Abstract. Let D be an integral domain, S be a saturated multiplicative subset of D such that D_S is a factorial domain, $\{X_\alpha\}$ be a nonempty set of indeterminates, and $D[[X_\alpha]]$ be the polynomial ring over D. We show that S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). We use this result to show that $D \setminus \{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[[X_\alpha]]$ if and only if D is a GCD-domain (resp., UMT-domain with $Cl(D[[X_\alpha]])$ torsion, UMT-domain).

1. Introduction

Let D be an integral domain with quotient field K, and let $F(D)$ be the set of nonzero fractional ideals of D. For each $I \in F(D)$, let $I^{-1} = \{x \in K \mid xI \subseteq D\}$, $I_v = (I^{-1})^{-1}$ and $I_t = \bigcup\{I_v \mid J \in F(D), J \subseteq I, and J$ is finitely generated}. An ideal $I \in F(D)$ is called a t-ideal if $I_t = I$, and a t-ideal is a maximal t-ideal if it is maximal among proper integral t-ideals. It is well known that each nonzero principal ideal is a t-ideal; each proper integral t-ideal is contained in a maximal t-ideal; a prime ideal minimal over a t-ideal is a t-ideal; and each maximal...
456 G.W. Chang

t-ideal is a prime ideal. We say that an \(I \in \mathbf{F}(D) \) is t-invertible if
\((II^{-1})_t = D\); equivalently, if \(II^{-1} \not\subseteq P \) for every maximal t-ideal \(P \) of
\(D \). Let \(T(D) \) be the group of t-invertible fractional t-ideals of \(D \) under
the t-multiplication \(A \ast B = (AB)_t \), and let \(\text{Prin}(D) \) be its subgroup of
principal fractional ideals. The \((t-)\text{class group} \) of \(D \) is an abelian group
\(\text{Cl}(D) = T(D)/\text{Prin}(D) \). The readers can refer to [12] for any undefined
notation or terminology.

Let \(S \) be a saturated multiplicative subset of an integral domain \(D \). As in [3], we say that \(S \) is a t-splitting set if for each \(0 \neq d \in D \), we have
\(dD = (AB)_t \) for some integral ideals \(A, B \) of \(D \), where \(A_t \cap sD = sA_t \) for
all \(s \in S \) and \(B_t \cap S \neq \emptyset \). We say that \(S \) is an almost splitting set of \(D \) if
for each \(0 \neq d \in D \), there is an integer \(n = n(d) \geq 1 \) such that \(d^n = s^a \) for
some \(s \in S \) and \(a \in N(S) \), where \(N(S) = \{ 0 \neq x \in D \mid (x, s')_t = D \)
for all \(s' \in S \} \). A splitting set is an almost splitting set in which \(n = n(d) = 1 \) for every \(0 \neq d \in D \). Let \(\overline{S} \) be the saturation of a multiplicative
set \(S \) of \(D \). Note that a splitting set is saturated, while both t-splitting
sets and almost splitting sets need not be saturated. Also, note that \(S \) is
t-splitting (resp., almost splitting) if and only if \(\overline{S} \) is; so we always
assume that \(S \) is saturated. It is known that an almost splitting set is
t-splitting [7, Proposition 2.3]; hence

\[
\text{splitting set} \Rightarrow \text{almost splitting} \Rightarrow \text{t-splitting set}.
\]

Moreover, if \(Cl(D) \) is torsion, then a t-splitting set is almost splitting [7,
Corollary 2.4] and if \(Cl(D) = 0 \), then splitting set \(\iff \) almost splitting \(\iff \)
t-splitting set.

Let \(X \) be an indeterminate over \(D \) and \(D[X] \) be the polynomial ring
over \(D \). An upper to zero over \(D \) and \(D[X] \) be the polynomial ring
over \(D \). An upper to zero in \(D[X] \) is a nonzero prime ideal \(Q \) of \(D[X] \)
with \(Q \cap D = (0) \), and \(D \) is called a \(\text{UMT-domain} \) if each upper to
zero in \(D[X] \) is a maximal t-ideal of \(D[X] \). We say that \(D \) is a \(\text{Pr"{u}fer} \)
v-multiplication domain (\(\text{Pr}v\text{MD} \)) if each nonzero finitely generated ideal
of \(D \) is t-invertible. As in [15], we say that \(D \) is an \(\text{almost GCD-domain} \)
(\(\text{AGCD-domain} \)) if for each nonzero finitely generated ideal of \(D \) is t-invertible. As in [15], we say that \(D \) is an \(\text{almost GCD-domain} \)
(\(\text{AGCD-domain} \)) if for each \(0 \neq a, b \in D \), there is an integer
\(n = n(a,b) \geq 1 \) such that \(a^nD \cap b^nD \) is principal. Clearly, GCD-domains
are AGCD-domains. It is known that AGCD-domains are UMT-domains
with torsion class group [5, Lemma 3.1]; \(D \) is a \(\text{PuMD} \) if and only if \(D \)
is an integrally closed UMT-domain [13, Proposition 3.2]; and \(D \) is a
GCD-domain if and only if \(D \) is a \(\text{PuMD} \) and \(Cl(D) = 0 \) [6, Corollary
1.5].
In [9, Theorem 2.8], the authors proved that if D_S is a principal ideal domain (PID), then S is a t-splitting set of D if and only if every nonzero prime ideal of D disjoint from S is t-invertible. They used this result to show that $D \setminus \{0\}$ is a t-splitting set of $D[X]$ if and only if D is a UMT-domain [9, Corollary 2.9]. Also, in [8, Theorem 2], the author showed that if D_S is a PID, then S is an almost splitting set of D if and only if every nonzero prime ideal of D disjoint from S contains a primary element. (A nonzero element $a \in D$ is said to be primary if aD is a primary ideal.) The purpose of this paper is to show that the results of [9, Theorem 2.8] and [8, Theorem 2] are also true when D_S is a factorial domain (note that a PID is a factorial domain). Precisely, we show that if D_S is a factorial domain, then S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). Let $\{X_\alpha\}$ be a nonempty set of indeterminates over D, and note that $D[\{X_\alpha\}]_{D \setminus \{0\}}$ is a factorial domain. Hence, we then use the results we obtained in this paper to show that $D \setminus \{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[\{X_\alpha\}]$ if and only if D is a GCD-domain (resp., UMT-domain and $Cl(D[\{X_\alpha\}])$ is torsion, UMT-domain).

2. Main Results

Let D be an integral domain, $D^* = D \setminus \{0\}$, $\{X_\alpha\}$ be a nonempty set of indeterminates over D, and $D[\{X_\alpha\}]$ be the polynomial ring over D.

We begin this section with nice characterizations of splitting sets, almost splitting sets, and t-splitting sets which appear in [2, Theorem 2.2], [4, Proposition 2.7], and [3, Corollary 2.3], respectively.

Lemma 1. Let S be a saturated multiplicative subset of D.

1. S is a splitting (resp., t-splitting) set of D if and only if $dD_S \cap D$ is principal (resp., t-invertible) for every $0 \neq d \in D$.

2. S is an almost splitting set of D if and only if for every $0 \neq d \in D$, there is a positive integer $n = n(d)$ such that $d^nD_S \cap D$ is principal.

Note that if D_S is a PID, then every nonzero prime ideal P of D disjoint from S has height-one, and thus P is a t-ideal. Hence, our first result is a generalization of [9, Theorem 2.8] that if D_S is a PID, then S is a t-splitting set in D if and only if every nonzero prime ideal of D disjoint
from S is t-invertible. The proof is similar to those of [9, Theorem 2.8] and [8, Theorem 2].

Theorem 2. Let D be an integral domain and S be a saturated multiplicative subset of D such that D_S is a factorial domain. Then S is a t-splitting set in D if and only if every prime t-ideal of D disjoint from S is t-invertible.

Proof. (\Rightarrow) Assume that S is a t-splitting set of D, and let P be a prime t-ideal of D with $P \cap S = \emptyset$. Then $(PD_S)_t = PD_S$ [3, Theorem 4.9], and hence $PD_S = pD_S$ for some $p \in P$ since D_S is a factorial domain. Thus, by Lemma 1, $P = PD_S \cap D = pD_S \cap D$ is t-invertible.

(\Leftarrow) Let $0 \neq d \in D$. Then $dD_S = p_1^{e_1} \cdots p_k^{e_k}D_S$ for some $p_i \in D$ and positive integers e_i such that every p_i is a prime element in D_S and $p_iD_S \neq p_jD_S$ if $i \neq j$. Let P_i be the prime ideal of D such that $P_iD_S = p_iD_S$. Clearly, P_i is minimal over dD, and hence P_i is a t-ideal. Moreover, $P_i \cap S = \emptyset$; so P_i is t-invertible by assumption (and hence a maximal t-ideal [13, Proposition 1.3]). Note that $(P_i^{e_i})_t$ is P_i-primary [1, Lemma 1] because P_i is a maximal t-ideal. Also, $(P_i^{e_i})_tD_S = p_i^{e_i}D_S$, and thus $P_i^{e_i}D_S \cap D = (P_i^{e_i})_t$ and $(P_i^{e_i})_t$ is t-invertible. Hence

$$dD_S \cap D = p_1^{e_1} \cdots p_k^{e_k}D_S \cap D$$

$$= (p_1^{e_1}D_S \cap \cdots \cap p_k^{e_k}D_S) \cap D$$

$$= (P_1^{e_1}D_S \cap \cdots \cap P_k^{e_k}D_S) \cap D$$

$$= (P_1^{e_1}D_S \cap D) \cap \cdots \cap (P_k^{e_k}D_S \cap D)$$

$$= (P_1^{e_1})_t \cap \cdots \cap (P_k^{e_k})_t$$

$$= ((P_1^{e_1})_t \cdots (P_k^{e_k})_t)_t.$$

Thus, S is a t-splitting set by Lemma 1. \square

The next result is a generalization of [9, Corollary 2.9] that D^* is a t-splitting set in $D[X]$, where X is an indeterminate over D, if and only if D is a UMT-domain.

Corollary 3. D^* is a t-splitting set in $D[\{X_\alpha\}]$ if and only if D is a UMT-domain.

Proof. (\Rightarrow) Let $X \in \{X_\alpha\}$, and let P be a nonzero prime ideal of $D[X]$ with $P \cap D = (0)$. Then P is a prime t-ideal of $D[X]$, and hence $Q := P[Y]$, where $Y = \{X_\alpha\} \setminus \{X\}$, is a prime t-ideal of $D[\{X_\alpha\}]$ [11, Lemma 2.1(1)] such that $Q \cap D^* = \emptyset$. Hence, Q is t-invertible by Theorem 2 because $D[\{X_\alpha\}]_{D^*}$ is a factorial domain. Note that $D[\{X_\alpha\}] =
Let Q be a prime t-ideal of $D[[X_n]]$ such that $Q \cap D^* = \emptyset$. Since $Q \neq (0)$, there are $X_1, \ldots, X_n \in \{X_n\}$ such that $Q \cap D[X_1, \ldots, X_{n-1}] = (0)$, but $Q \cap D[X_1, \ldots, X_n] \neq (0)$. Let $R = D[X_1, \ldots, X_{n-1}]$ and $P = Q \cap R[X_n]$. Then R is a UMT-domain [11, Theorem 2.4] and P is an upper to zero in $R[X_n]$. Hence, P is a t-invertible prime t-ideal. Let $Z = \{X_n\} \setminus \{X_1, \ldots, X_n\}$, and note that $P[Z] \subseteq Q$ and $P[Z]$ is a t-invertible prime t-ideal of $D[\{X_n\}]$ (see the proof of (\Rightarrow) above). Hence, $P[Z]$ is a maximal t-ideal of $D[\{X_n\}]$, and thus $Q = P[Z]$ and Q is t-invertible. Thus, by Theorem 2, D^* is a t-splitting set.

We next give an almost splitting set analog of Theorem 2. Even though the proof is a word for word translation of the proof of [8, Theorem 2], we give it for the completeness of this paper.

Theorem 4. Let D be an integral domain and S be a saturated multiplicative subset of D such that D_S is a factorial domain. Then S is an almost splitting set in D if and only if every prime t-ideal of D disjoint from S contains a primary element.

Proof. (\Rightarrow) Assume that S is an almost splitting set of D, and let P be a prime t-ideal of D disjoint from S. Then $PD_S = pD_S$ for some $p \in P$ (see the proof of Theorem 2), and since S is almost splitting, by Lemma 1, there is a positive integer n such that $P \supseteq p^nD_S \cap D = qD$ for some $q \in D$. Clearly, q is a primary element. Thus, P contains a primary element q.

(\Leftarrow) Let $0 \neq d \in D$. Then $dD_S = p_1^{e_1} \cdots p_k^{e_k} D_S$, where every e_i is a positive integer and the p_i's are non-associate prime elements in D_S (see the proof of Theorem 2). Let P_i be the prime ideal of D such that $P_iD_S = p_iD_S$. Then P_i is a t-ideal of D and $P_i \cap S = \emptyset$; so P_i contains a primary element q_i. Clearly, $q_iD_S = p_i^{n_i} D_S$ for some positive integer n_i. Let $n = n_1 \cdots n_k$ and $m_i = \frac{n}{n_i}e_i$. Then $p_i^{m_i}D_S = q_i^{m_i} D_S$, and
hence
\[
d^n D_S \cap D = ((p_1^{m_1}) D_S \cap \cdots \cap (p_k^{m_k}) D_S) \cap D
\]
\[
= ((q_1^{m_1} D_S) \cap \cdots \cap (q_k^{m_k} D_S)) \cap D
\]
\[
= (q_1^{m_1} D_S \cap \cdots \cap (q_k^{m_k} D_S) \cap D)
\]
\[
= (q_1^{m_1} D \cap \cdots \cap (q_k^{m_k} D)
\]
\[
= (q_1^{m_1} \cdots q_k^{m_k}) D,
\]
where the fourth and last equalities follow from the fact that each \(q_i^{m_i}\) is a primary element with \(\sqrt{q_i^{m_i} D} \neq \sqrt{q_j^{m_j} D}\) for \(i \neq j\). Therefore, \(S\) is an almost splitting set by Lemma 1.

Let \(N(D^*) = \{ f \in D[X_\alpha] \mid (f, d)_v = D[X_\alpha] \text{ for all } d \in D^* \}\). It is clear that \((f, d)_v = D[X_\alpha] \text{ for all } d \in D^* \text{ if and only if } c(f)_v = D\),

where \(c(f)\) is the ideal of \(D\) generated by the coefficients of \(f\). Hence,
\[
Cl(D[X_\alpha]_{N(D^*)}) = 0 \quad [14, \text{Theorem 2.14}].
\]
The next result is a generalization of [5, Theorem 2.4].

Corollary 5. \(D^*\) is an almost splitting set in \(D[X_\alpha]\) if and only if \(D\) is a UMT-domain and \(Cl(D[X_\alpha])\) is torsion.

Proof. \((\Rightarrow)\) If \(D^*\) is an almost splitting set in \(D[X_\alpha]\), then \(Cl(D[X_\alpha]_{D^*}) = Cl((D[X_\alpha])_{N(D^*)}) = 0\). Thus, \(Cl(D[X_\alpha])\) is torsion \([7, \text{Theorem 2.10(2)}]\). Also, since almost splitting sets are \(t\)-splitting sets, \(D\) is a UMT-domain by Corollary 3.

\((\Leftarrow)\) Assume that \(D\) is a UMT-domain and \(Cl(D[X_\alpha])\) is torsion. Then \(D^*\) is a \(t\)-splitting set by Corollary 3, and since \(Cl(D[X_\alpha])\) is torsion, \(D^*\) is an almost splitting set. \(\square\)

Corollary 6. If \(D\) is integrally closed, then \(D^*\) is an almost splitting (resp., a \(t\)-splitting) set in \(D[X_\alpha]\) if and only if \(D\) is an AGCD-domain (resp., a \(PvMD\)).

Proof. Note that \(Cl(D[X_\alpha]) = Cl(D)\) \([10, \text{Corollary 2.13}]\); an integrally closed UMT-domain is a \(PvMD\); and an integrally closed AGCD-domain is a \(PvMD\) with torsion class group. Hence, the result follows directly from Corollaries 3 and 5.

Theorem 7. Let \(D\) be an integral domain and \(S\) be a saturated multiplicative subset of \(D\) such that \(D_S\) is a factorial domain. Then \(S\) is a splitting set in \(D\) if and only if every prime \(t\)-ideal of \(D\) disjoint from \(S\) is principal.
Proof. (⇒) Let P be a prime t-ideal of D with $P \cap S = \emptyset$. Then $PD_S = pD_S$ for some prime element p of D_S (see the proof of Theorem 2), and thus $PD_S \cap D = pD_S \cap D$ is principal by Lemma 1.

(⇐) An argument similar to the proof (⇐) of Theorem 4 shows that $dD_S \cap D$ is principal for every $0 \neq d \in D$. Thus, by Lemma 1, S is a splitting set.

Let X be an indeterminate over D. In [9, p. 77] (cf. [2, Example 4.7]), it was noted that D^* is a splitting set in $D[X]$ if and only if D is a GCD-domain.

Corollary 8. D^* is a splitting set in $D[\{X_\alpha\}]$ if and only if D is a GCD-domain.

Proof. If D^* is a splitting set in $D[\{X_\alpha\}]$, then $Cl(D) = Cl(D[\{X_\alpha\}]) = 0$ [2, Corollary 3.8] because $Cl(D[\{X_\alpha\}]_{D^*}) = Cl((D[\{X_\alpha\}])_{N(D^*)}) = 0$. Hence, D is integrally closed [10, Corollary 2.13] and D is a UMT-domain by Corollary 3. Thus, D is a GCD domain because D is an integrally closed UMT-domain with $Cl(D) = 0$. Conversely, assume that D is a GCD-domain. Then D^* is a t-splitting set in $D[\{X_\alpha\}]$ by Corollary 3 and $Cl(D[\{X_\alpha\}]) = Cl(D) = 0$. Thus, D^* is a splitting set.

Let S be a saturated multiplicative subset of an integral domain D such that D_S is a factorial domain. The proofs of Theorems 2, 4, and 7 show that S is splitting (resp., almost splitting, t-splitting) if and only if for every nonzero prime element p of D_S, the ideal $pD_S \cap D$ is principal (resp., contains a primary element, t-invertible).

Acknowledgement. The author would like to thank the referees for their several helpful comments and suggestions. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0007069).

References

Department of Mathematics
Incheon National University
Incheon 406-772, Korea

E-mail: whan@incheon.ac.kr