigate whether differences among various demographic groups exist. A single survey site could also limit the validation of research finding. Data employed in this study was not segmented by types of subject matter virtual community mainly concern. Multimedia based virtual community such as YouTube.com could result in different findings from purely text based virtual community which is the case of this study.

References

[5] Bock, G. W., R. W. Zmud, Y. G. Kim, and

[40] Lampel, J. and A. Bhalla, “The role of status seeking in online communities: Gi-

[57] Roberts, T. L., “Are newsgroups virtual

김재경

저자 소개

김재경 (kjkkej@hnu.kr)

미국 Ohio주 Miami University에서 경영정보학 석사 (MBA)를 하고, University of Nebraska-Lincoln에서 지식경영 연구로 경영학 박사 (Ph.D.)를 받았다. 현재 한남대학교 경영정보학과 교수로 재직 중이며 주요 관심분야로 지식경영, 소셜미디어, 미디어중독 등이며, Omega, Decision Support Systems, Int. J. of Electronic Commerce, Service business 등에 다수 논문을 실었다.