Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter

Trung-Kien Vu¹ and Se-Jin Seong¹*
¹Chungnam National University, Division of Information Communication

Abstract Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

Key Words: Photovoltaic, PI controller, PR controller, Single-phase, Grid-connected, inverter

1. Introduction

The DC/AC inverter, either single-phase or three-phase design, can be considered as the core of the whole system because of an important role in grid-connected operation. Although current and voltage control scheme are possible and implementable, the current control principle is generally preferred for its excellent dynamic performance.
Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter

characteristics and its inherent over-current limitation capabilities.

Stationary Proportional Integral (PI) controller is conventionally regarded as unsatisfactory for ac system because of the supposedly unavoidable steady-state amplitude and phase errors. But synchronous PI controller acts on DC signals and can achieve the zero steady-state error with the integral part. However, the signal transformation between stationary and synchronous frame leads the synchronous controller implementation is more complex. Hence, a controller with zero steady-state error in the synchronous frame would have advantages in the implementation.

In order to achieve zero steady-state error, a Proportional Resonant (PR) controller is implemented. Due to an infinite gain at the fundamental frequency, PR controller can achieve the high performance in both the sinusoidal reference tracking and the disturbance rejection. A theoretical comparative analysis of two controllers has been carried out based on current control performance.

2. Analysis of PI and PR controller

2.1 PI controller

2.1.1 Ideal and Non-ideal PI controllers

The transfer function of ideal PI controller is defined as (1). If the first-order low-pass filter with cut-off frequency \(\omega_c \) is used in synchronous frame, the transfer function of ideal PI controller becomes (2). Equation (2) can be seen as a non-ideal PI controller transfer function and can be used to obtain the non-ideal PR controller.

\[
G_I(s) = K_p + \frac{K_i}{s} = \frac{K_i s + K_p}{s} = K_i \left(1 + \frac{1}{T_i s}\right)
\]

(1)

\[
G_I(s) = K_p + \frac{K_i \omega_c}{s + \omega_c}
\]

(2)

where \(K_p \), \(K_i \) and \(T_i = \frac{K_p}{K_i} \) are the proportional gain, integral gain and integral time constant, respectively, and \(\omega_c \) is the cut-off frequency.

The PI controller gains can be calculated based on the symmetric or magnitude optimum criterion[1-3]. The latter method has a fast and non-oscillatory closed-loop time response for a large class of plants[2].

2.1.2 Digital implementation

The PI controller in time domain:

\[
u(t) = K_p e(t) + K_i \int_0^t e(t) dt
\]

(3)

where \(u(t) \) and \(e(t) \) are the output and the error signal input of the PI controller in time domain.

During a sampling time \(T_s \), equation (3) can be rewritten as:

\[
u(k) = K_p e(k) + K_i T_s \sum_{k=1}^e e(k)
\]

(4)

And at the previous sampling point:

\[
u(k-1) = K_p e(k-1) + K_i T_s \sum_{k=1}^{k-1} e(k)
\]

(5)

Subtract (4) to (5), we can get

\[
u(k) = u(k-1) + K_p [e(k) - e(k-1)] + K_i T_s e(k)
\]

(6)

Equation (6) presents the digital form of the PI controller in DSP programming.

2.2 PR controller

2.2.1 Ideal and Non-ideal PR controllers

In single-phase system, the popularly reference frame transformation cannot be applied directly. Therefore, an alternative approach of transforming controller in DC quantities from synchronous to stationary frame is the frequency modulated method. This process can be expressed as [4,5]:

\[
G_{II}(s) = \frac{G_{II}(s)}{G_{II}(s)} = \frac{1}{2} \left[G_I(s + j\omega_0) + G_I(s - j\omega_0) \right]
\]

(7)

where \(\omega_0 \) is the AC frequency.

In (7), \(G_I(s) \) is a low-pass transfer function, this transformation results in a frequency shifting transformation. By using the first-order low-pass filter or the PI controller in synchronous frame, but centered around frequency \(\omega_0 \), we can get (8):
Equation (8) can be seen to be an ideal PR controller which achieves infinite gain at the AC frequency ω_0. To avoid stability problems associated with an infinite gain, an approximating (non-ideal) PR controller using a high-gain low-pass filter is used by substituting the non-ideal PI controller in (2) into (7), the non-ideal PR controller can be obtained as:

$$G_R(s) = K_p + \frac{K_i \omega_n s}{s^2 + 2\omega_n s + \omega_n^2}$$ (9).

Assuming $\omega_c \ll \omega_0$, a simpler approximation is:

$$G_R(s) = K_p + \frac{K_i \omega_n s}{s^2 + 2\omega_n s + \omega_n^2}$$ (10).

We can adjust the non-ideal PR controller gains to obtain the high enough finite gain for eliminating the voltage tracking error. The PR controller gains can be designed following a step-by-step procedure presented in [6].

2.2.2 Digital implementation

By substituting $s = \frac{2}{T_s} \frac{1 - z^{-1}}{1 + z^{-1}}$ (the bilinear transformation) into (10), the discrete transfer function of the PR controller can be given by:

$$G_R(z) = \frac{n_0 + n_1 z^{-1} + n_2 z^{-2}}{1 + d_1 z^{-1} + d_2 z^{-2}}$$ (11).

where T_s is the sampling time and

$$n_0 = \frac{[4 + 4T_s \omega_n + \omega_n^2 T_s^2]K_p + 4K_i T_s \omega_n}{4 + 4T_s \omega_n + \omega_n^2 T_s^2};$$

$$n_1 = \frac{[-8 + 2\omega_n T_s^2]K_p}{4 + 4T_s \omega_n + \omega_n^2 T_s^2};$$

$$n_2 = \frac{[4 - 4T_s \omega_n + \omega_n^2 T_s^2]K_p - 4K_i T_s \omega_n}{4 + 4T_s \omega_n + \omega_n^2 T_s^2};$$

$$d_1 = \frac{-8 + 2\omega_n^2 T_s^2}{4 + 4T_s \omega_n + \omega_n^2 T_s^2};$$

$$d_2 = \frac{4 - 4T_s \omega_n + \omega_n^2 T_s^2}{4 + 4T_s \omega_n + \omega_n^2 T_s^2};$$

The digital form of the PR controller can be:

$$y(k) = n_0 u(k) + n_1 u(k-1) + n_2 u(k-2) - d_1 u(k-1) - d_2 u(k-2)$$ (12)

where $u(k)$ is the error input and $y(k)$ is the output of the PR controller.

3. Single-phase grid–connected PV inverter control technique

![Fig. 1] Single-phase grid-connected PV inverter system

![Fig. 2] Equivalent block diagram of current control scheme

3.1 Current control scheme

A single-phase grid-connected PV PCS using has built as shown in Fig. 1 where its equivalent current control block diagram is depicted in Fig. 2. The relationship between input and output of current control system in Fig. 2 can be obtained as:

$$I_g = H_y(s)I_y - H_y(s)V_y$$ (13)

$$H_y(s) = \frac{I_y}{V_y} = \frac{G_c(s)G_i(s)}{1 + G_c(s)G_i(s)G_i(s)}$$ (14)

$$H_y(s) = \frac{I_y}{V_y} = \frac{G_c(s)}{1 + G_c(s)G_i(s)G_i(s)}$$ (15)

where $G_c(s)$ is the controller transfer function. $G_i(s)$ is (1) in case of PI controller and is (10) in case of PR controller; $G_i(s)$ is the inverter transfer function. Assuming the switching frequency is high enough to neglect the inverter dynamics, the PWM inverter can be represented by a gain for a simplicity of analysis;
Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter

\[G_f(s) = \frac{R_c C_f s^2 + 1}{L_s L_g C_f s^3 + (L_s + L_g) R_c C_f s^2 + (L_s + L_g) s} \]

is the LCL-filter transfer function with damping resistor.

In steady state, the PI controller has a finite gain at the fundamental frequency, so the second term of (12) cannot be neglected but can be eliminated by using de-coupling technique. However, PR controller introduces an infinite gain, then the first term approaches the inverter current reference and the second term approaches zero.

The PR controller based closed-loop transfer function of current control system shown in Fig. 2 can be obtained as:

\[H_f(s) = \frac{A_2 s^3 + A_1 s + A_0}{B_2 s^3 + B_2 s^2 + B_2 s + B_0} \]

where

\[A_3 = R_c C_f K_i K_v \]
\[A_2 = K_i (2 K_p + K_v) \omega_c R_c C_f \]
\[A_1 = K_i (2 K_p + K_v) \omega_c R_c C_f \omega_c^2 \]
\[A_0 = K K_v \omega_c^2 \]
\[B_2 = L_s L_g C_f \]
\[B_4 = (L_s + L_g) C_f R_0 + 2 L_s L_g C_f \omega_c \]

while PI controller based closed-loop transfer function is obtained in (17):

\[B_2 = (L_s + L_g) (1 + 2 \omega_c C_f R_0) + L_s L_g C_f \omega_c^2 + K K_p C_f R_0 \]
\[B_3 = (L_s + L_g) (2 \omega_c C_f R_0 \omega_c^2) + K K_v + (K_i + 2 K_v) K C_f R_0 \omega_c \]
\[B_1 = (L_s + L_g) \omega_c^2 + K K_p C_f R_0 \omega_c^2 + (K_i + 2 K_v) K C_f \omega_c \]
\[B_0 = K K_v \omega_c^2 \]

[Fig. 3] Bode diagram of closed-loop transfer function using PI (Kp=10, Ki=50) and PR (Kp=15, Ki=200, \(\omega_c = 15 \text{rad/s} \)) controller

[Fig. 4] Root locus diagram of system using (a) PI and (b) PR controller

[Fig. 5] Matlab/Simulink model of single-phase grid-connected PV inverter
Fig. 3 shows the bode diagrams of closed-loop systems based on PI and PR controller, where PR controller can introduce an infinite gain at the fundamental frequency. By choosing the VSI switching frequency higher than system frequency, the inverter will have negligible impact on the control loop dynamic and supply voltage is assumed as sinusoid, the current closed-loop control stability can be analyzed with classical methods such as Nyquist and root locus.

Fig. 4(a) and (b) show the root locus diagrams of PI and PR controller based systems. Fig. 3 and Fig. 4 verified the stability of the system based on PI and PR controller.

4. Simulation results

The Matlab/Simulink model of the single-phase grid-connected PV inverter system is shown in Fig. 5. The parameters used in simulation are listed in Table 1. Fig. 6 (a) and (b) show the simulation responses of the system by using the PI and PR controller, respectively. Fig. 6(a) shows the grid voltage and current using PI controller. The grid voltage and current using PR controller are shown in Fig. 6 (b).

Fig. 7(a) and (b) show the frequency analysis of the grid current and its THD value by using the PI and PR controller.
controller, respectively.

The simulation results show that PR controller can track the sinusoidal reference and mitigate the harmonics better than PI controller. It is noted that all waveforms are in phase.

5. Experimental results

The prototype of 3kW single-phase grid-connected PV PCS is shown in Fig. 8 where the controller is implemented fully in a 32-bit fixed-point DSP TMS320F2812. The PWM pulses are generated through the internal pulse generator of the DSP with a switching frequency of 10kHz.

Voltage and current signals are measured by using the 12-bit resolution of internal analog-to-digital converter in the DSP. Also a four-channel 8-bit digital-to-analog converter has been used for debugging.

Fig. 9(a) and (b) show the grid voltage in channel 1 (250V/div) and grid current in channel 4 (10A/div) by using the PI and PR controller, respectively. It can be seen that the grid current waveform in Fig. 9(b) is nearly perfect sinusoid. It is noted that the experimental results show a good agreement with the simulation results and both waveforms are in phase.

The frequency analysis and THD values of grid current using the PI and PR controller are shown in Fig. 10(a) and (b), respectively.

When compared between all the experimental results mentioned above, it is can be shown that PR controller can achieve the steady-state performance better than PI control scheme in current-controlled based inverter control scheme.

PR controller can overcome drawbacks of PI controller: inability to track a sinusoidal reference with zero steady-state error and poor disturbance rejection capability.

6. Conclusions

In this paper, a comparison between the conventional PI and PR controller based on current control has been
presented. The theoretical analysis has been performed that PR controller has some advantages when compared with PI controller and it can enable the implemented control system to achieve a high performance. Simulation and experimental results of 3KW PV PCS prototype system verified the performance of these controller. Furthermore, these controllers are suitable distributed generation units, not only photovoltaic but also the other power generation system, such as small wind turbine, fuel-cells.

References

