ON \(k \)-QUASI-CLASS \(A \) CONTRACTIONS

IN HO JEON AND IN HYOUN KIM

Abstract. A bounded linear Hilbert space operator \(T \) is said to be \(k \)-quasi-class \(A \) operator if it satisfy the operator inequality
\[
T^*k|T|^2T^k \geq T^k|T|^2T^k
\]
for a non-negative integer \(k \). It is proved that if \(T \) is a \(k \)-quasi-class \(A \) contraction, then either \(T \) has a nontrivial invariant subspace or \(T \) is a proper contraction and the nonnegative operator
\[
D = T^k(|T|^2 - |T|^2)T^k
\]
is strongly stable.

1. Introduction

Let \(B(\mathcal{H}) \) denote the algebra of bounded linear operators on an infinite dimensional complex Hilbert space \(\mathcal{H} \). For any operator \(T \) in \(B(\mathcal{H}) \) set, as usual, \(|T| = (T^*T)^{1/2} \) and \([T^*, T] = T^*T - TT^* = |T|^2 - |T^*|^2 \) (the self-commutator of \(T \)), and consider the following standard definitions: \(T \) is hypernormal if \(|T^*|^2 \geq |T|^2 \) (i.e., if self-commutator \([T^*, T] \) is non-negative or, equivalently, if \(\|T^*x\| \leq \|Tx\| \) for every \(x \) in \(\mathcal{H} \)), \(p \)-hyponormal if \((T^*T)^p \geq (TT^*)^p \) for some \(p \in (0, 1] \), and \(T \) is called paranormal if \(\|T^2x\| \geq \|Tx\|^2 \) for all unit vector \(x \in \mathcal{H} \). Following [13] and [4] we say that \(T \in B(\mathcal{H}) \) belongs to class \(A \) if \(|T|^2 \geq |T^2| \). We shall denote classes of hyponormal operators, \(p \)-hyponormal operators, paranormal operators, and class \(A \) operators by \(\mathcal{H} \), \(\mathcal{H}(p) \), \(\mathcal{P}\mathcal{N} \), and \(\mathcal{A} \).
respectively. It is well known that

\begin{equation}
\mathcal{H} \subset \mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{P}\mathcal{N}.
\end{equation}

In [8] authors considered an extension of the notion of class \(\mathcal{A} \) operators; we say that \(T \in B(\mathcal{H}) \) is \(k \)-quasi-class \(\mathcal{A} \) operator if

\[T^{*k}|T|^2T^k \geq T^{*k}|T|^2T^k \]

for non-negative integer \(k \); when \(k = 1 \), it is called the quasi-class \(\mathcal{A} \) operator. We shall denote the set of \(k \)-quasi-class \(\mathcal{A} \) operators by \(\mathcal{QA}(k) \). Class \(\mathcal{QA}(k) \) properly contains class \(\mathcal{A} \) and quasi-class \(\mathcal{A} \).

It is well known that

\begin{equation}
\mathcal{H} \subset \mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{QA} \subset \mathcal{QA}(k).
\end{equation}

In view of inclusions (1) and (2), it seems reasonable to expect that the operators in class \(\mathcal{QA} \) are paranormal. But there exists an example of a class \(\mathcal{QA} \) operator which is not paranormal ([8]).

Recall, [10], that a contraction \(A \) (i.e., if \(\|A\| \leq 1 \), which means that \(\|Ax\| \leq \|x\| \) for every \(x \in \mathcal{H} \)) is said to be a proper contraction if \(\|Ax\| < \|x\| \) for every nonzero \(x \in \mathcal{H} \). A strict contraction (i.e., a contraction \(A \) such that \(\|A\| < 1 \)) is a proper contraction, but a proper contraction is not necessarily a strict contraction. C. S. Kubrusly and N. Levan [10] have proved that if a hyponormal contraction \(A \) has no nontrivial invariant subspace, then

(a) \(A \) is a proper contraction and
(b) its self-commutator \([A^*, A]\) is a strict contraction.

Recently B. p. Duggal, I. H. Jeon and C. S. Kubrusly [2] showed that if \(A \) is a class \(\mathcal{A} \) contraction, then either \(A \) has a nontrivial invariant subspace or \(A \) is a proper contraction and the non-negative operator \(D = |A^2| - |A|^2 \) is strongly stable (i.e., the power sequence \(\{D^n\} \) converges strongly to 0). Very recently B. P. Duggal and authors [3] extend these results to contractions in \(\mathcal{QA} \). In this paper, we extend these results to contractions in \(\mathcal{QA}(k) \), which generalizes results proved for contractions in \(\mathcal{QA} \) [2].

2. Results

We begin with well known following lemma;
Lemma 2.1. (see, [13]) An operator $T \in QA(k)$ has a following matrix representation if $\text{ran}(T^k)$ is not dense

$$T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$ on $\overline{\text{ran}(T^k)} \oplus \ker(T^{\ast k})$, where $A \in \mathcal{A}$, C is a nilpotent with order k and $\sigma(T) = \sigma(A) \cup \{0\}$.

Lemma 2.2. If $T \in QA(k)$ is a contraction, then the non–negative operator $D = T^{\ast k}(|T^2| - |T|^2)T^k$ is a contraction such that the power sequence $\{D^n\}$ converges strongly to a projection P satisfying $T^{k+1}P = 0$.

Proof. Set $R = D^{\frac{1}{2}}$. Then, for every $x \in \mathcal{H}$, we have

$$\langle D^{n+1}x, x \rangle = \langle R^{n+1}x, R^{n+1} \rangle = \langle DR^n x, R^n x \rangle = \langle T^{\ast k}(|T^2| - |T|^2)T^k R^n x, R^n x \rangle = \langle |T|^2 T^k R^n x, T^k R^n x \rangle - \langle |T|^2 T^k R^n x, T^k R^n x \rangle \leq \| |T^2|^{\frac{1}{2}} T^k R^n x \|^2 \leq \|R^n x\|^2 \quad (T \text{ is contraction})$$

$$= \langle D^n x, x \rangle,$$

which implies that D is a contraction. Evidently, the sequence $\{D^n\}$ being a monotonic decreasing sequence of non–negative contractions.

Therefore $\{D^n\}$ converges strongly to a projection P. Now we should be show that $T^{k+1}P = 0$. Since

$$\|R^n x\|^2 - \|R^{n+1} x\|^2 = \|R^n x\|^2 - \langle |T^2| T^k R^n x, T^k R^n x \rangle + \|T^{k+1} R^n x\|^2 \leq \langle 1 - T^{\ast k} |T^2| T^k R^n x, R^n x \rangle + \|T^{k+1} R^n x\|^2 \geq \|T^{k+1} R^n x\|^2 \quad (T \text{ is contraction}),$$

we have that

$$\sum_{n=0}^{m} \|T^{k+1} R^n x\|^2 \leq \sum_{n=0}^{m} \|R^n x\|^2 - \sum_{n=0}^{m} \|R^{n+1} x\|^2 = \|x\|^2 - \|R^{m+1} x\|^2 \leq \|x\|^2$$

for every $x \in \mathcal{H}$ and non–negative integer m. Hence $\|T^{k+1} R^n x\| \rightarrow 0$ as $n \rightarrow \infty$. Consequently, we have

$$T^{k+1}Px = T^{k+1} \lim_{n \rightarrow \infty} D^n x = \lim_{n \rightarrow \infty} T^{k+1} R^{2n} x = 0,$$

for every $x \in \mathcal{H}$. Hence $T^2 P = 0$. \qed
Recall that $T \in B(\mathcal{H})$ is a C_0-contraction (resp., C_1-contraction) if $||T^n x||$ converges to 0 for all $x \in \mathcal{H}$ (resp., does not converge to 0 for all non-trivial $x \in \mathcal{H}$); T is of class C_0, or C_1, if T^* is of class C_0, respectively C_1. All combinations are allowed, leading to the classes C_{00}, C_{01}, C_{10} and C_{11} of contractions [11, Page 72]. Duggal, Jeon and Kubrusly [2] showed that the following lemma;

Lemma 2.3. If a class A contraction T has no nontrivial invariant subspace, then (a) T is a proper contraction and (b) the non-negative operator $D = |T^2| - |T|^2$ is a strongly stable contraction (so that $D \in C_{00}$).

Using the above lemmas we can show that the following theorem;

Theorem 2.4. If $T \in QA(k)$ is a contraction with no non–trivial invariant subspace for non-negative integer k, then: (a) T is a proper contraction; (b) the non–negative operator $D = T^*k(|T^2| - |T|^2)T^k$ is a strongly stable contraction (and hence of class C_{00}).

*Proof. We may assume that T is non-zero.

(a) If either of $T^{-1}(0)$ or $\text{ran}(T^k)$ is non–trivial (i.e., $T^{-1}(0) \neq \{0\}$ or $\text{ran}(T^k) \neq \mathcal{H}$), then T has a non–trivial invariant subspace. Hence, if $T \in QA(k)$ has no non–trivial invariant subspace, then T is injective and $\text{ran}(T^k) = \mathcal{H}$) Consequently, T must be class A operator. The proof now follows from Lemma 2.3.

(b) If $T \in QA(k)$ is a contraction, then by Lemma 2.2 D is a contraction, $\{D^n\}$ converges strongly to a projection P and $T^{k+1}P = 0$. Therefore we have $PT^{*k+1} = 0$. Suppose T has no non–trivial invariant subspace. Since $P^{-1}(0)$ is a non-zero invariant subspace for T whenever $PT^{*k+1} = 0$, we must have $P^{-1}(0) = \mathcal{H}$, hence P must be zero and so $\{D^n\}$ converges strongly to 0, that is, D is a strongly stable contraction. Since D is a self-adjoint, $D \in C_{00}$.

It is well known that a self-adjoint operator is a proper contraction if and only if it is a C_{00}-contraction. Hence, we have the following from Theorem 2.4.

Corollary 2.5. If $T \in QA(k)$ is a contraction with no non–trivial invariant subspace for non-negative integer k, then both T and T^* are proper contractions.
References

In Ho Jeon
Department of Mathematics Education
Seoul National University of Education
Seoul 137-742, Korea
E-mail: jihmath@snue.ac.kr

In Hyoun Kim
Department of Mathematics
Incheon National University
Incheon 406-772, Korea
E-mail: ihkim@inchon.ac.kr