HOLOMORPHIC MAPPINGS INTO SOME
DOMAIN IN A COMPLEX NORMED SPACE

TATSUHIRO HONDA

ABSTRACT. Let D_1, D_2 be convex domains in complex normed spaces E_1, E_2 respectively. When a mapping $f : D_1 \to D_2$ is holomorphic with $f(0) = 0$, we obtain some results like the Schwarz lemma. Furthermore, we discuss a condition whereby f is linear or injective or isometry.

1. Introduction

Let $\Delta = \{z \in \mathbb{C}; |z| < 1\}$ be the unit disc in \mathbb{C}. The classical Schwarz lemma in one complex variable is as follows:

THE CLASSICAL SCHWARZ LEMMA. Let $f : \Delta \to \Delta$ be a holomorphic mapping with $f(0) = 0$. Then the following statements hold:

(i) $|f(z)| \leq |z|$ for any $z \in \Delta$,
(ii) if there exists $z_0 \in \Delta \setminus \{0\}$ such that $|f(z_0)| = |z_0|$, or if $|f'(0)| = 1$, then there exists a complex number λ of modulus 1 such that $f(z) = \lambda z$ and f is an automorphism of Δ.

It is natural to consider an extension of the above results to more general domains or higher dimensional spaces. However, condition (ii) in above no longer holds even for the bidisc $\Delta \times \Delta$. In fact, one can easily construct a holomorphic mapping $f : \Delta \times \Delta \to \Delta \times \Delta$ such that $f(0) = 0$ and $\|f(z)\| = \|z\|$ for z in an open subset of $\Delta \times \Delta$, but f is not an isometry (cf. J. P. Vigué [18]). Nevertheless, E. Vesentini [15], [16] showed that if $\|f(w)\| = \|w\|$ holds on B_1 and if every boundary point of the unit ball B_2 is a complex extreme point, then $f : B_1 \to B_2$ is a linear isometry, where B_1, B_2 are the open unit balls in normed spaces E_1, E_2 over \mathbb{C} respectively. J. P. Vigué [18], [19] proved that if every boundary point of the unit ball B for some norm in \mathbb{C}^n is a complex extreme
point of \overline{B} and if $\|f(w)\| = \|w\|$ holds on an open subset U of B, then $f : B \to B$ is a linear automorphism of \mathbb{C}^n. H. Hamada [6] generalized the above classical Schwarz lemma to the case where $\|f(w)\| = \|w\|$ holds on some local complex submanifold of codimension 1. The author [10], [11] generalized to the case where $\|f(w)\| = \|w\|$ holds on a non-pluripolar subset. H. Hamada and the author [8] generalized to the case where $\|f(w)\| = \|w\|$ holds on a totally real submanifold.

In this paper, we consider some condition whereby a holomorphic mapping is linear or injective or isometric.

2. Notation and preliminaries

All topologies considered throughout this paper shall be Hausdorff. A vector space E over \mathbb{C} is said to be locally convex if E is equipped with the Hausdorff topology defined by some family Π of seminorms such that $\sup_{\alpha \in \Pi} \alpha(x) > 0$ for all $x \in E \setminus \{0\}$, that is, a fundamental system of neighborhoods of x in this topology is made up of finite intersections of sets $x + \alpha^{-1}([0,a])$, $\alpha \in \Pi$, $0 < a < \infty$. Then all seminorms in Π are continuous, but the family $cs(E)$ of all continuous semi-norm on E is generally larger than Π. A sequence $\{z_n\}_{n \in \mathbb{N}}$ on a locally convex space E is a Cauchy sequence in E if for each $\alpha \in \Pi$ and each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $\alpha(z_n - z_m) < \varepsilon$ for all $m, n \geq n_0$. A locally convex space E is said to be sequentially complete if any Cauchy sequence converges.

Let F be a locally convex space, let E be a sequentially complete locally convex space. Let U be an open subset in F, and let $f : U \to E$ be a holomorphic mapping. For $a \in U$, there uniquely exists a sequence of n-homogeneous polynomials $P_n : F \to E$ such that the expansion

$$f(a + z) = f(a) + \sum_{n=1}^{\infty} P_n(z)$$

holds for all z in the largest balanced subset of $U - a$. This series is called the Taylor expansion of f by n-homogeneous polynomials P_n at a.

Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc in the complex plane \mathbb{C}, and let $\gamma(\lambda) = 1/(1 - |\lambda|^2)$. The Poincaré distance ρ on Δ is defined for $z, w \in \Delta$ as follows:

$$\rho(z, w) = \frac{1}{2} \log \frac{1 + |(z - w)/(1 - z\bar{w})|}{1 - |(z - w)/(1 - z\bar{w})|}.$$
Let D be a domain in a sequentially complete locally convex space E. The gauge N_D of D is defined for $z \in E$ as follows:

$$N_D(z) = \inf\{ \alpha > 0; z \in \alpha D\}.$$

The Carathéodory pseudodistance C_D on D is defined for $p, q \in D$ as follows:

$$C_D(p, q) = \sup\{ \rho(f(p), f(q)); f \in H(D, \Delta)\}.$$

The Lempert function δ_D of D is defined for $p, q \in D$ as follows:

$$\delta_D(p, q) = \inf\{ \rho(\xi, \eta); \xi, \eta \in \Delta, ^3 \varphi \in H(\Delta, D)$$

such that $\varphi(\xi) = p, \varphi(\eta) = q\}.$

The Kobayashi pseudodistance K_D on D is defined for $p, q \in D$ as follows:

$$K_D(p, q) = \inf\left\{ \sum_{k=1}^{m} \delta_D(x_k, x_{k+1}); m \in \mathbb{N}, \{p = x_1, x_2, \ldots, x_{m+1} = q\} \subset D\right\}.$$

Then we have established between the various pseudodistances on a domain D:

$$C_D \leq K_D \leq \delta_D$$

on $D \times D$.

The infinitesimal Carathéodory pseudometric c_D for D is defined for $z \in D, v \in E$ as follows:

$$c_D(z, v) = \sup\{ |d\psi(z)(v)|; \psi \in H(D, \Delta)\}.$$

The infinitesimal Kobayashi pseudometric κ_D for D is defined for $z \in D, v, \psi \in E$ as follows:

$$(2.1) \quad \kappa_D(z, v) = \inf\{ \gamma(\lambda)|\alpha|; ^3 \varphi \in H(\Delta, D), ^3 \lambda \in \Delta$$

such that $\varphi(\lambda) = z, \alpha \varphi'(\lambda) = v\}.$

Then holomorphic mappings $\varphi \in H(\Delta, D)$ as in (2.1) certainly exist. In fact, if R is the radius of the open disc $\{\lambda \in \mathbb{C}; \lambda v \in U(z)\}$, where $U(z)$ is a neighborhood of z, we may take the mapping

$$\varphi(\lambda) = z + \frac{\lambda}{\zeta} v$$

for $|\zeta| \geq 1/R$. Hence $\kappa_D(z, v) \leq 1/R$.

Moreover, for any $\psi \in H(D, \Delta)$ with $\psi(z) = 0$, we have $(\psi \circ \varphi)'(0) = d\psi(z)(\varphi'(0))$. It follows from this that

$$c_D \leq \kappa_D$$

on $D \times E$.

We use convexity to obtain the relationship among the pseudodistances or pseudometrics (S. Dineen [3], T. Franzoni and E. Vesentini [5], M. Hervé [9] etc).
Proposition 2.1. If D is a balanced convex domain in a sequentially complete locally convex space E, then

(i) $C_D(0, x) = K_D(0, x) = \delta_D(0, x) = \rho(0, N_D(x))$ for any $x \in D$,
(ii) $c_D(0, v) = \kappa_D(0, v) = N_D(v)$ for any $v \in E$.

Let D be a balanced pseudoconvex domain in a sequentially complete locally convex space E. Then we have the following proposition as the gauge N_D is plurisubharmonic on E.

Proposition 2.2. If D is a balanced pseudoconvex domain in a sequentially complete locally convex space E, then

(i) $K_D(0, x) = \delta_D(0, x) = \rho(0, N_D(x))$ for any $x \in D$,
(ii) $\kappa_D(0, v) = N_D(v)$ for any $v \in E$.

Using the above proposition, we obtain the following generalization of part (i) of the Schwarz lemma to balanced pseudoconvex domains in sequentially complete locally convex spaces.

Proposition 2.3. Let E_j be a sequentially complete locally convex space and let D_j be a balanced pseudoconvex domain in E_j for $j = 1, 2$. Let $f : D_1 \to D_2$ be a holomorphic mapping with $f(0) = 0$. Then

$$N_{D_2} \circ f(z) \leq N_{D_1}(z).$$

Proof. By Proposition 2.2 (i), we have

$$\rho(0, N_{D_1}(z)) = \delta_{D_1}(0, z) = \delta_{D_2}(0, f(z)) = \rho(0, N_{D_2} \circ f(z)).$$

Since $\rho(0, r)$ is strictly increasing for $0 \leq r < 1$, we obtain this proposition.

The following definition of a complex geodesic due to E. Vesentini [15, 16, 17].

Definition 2.4. Let D be a domain in a sequentially complete locally convex space E endowed with a pseudodistance d_D. A holomorphic mapping $\varphi : \Delta \to D$ is said to be a complex d_D-geodesic for (x, y) if

$$d_D(x, y) = \rho(\xi, \eta)$$

for any points $\xi, \eta \in \Delta$ such that $\varphi(\xi) = x$ and $\varphi(\eta) = y$.

A holomorphic mapping $\varphi : \Delta \to D$ is said to be a complex c_D-geodesic for (z, v) if $c_D(z, v) = \gamma(\lambda)|\alpha|$ holds for any $\lambda \in \Delta$ and any $\alpha \in \mathbb{C}$ such that $\varphi(\lambda) = z$ and $\alpha \varphi'(\lambda) = v$.
A holomorphic mapping $\varphi : \Delta \to D$ is said to be a complex κ_D-geodesic for (z,v) if $\kappa_D(z,v) = |\gamma(\lambda)\alpha|$ holds for any $\lambda \in \Delta$ and $\alpha \in \mathbb{C}$ such that $\varphi(\lambda) = z$ and $\alpha \varphi'(\lambda) = v$.

The following results about a complex geodesic are well-known (cf. S. Dineen [3], T. Franzoni and E. Vesentini [5], M. Hervé [9] etc).

Proposition 2.5. Let D be a domain in a sequentially complete locally convex space E endowed with a pseudodistance d_D or a pseudometric μ_D. Then the following statements hold:

(i) a holomorphic mapping $\varphi : \Delta \to D$ is a complex d_D-geodesic for (x,y) if and only if there exists only one pair $(\xi, \eta) \in \Delta^2$ with $(\xi \neq \eta)$ such that $\varphi(\xi) = x$, $\varphi(\eta) = y$ and

$$d_D(x,y) = \rho(\xi, \eta),$$

(ii) a holomorphic mapping $\varphi : \Delta \to D$ is a complex μ_D-geodesic for (z,v) if and only if there exists only one point $\lambda \in \Delta$ such that $\varphi(\lambda) = z$, $\alpha \varphi'(\lambda) = v$ and

$$\mu_D(\varphi(\lambda), \varphi'(\lambda)) = |\alpha| \gamma(\lambda).$$

A point x of the closure \overline{D} of D is said to be a complex extreme point of \overline{D} if $y = 0$ is the only vector in E such that the function $: \zeta \mapsto x + \zeta y$ maps Δ into D. For example, C^2-smooth strictly convex boundary points are complex extreme points.

For a bounded balanced pseudoconvex domain D, the holomorphic mapping $\varphi(\zeta) = \zeta a/N_D(a)$ is a complex δ_D-geodesic and κ_D-geodesic for $(0,a)$ for any $a \in D$ with $N_D(a) > 0$. In fact, M. Hervé [9] has given the following characterization of the uniqueness of complex geodesics (see e.g. E. Vesentini [15], [16], [17]).

Proposition 2.6. Let D be a balanced convex domain in a sequentially complete locally convex space E. Let $a \in D$ be such that $N_D(a) > 0$, and let $\varphi : \Delta \to D$ be the holomorphic mapping defined by $\varphi(\zeta) = \zeta a/N_D(a)$. Then the following conditions are equivalent:

(i) the point $b = a/N_D(a)$ is a complex extreme point of \overline{D};

(ii) φ is the unique (modulo $\text{Aut}(\Delta)$) complex C_D-geodesic for $(0,a)$;

(iii) φ is the unique (modulo $\text{Aut}(\Delta)$) complex K_D-geodesic for $(0,a)$;

(iv) φ is the unique (modulo $\text{Aut}(\Delta)$) complex δ_D-geodesic for $(0,a)$;

(v) φ is the unique (modulo $\text{Aut}(\Delta)$) complex c_D-geodesic for $(0,a)$;

(vi) φ is the unique (modulo $\text{Aut}(\Delta)$) complex κ_D-geodesic for $(0,a)$.

Using the uniqueness of complex geodesics, we obtain the linearity of complex geodesics as in the following proposition.

Proposition 2.7. Let D_j be a bounded balanced convex domain in complex normed spaces E_j for $j = 1, 2$, and let $f : D_1 \to D_2$ be a holomorphic mapping with $f(0) = 0$. Let $x \in D_1 \setminus \{0\}$ and let $\varphi(\zeta) = \zeta x / N_{D_1}(x)$. We assume that $f(x) / N_{D_2} \circ f(x)$ is a complex extreme point of $\overline{D_2}$. If one of the following conditions is satisfied, then $f \circ \varphi$ is a linear complex δ_{D_2}-geodesic.

(i) $N_{D_2} \circ f(x) = N_{D_1}(x)$.
(ii) $\delta_{D_2}(f(0), f(x)) = \delta_{D_1}(0, x)$.
(iii) $K_{D_2}(f(0), f(x)) = K_{D_1}(0, x)$.
(iv) $C_{D_2}(f(0), f(x)) = C_{D_1}(0, x)$.

Proof. By Proposition 2.1 (i), the conditions (i), (ii), (iii) and (iv) are equivalent. Suppose that (i) is satisfied. By Proposition 2.1 (i),

$$
\delta_{D_2}(f \circ \varphi(0), f \circ \varphi \circ N_{D_1}(x)) = \delta_{D_2}(0, f(x)) = \delta_{D_1}(0, x) = \rho(0, N_{D_1}(x)).
$$

By Proposition 2.5 (i), $f \circ \varphi$ is a complex δ_{D_2}-geodesic for $(0, f(x))$. By Proposition 2.6, we have

$$
f \circ \varphi(\zeta) = \zeta e^{i\theta} \frac{f(x)}{N_{D_2} \circ f(x)}
$$

for some $\theta \in \mathbb{R}$. \hfill \Box

3. Special versions of the Schwarz Lemma

Now we introduce the projective space $\mathbb{P}(E)$. Let E be a locally convex space. Let z and z' be points in $E \setminus \{0\}$. z and z' are said to be equivalent if there exists $\lambda \in \mathbb{C}^*$ such that $z = \lambda z'$. We denote by $\mathbb{P}(E)$ the quotient space of $E \setminus \{0\}$ by this equivalence relation. Then $\mathbb{P}(E)$ is a Hausdorff space. The Hausdorff space $\mathbb{P}(E)$ is called the complex projective space induced by E. We denote by Q the quotient map from $E \setminus \{0\}$ to $\mathbb{P}(E)$ (see M. Nishihara [14]).

Theorem 3.8. Let E_j be a complex normed space, let D_j be a bounded balanced convex domain in E_j for $j = 1, 2$ and let $f : D_1 \to D_2$ be a holomorphic mapping with $f(0) = 0$. Let X be a non-empty subset
of D_1 such that X is mapped homeomorphically onto an open subset
Ω in the complex projective space $\mathbb{P}(E_1)$ by the quotient map Q from
$E_1 \setminus \{0\}$ onto $\mathbb{P}(E_1)$. We assume that $f(x)/ND_1(f(x))$ is a complex
extreme point of D_2 for any $x \in X$ and that there exists $w_0 \in X$
such that $w_0/ND_1(w_0)$ is a complex extreme point of D_1. If one of the
following conditions is satisfied, then f is linear and injective.
(i) $ND_2(f(x)) = ND_1(x)$ for any $x \in X$.
(ii) $C_{D_1}(f(0), f(x)) = C_{D_1}(0, x)$ for any $x \in X$.
(iii) $K_{D_1}(f(0), f(x)) = K_{D_1}(0, x)$ for any $x \in X$.
(iv) $\delta_{D_1}(f(0), f(x)) = \delta_{D_1}(0, x)$ for any $x \in X$.

Proof. By Proposition 2.1 (i), the conditions (i), (ii), (iii) and (iv) are
equivalent. Suppose that (i) is satisfied. We take a point $w \in X \setminus \{0\}$ and
set $\varphi(\zeta) = \zeta w/ND_1(w)$ for $\zeta \in \Delta$. Then φ is a complex δ_{D_1}-geodesic.
We have
$$
\delta_{D_2}(f \circ \varphi(0), f \circ \varphi(ND_1(w))) = \rho(0, ND_1(w)).
$$
By Proposition 2.7, $f \circ \varphi$ is a complex δ_{D_2}-geodesic. It follows from this
that there exists a point $y \in D_2 \setminus \{0\}$ such that
$$
(3.1) \quad f \circ \varphi(\zeta) = \zeta y \frac{y}{ND_2(y)}.
$$

On the other hand, let $f(x) = \sum_{n=1}^{\infty} P_n(x)$ be the Taylor expansion of
f by n-homogeneous polynomials P_n in a neighborhood V of 0 in E_1.
Then we have
$$
(3.2) \quad f \circ \varphi(\zeta) = \sum_{n=1}^{\infty} P_n(\frac{\zeta}{ND_1(w)}) = \sum_{n=1}^{\infty} \left(\frac{\zeta}{ND_1(w)} \right)^n P_n(w)
$$
in a neighborhood of 0 in Δ. By (3.1) and (3.2), we obtain
$$
P_n(w) = 0 \quad \text{for } w \in X, n \geq 2.
$$

We take any point $y \in C^*X = \{tx; t \in C^*, x \in X\}$. Then there exist
t \in C^*$ and $x \in X$ such that $y = tx$. Hence
$$
P_n(y) = P_n(tx) = t^n P_n(x) = 0,$$
that is, $P_n \equiv 0$ on $C^*X \subset E_1$ for every $n \geq 2$. Since Q is continuous,
the set $C^*X = Q^{-1}(\Omega)$ contains an open subset U of E. By the identity theorem,
$$
P_n \equiv 0 \quad \text{on } E_1 \text{ for every } n \geq 2.
Therefore $f = P_1$, that is, f is linear.

Next we show that f is injective. Let z be a point of E_1 with $f(z) = 0$. Since f is linear, we have

$$N_{D_2} \circ f(tx) = N_{D_2}(tf(x)) = |t|N_{D_2} \circ f(x) = |t|N_{D_1}(x) = N_{D_1}(tx)$$

for every $t \in \mathbb{C}^*$, $x \in X$. It follows from this that

$$N_{D_2} \circ f(y) = N_{D_1}(y) \quad \text{for all } y \in \mathbb{C}^* X.$$

Since $\mathbb{C}^* X$ is open, there exists a positive number $r > 0$ such that $w_0 + \zeta z \in \mathbb{C}^* X$ for $\zeta \in \mathbb{C}, |\zeta| < r$. Then we have

$$N_{D_2} \circ f(w_0 + \zeta z) = N_{D_1}(w_0 + \zeta z). \quad (3.3)$$

On the other hand,

$$N_{D_2} \circ f(w_0 + \zeta z) = N_{D_2}(f(w_0) + \zeta f(z)) = N_{D_2} \circ f(w_0) = N_{D_1}(w_0). \quad (3.4)$$

By (3.3) and (3.4), we have

$$N_{D_1}(w_0 + \zeta z) = N_{D_1}(w_0).$$

Hence

$$N_{D_1} \left(\frac{w_0}{N_{D_1}(w_0)} + \frac{\zeta}{N_{D_1}(w_0)} z \right) = 1 \quad \text{for } |\zeta| < r.$$

Since $w_0/N_{D_1}(w_0)$ is a complex extreme point of D_1, we have $z = 0$.

Therefore f is injective. \(\square\)

Since complex Hilbert spaces are endowed with the norm which is induced from its inner products, we have the following corollary.

Corollary 3.9. Let H_j be a complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle_j$, let B_j be the open unit ball of H_j for the norm $\| \cdot \|_j = \langle \cdot, \cdot \rangle_j^{1/2}$ for $j = 1, 2$. Let $f : B_1 \to B_2$ be a holomorphic map with $f(0) = 0$. Let X be a non-empty subset of B_1 such that X is mapped onto an open subset Ω in the projective space $P(H_1)$ by the quotient map Q. If $\|w\|_1 = \|f(w)\|_2$ holds for every $w \in X$, then f is a linear isometry.
If $H_1 = H_2 = \mathbb{C}^n$ with the Euclidean unit ball B, then f is a linear automorphism of B.

Proof. Since every point of the boundary $\partial B_j = \{ z \in H_j ; \| z \|_j - 1 = 0 \}$ of B_j is a complex extreme point of the closure \overline{B}_j of B_j for $j = 1, 2$, by Theorem 3.8, f is linear and injective.

We consider a function

\[g(z) = \| z \|_1^2 - \| f(z) \|_2^2 \]

for $z \in H_1$. By Proposition 2.3, we have $g \geq 0$ on H_1.

Since $\partial \overline{B}_j \geq 0$, the non-negative valued function g is plurisubharmonic on H_1. Hence $\log g$ is plurisubharmonic on H_1. Since $\| w \|_1 = \| f(w) \|_2$ for every $w \in X$,

\[\log g \equiv -\infty \]

on an open subset $\mathbb{C}^*X = Q^{-1}(\Omega)$. Therefore f is a linear isometry. \qed

4. Infinitesimal pseudometrics

Proposition 4.10. Let D_j be a bounded balanced convex domain in a complex normed space E_j for $j = 1, 2$, and let $f : D_1 \to D_2$ be a holomorphic mapping with $f(0) = 0$. Let $x \in D \setminus \{0\}$ and let $\varphi(\zeta) = \zeta x/N_{D_1}(x)$. We assume that $df(0)x/N_{D_2}(df(0)x)$ is a complex extreme point of \overline{D}_2. If one of the following conditions is satisfied, then $f \circ \varphi$ is a linear complex κ_{D_2}-geodesic.

(i) $N_{D_2} \circ f(x) = N_{D_1}(x)$.
(ii) $c_{D_2}(f(0), f(x)) = c_{D_1}(0, x)$.
(iii) $\kappa_{D_2}(f(0), f(x)) = \kappa_{D_1}(0, x)$.

Proof. By Proposition 2.1, (ii),

\[\kappa_{D_2}(0, df(0)x) = \kappa_{D_1}(0, x) \]

\[= N_{D_1}(x). \]

Since $N_{D_1}(x)(f \circ \varphi)'(0) = df(0)x$, $f \circ \varphi$ is a complex κ_{D_2}-geodesic for $(0, df(0)x)$. By Proposition 2.6, we have

\[f \circ \varphi(\zeta) = \zeta e^{i\theta} \frac{df(0)x}{N_{D_2}(df(0)x)} \]

for some $\theta \in \mathbb{R}$. \qed
Theorem 4.11. Let E_j be a complex normed space, let D_j be a bounded balanced convex domain in E_j for $j = 1, 2$, and let $f : D_1 \to D_2$ be a holomorphic mapping. Let V be a connected open neighborhood of the origin in D_1. We assume that $\kappa_{D_2} (0, df(0)x) = \kappa_{D_1} (0, x)$ for $x \in V$. If $f(0) = 0$ and $df(0)x/N_{D_1}(df(0)x)$ is a complex extreme point of D_2 for any $x \in V \setminus \{0\}$, and if there exists $w \in V \setminus \{0\}$ such that $w/N_{D_1}(w)$ is a complex extreme point of D_1, then f is linear and injective.

Proof. Let $f(z) = \sum_{n=1}^{\infty} P_n(z)$ be the expansion of f by n-homogeneous polynomials P_n in a neighborhood of 0 in E_1. Since $\kappa_{D_2} (f(0^2), df(0)v) = \kappa_{D_1} (0, v)$ for any $v \in V$, by Proposition 4.10, $f(\zeta x/N_{D_1}(x))$ is the restriction of a linear map for any $x \in V$. Then we have

$$P_n(x) = 0 \quad \text{on } V \quad \text{for } n \geq 2$$

as in the proof of Theorem 3.8. By the analytic continuation theorem, we have P_n is identically 0 for $n \geq 2$. Therefore f is the restriction of a linear map.

Let $\varphi(\zeta) = \zeta w/N_{D_1}(w)$. By Proposition 2.6, $f \circ \varphi$ is a complex δ_{D_2}-geodesic for $(0, f(v))$. By Proposition 2.1,

$$\rho(0, N_{D_2}(f(v))) = \delta_{D_2}(0, f(v)) = \rho(0, N_{D_1}(v)).$$

This implies that $N_{D_2}(f(v)) = N_{D_1}(v)$. The rest of the proof is same as Theorem 3.8. □

We note that the map f is not necessarily a linear isometry under the assumption of the above theorem (cf. J. P. Vigué [18]). The following theorem was obtained by H. Cartan for bounded domain in C^2 (see T. Franzoni and E. Vesentini [5] etc).

Theorem 4.12. Let D be a bounded domain in a complex normed space E, and let $f : D \to D$ be a holomorphic mapping. If there exists $x_0 \in D$ such that $f(x_0) = x_0$ and $df(x_0)$ is an identity, f is the identity map.

Using the above theorem of Cartan, we obtain the following theorem.

Theorem 4.13. Let E_j be a complex normed space, let D_j be a bounded balanced convex domain in E_j for $j = 1, 2$, and let $f : D_1 \to D_2$ be a holomorphic mapping. Let V be a connected open neighborhood of the origin in D_1. We assume that $\kappa_{D_2} (0, df(0)x) = \kappa_{D_1} (0, x)$ for $x \in V$. If the inverse $df(0)^{-1}$ exists, then $f(0) = 0$ and f is the restriction of $df(0)$ to D_1.
Proof. First we will show $f(0) = 0$. We assume that $a = f(0) \neq 0$. Since $a \in D$, there exists a point $v \in E_i$ such that $N_{D_1}(v) = 1$ and $df(0)v = a/N_{D_1}(a)$. Then we have
\[
\kappa_{D_2}(a, a/N_{D_2}(a)) = \kappa_{D_2}(f(0), df(0)v) \\
\leq \kappa_{D_1}(0, v) \\
= N_{D_1}(v) \\
= 1.
\]

Therefore
\[
(4.1) \quad \kappa_{D_2}(a, a) \leq N_{D_2}(a).
\]

On the other hand, we set $\varphi(\zeta) = \zeta a/N_{D_2}(a)$ for $\zeta \in \Delta$. Then φ is a complex κ_{D_2}-geodesic for $(0, a)$. So we have
\[
\kappa_{D_2}(a, a) = \kappa_{D_2}(N_{D_2}(a), N_{D_2}(a)\varphi'(N_{D_2}(a))) \\
= \kappa_{\Delta}(N_{D_2}(a), N_{D_2}(a)) \\
= \frac{N_{D_2}(a)}{1 - \{N_{D_2}(a)\}^2}.
\]

Therefore $\kappa_{D_2}(a, a) > N_{D_2}(a)$. This contradicts with (4.1). We obtain $f(0) = 0$. By the assumptions, we have $N_{D_1}(df(0)^{-1}(w)) < 1$ for $w \in D_2$. Now we consider a holomorphic mapping $g = df(0)^{-1} \circ f$. Then g is a holomorphic mapping from D_1 to D_1 such that $g(0) = 0$ and $dg(0)$ is identity. By Theorem 4.12, g is identity.

In the Hilbert space case, since every boundary point of the unit ball is a complex extreme point, by the proofs of Corollary 3.9, Theorem 4.11 and Theorem 4.13, we obtain the following corollary.

Corollary 4.14. Let H_j be a complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle_j$, let B_j be the open unit ball of H_j for the norm $\| \cdot \|_j = \langle \cdot, \cdot \rangle_j^\frac{1}{2}$ for $j = 1, 2$. Let $f : B_1 \to B_2$ be a holomorphic map. Let V be a connected open neighborhood of the origin in B_1. We assume that $\kappa_{B_2}(0, df(0)x) = \kappa_{B_1}(0, x)$ for $x \in V$. Then $f(0) = 0$ and f is a linear isometry.

If $H_1 = H_2 = \mathbb{C}^n$ with the Euclidean unit ball B, then f is a linear automorphism of B.
References

Ariake National College of Technology,
Omata, Fukuoka, 836-8585, Japan
E-mail: honda@ariake-nct.ac.jp