SKewed POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

JUNCHEOL HAN

Abstract. Let R be a ring R and σ be an endomorphism of R. R is called σ-rigid (resp. reduced) if $a\sigma(a) = 0$ (resp. $a^2 = 0$) for any $a \in R$ implies $a = 0$. An ideal I of R is called a σ-ideal if $\sigma(I) \subseteq I$. R is called σ-quasi-Baer (resp. right (or left) σ-p.q.-Baer) if the right annihilator of every σ-ideal (resp. right (or left) principal σ-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring $A = R[x; \sigma]$ of a ring R is investigated as follows: For a σ-rigid ring R, (1) R is σ-quasi-Baer if and only if A is quasi-Baer if and only if A is $\tilde{\sigma}$-quasi-Baer for every extended endomorphism $\tilde{\sigma}$ on A of σ; (2) R is right σ-p.q.-Baer if and only if R is σ-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\tilde{\sigma}$-p.q.-Baer if and only if A is right $\tilde{\sigma}$-p.q.-Baer for every extended endomorphism $\tilde{\sigma}$ on A of σ.

1. Introduction and some definitions

Throughout this paper, R will denote an associative ring with identity, σ will be an endomorphism of R, and A will be the skew polynomial ring $R[x; \sigma]$, i.e., A is a ring of polynomials over R in an indeterminate x with multiplication subject to the relation $xr = \sigma(r)x$ for all $r \in R$. When σ is identity 1, we write $R[x]$ for $R[x; 1]$. In [11] Kaplansky introduced the Baer rings (i.e., rings in which the right annihilator of every nonempty subset is generated (as a right ideal) by an idempotent) to abstract various properties of rings of operators on Hilbert spaces. In [8], Clark introduced the quasi-Baer rings (i.e., rings in which the right annihilator of every right ideal is generated (as a right ideal) by an
idempotent) which are generalizations of Baer rings and used them to characterize a finite dimensional twisted matrix units semigroup algebra over an algebraically closed field. Further works on quasi-Baer rings appear in [12], [3], [4] and [5]. The study of Baer and quasi-Baer rings has its roots in functional analysis. Recently, in [6] Birkenmeier, Kim and Park defined a right (or left) principally quasi-Baer (simply, called right (or left) $p.q.$-Baer) ring as a generalization of quasi-Baer ring by the rings in which the right (or left) annihilator of every right (or left) principal ideal of R is generated by an idempotent of R. R is called a $p.q.$-Baer ring if it is both right p.q.-Baer and left p.q.-Baer. Another generalization of Baer ring is a p.p.-ring. A ring R is called a right (resp. left) p.p.-ring if the right (resp. left) annihilator of any element of R is generated by an idempotent of R. R is called a p.p.-ring if it is both right and left p.p.-ring.

A subset S of a ring R is called a σ-set if S is a σ-stable set, i.e., $\sigma(S) \subseteq S$. In particular, if a singleton set $S = \{a\}$ of R is σ-set, i.e., $\sigma(a) = a$, then a is called a σ-element of R. A left (right, two-sided) ideal I of R is called a left (right, two-sided) σ-ideal if I is a σ-set. By analog, we can define a σ-Baer ring (resp. σ-quasi-Baer-ring) by the ring in which the right annihilator of every σ-set (resp. σ-ideal) is generated by an idempotent. We also define a right (or left) σ-p.q.-Baer ring (resp. right (or left) σ-p.p.-ring) by the ring in which the right (or left) annihilator of every right (or left) principal σ-ideal (resp. σ-element) is generated by an idempotent. R is called a σ-p.q.-Baer ring (resp. σ-p.p.-ring) if it is both right σ-p.q.-Baer (resp. right σ-p.p.) and left σ-p.q.-Baer (resp. left σ-p.p.). In this paper, we denote the right (resp. left) annihilator of a subset S of a ring R by $r_R(S) = \{a \in R \mid Sa = 0\}$ (resp. $l_R(S) = \{a \in R \mid aS = 0\}$). We recall that R is a σ-rigid (resp. reduced) ring if for some endomorphism σ of R, $a\sigma(a) = 0$ (resp. $a^2 = 0$) implies that $a = 0$ for each $a \in R$. We can note that any σ-rigid ring is reduced and this endomorphism σ is a monomorphism. Now we can observe the following implications: Baer (resp. quasi-Baer) \Rightarrow Baer (resp. σ-quasi-Baer); right (or left) p.q.-Baer (resp. right (or left) p.p.) \Rightarrow right (or left) σ-p.q.-Baer (resp. right (or left) σ-p.p.); σ-Baer \Rightarrow σ-quasi-Baer \Rightarrow σ-p.q.-Baer. All the implications are strict by the following examples:

Example 1. [9, Example 9] Let Z be the ring of integers and consider the ring $Z \oplus Z$ with the usual addition and multiplication. Then the subring $R = \{(a, b) \in Z \oplus Z \mid a \equiv b \pmod{2}\}$ of $Z \oplus Z$ is a commutative reduced ring which has only two idempotents $(0, 0)$ and $(1, 1)$. Observe
that \(R \) is not p.p. (and then \(R \) is not Baer). Indeed, for \(a = (2, 0) \in R \),
\(r_R(a) = (0) \oplus 2\mathbb{Z} \) which is not generated by an idempotent of \(R \). Since \(R \) is reduced, \(R \) is not p.q.-Baer and hence it is not quasi-Baer. Let
\(\sigma : R \rightarrow R \) be a map defined by \(\sigma((a, b)) = (b, a) \) for all \((a, b) \in R\).
Then \(\sigma \) is an endomorphism of \(R \). Note that all the \(\sigma \)-sets of \(R \) are
\(S \oplus S \) for some subset \(S \) of \(\mathbb{Z} \). Let \(T = S \oplus S \). If \(T = (0) \), then
\(r_R(T) = R = (1, 1)R \). If \(T \neq (0) \), then \(r_R(T) = (0) = (0, 0)R \). Hence \(R \)
is \(\sigma \)-Baer, and so \(R \) is \(\sigma \)-quasi-Baer, \(\sigma \)-p.q.-Baer and \(\sigma \)-p.p.

Example 2. Let \(Z \) be the ring of integers. Let \(R = \begin{pmatrix} Z & Z \\ 0 & Z \end{pmatrix} \) be
the upper \(2 \times 2 \) triangular matrix ring over \(Z \). Since \(Z \) is quasi-Baer, \(R \) is quasi-Baer by [12, Proposition 9]. But it is neither left p.p. nor
right p.p. by [7, Example 8.1] and hence it is not p.p.. Consider an
endomorphism \(\sigma : R \rightarrow R \) given by
\[
\sigma \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & -b \\ 0 & c \end{pmatrix} \text{ for all } \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in R.
\]

We claim that \(R \) is \(\sigma \)-p.p. but it is not \(\sigma \)-Baer. First, note that every
\(\sigma \)-element of \(R \) is of the form

\[
\alpha = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}.
\]

Let \(\beta = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in r_R(\alpha) \) be arbitrary. Then \(\alpha \beta = \begin{pmatrix} ax & ay \\ 0 & cz \end{pmatrix} = 0. \)

Consider the following four cases;
(i) If \(a \) and \(c \neq 0 \), then \(x = y = z = 0 \). Thus \(r_R(\alpha) = (0) \), which is
generated by idempotent \(0 \) of \(R \).
(ii) If \(a \neq 0 \) and \(c = 0 \), then \(x = y = 0 \) and \(z \) is arbitrary. Thus

\[
r_R(\alpha) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & z \end{pmatrix} \in R \right\} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} R,
\]
i.e., it is generated by an idempotent \(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \) of \(R \).
(iii) If \(a = 0 \) and \(c \neq 0 \), then \(x, y \) are arbitrary and \(z = 0 \). Thus

\[
r_R(\alpha) = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \in R \right\} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} R,
\]
i.e., it is generated by an idempotent \(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \) of \(R \).

(iv) If \(a \) and \(c = 0 \), then \(x, y \) and \(z \) are arbitrary. Thus \(r_R(\alpha) = R \), which is generated by idempotent \(1 \) of \(R \). Hence \(R \) is a right \(\sigma \)-p.p. ring. Similarly, we can show that \(R \) is a left \(\sigma \)-p.p. ring.

Consequently, \(R \) is a \(\sigma \)-p.p. ring.

Example 3. [6, Example 1.3] Let \(Z_2 \) be the field of two elements and consider \(R = \{(x_n) \in \prod_{i=1}^{\infty} Z_2 \mid x_n \text{ is eventually constant} \} \). Then \(R \) is a Boolean ring which is not self-injective. By [12, p.79, p.249 and p.250], \(R \) is not Baer and hence it is not quasi-Baer since \(R \) is reduced. But \(R \) is p.q.-Baer and hence it is p.p. since \(R \) is reduced.

1. Let \(\sigma_1 : R \to R \) be defined by \(\sigma_1((x_1, x_2, \ldots)) = (x_2, x_3, \ldots) \). Then \(\sigma_1 \) is an endomorphism of \(R \). Note that the \(\sigma_1 \)-ideals of \(R \) are only \(R \) and \(0 \). Hence \(R \) is \(\sigma_1 \)-quasi-Baer.

2. Let \(\sigma_2 : R \to R \) be defined by \(\sigma_1((x_1, x_2, x_3, \ldots)) = (0, x_2, x_3, \ldots) \). Then \(\sigma_1 \) is an endomorphism of \(R \). Note that every ideal of \(R \) is a \(\sigma_2 \)-ideal of \(R \). Hence \(R \) is not \(\sigma_2 \)-quasi-Baer. But \(R \) is \(\sigma_2 \)-p.q.-Baer.

3. Let \(\sigma_3 : R \to R \) be defined by \(\sigma_3((x_1, x_2, x_3, \ldots)) = (x_2, x_1, x_3, \ldots) \) and consider a projection \(\pi : R \to R \) given by \(\pi((x_1, x_2, \ldots)) = (x_3, x_4, \ldots) \). Then \(\sigma_3 \) is an endomorphism of \(R \). Note that every ideal of \(R \) is not always \(\sigma_3 \)-ideal of \(R \), for example, \((0) \times Z_2 \times \pi(I) \) is an ideal of \(R \) for some ideal \(I \) of \(R \) but it is not \(\sigma_3 \)-ideal of \(R \). On the other hand, for any ideal \(I \) of \(R \), \(J = Z_2 \times Z_2 \times \pi(I) \) and \(K = (0) \times (0) \times \pi(I) \) are \(\sigma_3 \)-ideals of \(R \). Then \(r_R(J) = (0) \times (0) \times r_R(\pi(I)) \) and \(r_R(K) = Z_2 \times Z_2 \times r_R(\pi(I)) \). Since \(R \) is not quasi-Baer, \(\pi(R) \) is not quasi-Baer and so \(R \) is not \(\sigma_3 \)-quasi-Baer. But \(R \) is \(\sigma_3 \)-p.q.-Baer.

We begin with the following lemmas:

Lemma 1.1. Let \(R \) be a ring with an endomorphism \(\sigma \). Then

1. If \(I \) is a right \(\sigma \)-ideal of \(R \), then \(RI \) is a right \(\sigma \)-ideal of \(R \);
2. If \(I \) is a left \(\sigma \)-ideal of \(R \), then \(IR \) is a left \(\sigma \)-ideal of \(R \).

Proof. (1) Let \(I \) be a right \(\sigma \)-ideal of \(R \). Clearly, \(RI \) is a right ideal of \(R \). Let \(t \in RI \) be arbitrary. Then \(t = \sum_{i=1}^{n} a_i b_i \) for some \(a_i \in R, b_i \in I \) and some integer \(n \in \mathbb{Z}^{+} \). Since \(I \) is a right \(\sigma \)-ideal of \(R \), \(\sigma(I) \subseteq I \). For each \(i \), \(\sigma(a_i b_i) = \sigma(a_i)\sigma(b_i) \in RI \), and so \(\sigma(RI) \subseteq RI \). Hence \(RI \) is a right \(\sigma \)-ideal of \(R \).

(2) It follows from the similar argument given as in (1). \(\square \)
Lemma 1.2. Let R be a ring with an endomorphism σ. Then R is σ-quasi-Baer if and only if the right annihilator of every right σ-ideal of R is generated by an idempotent.

Proof. For any right σ-ideal I of R, RI is a σ-ideal of R and $r_R(I) = r_R(RI)$ since R has an identity. \hfill \Box

Lemma 1.3. Let R be a σ-rigid ring. Then R is σ-Baer if and only if R is σ-quasi-Baer.

Proof. (\Rightarrow) Clear.

(\Leftarrow) Suppose that R is σ-quasi-Baer. Let S be any σ-set of R. Consider the right ideal $< S >$ of R generated by S. Since S is a σ-set of R, $< S >$ is a right σ-ideal of R. Since R is σ-quasi-Baer, $r_R(< S >) = eR$ for some idempotent $e \in R$ by Lemma 1.2. We will show that $r_R(S) = r_R(< S >)$. Clearly, $r_R(< S >) \subseteq r_R(S)$. Let $b = \sum_{i=1}^{n} s_i x_i \in < S >$ be arbitrary. If $a \in r_R(S)$, then $s_i a = 0$ for all $s_i \in S$. Since R is reduced, $s_i a = 0$ if and only if $as_i = 0$ and only if $s_i Ra = 0$. Then $0 = \sum_{i=1}^{n} (as_i) x_i = \sum_{i=1}^{n} (s_i x_i) a = ba$, and so $a \in r_R(< S >)$. Thus $r_R(S) = r_R(< S >) = eR$. Hence R is σ-Baer. \hfill \Box

Corollary 1.4. Let R be a reduced ring. Then R is Baer if and only if R is quasi-Baer.

Proof. It follows from Lemma 1.3 by letting $\sigma = 1$. \hfill \Box

Lemma 1.5. Let R be a σ-rigid ring. Then the following statements are equivalent:

1. R is a right σ-p.p.-ring;
2. R is a σ-p.p.-ring;
3. R is a right σ-p.q.-Baer ring;
4. R is a σ-p.q.-Baer ring;
5. For any σ-element $a \in R$ and any positive integer n, $r_R(a^nR) = eR$ for some idempotent $e \in R$.

Proof. Since R is σ-rigid, $r_R(a) = l_R(a) = r_R(aR) = l_R(Ra) = r_R(a^nR)$ for any σ-element $a \in R$ and any positive integer n. Hence we have the result. \hfill \Box

In [1], Armendariz has shown that if R is reduced, then R is a Baer ring if and only if the polynomial ring $R[x]$ is a Baer ring. In this paper, we will generalize the result by showing that if R is σ-rigid, then R is
a σ-quasi-Baer ring if and only if the skew polynomial ring $R[x; \sigma]$ is a quasi-Baer ring; R is a right (or left) σ-p.q.-Baer ring if and only if the skew polynomial ring $R[x; \sigma]$ is a right (or left) p.q.-Baer ring.

Lemma 1.6. Let R be a σ-rigid ring. Then for all $a, b, c, d \in R$,

1. $a\sigma(b) = 0$ if and only if $\sigma(b)a = 0$
2. If $ab = 0$ and $bc + da = 0$, then $bc = da = 0$
3. If $ab = 0$ and $ad + cb = 0$, then $ad = cb = 0$
4. If $ab = 0$, then $a\sigma(b) = \sigma(a)b = 0$
5. If $a\sigma^k(b) = 0$ for some positive integer k, then $ab = 0$

Proof. (1) is clear.

(2) If $ab = 0$ and $bc + da = 0$, then $0 = (bc + da)b = (bc)b + (da)b = bcb$, and so $bc = 0$. Hence $da = 0$.

(3) It is similar to the proof of (2).

(4) Suppose that $ab = 0$. Since R is reduced, $ba = 0$. Thus

$$a\sigma(b)\sigma(a\sigma(b)) = a\sigma(ba)\sigma^2(b) = 0.$$

Since R is σ-rigid, $a\sigma(b) = 0$. Similarly, if $ab = 0$, then $\sigma(a)b = 0$.

(5) If $a\sigma^k(b) = 0$ for some positive integer k, then by using (4) repeatedly we have $\sigma^k(ab) = \sigma^k(a)\sigma^k(b) = 0$, and so $ab = 0$ because σ is a monomorphism.

For a ring R with an endomorphism σ, there exists an endomorphism of $A = R[x; \sigma]$ which extends σ. For example, consider a map $\tilde{\sigma}$ on A defined by $\tilde{\sigma}(f(x)) = \sigma(a_0) + \sigma(a_1)x + \cdots + \sigma(a_n)x^n$ for all $f(x) = a_0 + a_1x + \cdots + a_nx^n \in A$. Then $\tilde{\sigma}$ is an endomorphism of A and $\tilde{\sigma}(a) = \sigma(a)$ for all $a \in R$, which means that $\tilde{\sigma}$ is an extension of σ. We call the endomorphism of $A = R[x; \sigma]$ which extends σ an extended endomorphism of σ. Let Σ_σ be the set of all extended endomorphisms on A of σ. Note that $\Sigma_\sigma \neq \emptyset$ since $\tilde{\sigma} \in \Sigma_\sigma$.

Lemma 1.7. Let R be a ring with an endomorphism σ and let Σ_σ be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ. Then

1. If I is a σ-ideal of R, then IA is a θ-ideal of A for all $\theta \in \Sigma_\sigma$;
2. If I is a right principal σ-ideal of R, then IA is a right principal θ-ideal of A for all $\theta \in \Sigma_\sigma$;
3. If I is a left principal σ-ideal of R, then AI is a left principal θ-ideal of A for all $\theta \in \Sigma_\sigma$.

Proof. It is straitforward.

Lemma 1.8. Let R be a ring with an endomorphism σ and let Σ_σ be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ. Then R is σ-rigid if and only if A is θ-rigid for all $\theta \in \Sigma_\sigma$. In this case, $\sigma(e) = e$ for every idempotent $e \in R$.

Proof. Assume that R is σ-rigid and A is not θ-rigid for some $\theta \in \Sigma_\sigma$. Then there exists a nonzero $f \in A$ such that $f \theta(f) = 0$. Since R is σ-rigid, $f \notin R$. Let $f = \sum_{i=0}^{m} a_i x^i$ where $a_i \in R, a_m \neq 0$ for some $m \geq 1$. Since $f \theta(f) = 0$, $a_m \sigma^m(a_m) = 0$. Since R is σ-rigid, $a_m^2 = 0$ by Lemma 1.6, and then $a_m = 0$ since R is reduced, a contradiction. Hence A is θ-rigid for all $\theta \in \Sigma_\sigma$. The converse is true by the definition of extended endomorphism of σ. Let e be any idempotent of R. In case that A is θ-rigid for each $\theta \in \Sigma_\sigma$ (and then A is reduced). Hence e is central idempotent in A, and thus $ex = xe = \sigma(e)x$, which implies that $\sigma(e) = e$.

Note that for a reduced ring R, $A = R[x; \sigma]$ is not necessarily reduced. Indeed, consider the reduced ring R and σ introduced in Example 1. Let $f = (0,2)x \in A$. Then $f^2 = (0,2)x(0,2)x = (0,2)\sigma(0,2)x^2 = (0,2)(2,0)x^2 = (0,0)x^2 = 0$. But $f \neq 0$. Hence A is not reduced.

We need the following corollary as a special case of [9, Proposition 6].

Corollary 1.9. Let R be a σ-rigid ring. Then for any

$$f = \sum_{i=0}^{m} a_i x^i, g = \sum_{j=0}^{n} b_j x^j \in R[x; \sigma],$$

$fg = 0$ if and only if $a_i b_j = 0$ for each i, j.

2. Skew polynomial rings over σ-quasi-Baer and σ-p.q.-Baer rings

We recall from [2] an idempotent $e \in R$ is left (resp. right) semicentral in R if $eae = ae$ (resp. $eae = ea$), for all $a \in R$. Equivalently, an idempotent $e \in R$ is left (resp. right) semicentral if eR (resp. Re) is an ideal of R. Since the right annihilator of a right σ-ideal is an ideal, we can note that the right annihilator of a right σ-ideal is generated by a left semicentral idempotent in a σ-quasi-Baer ring. Observe that
if \(e_1, e_2, \ldots, e_m \) are left (or right) semicentral idempotents of \(R \), then
\[e = e_1 e_2 \cdots e_m \]
is an idempotent of \(R \). Thus we can obtain the following lemma;

Lemma 2.1. Let \(R \) be a ring with an endomorphism \(\sigma \). Then \(R \) is a right (resp. left) \(\sigma \)-p.q.-Baer if and only if the right (resp. left) annihilator of every finitely generated right (resp. left) \(\sigma \)-ideal of \(R \) is generated by an idempotent of \(R \).

Proof. It is enough to show the left-handed version because the right-handed version is similarly proved. Suppose that \(R \) is right \(\sigma \)-p.q.-Baer and let \(I = \sum_{i=1}^{m} a_i R \) be any finitely generated right \(\sigma \)-ideal of \(R \). Then \(r_R(I) = \bigcap_{i=1}^{m} e_i R \) where \(r_R(a_i R) = e_i R \). By the above observation, \(r_R(I) \) is an ideal of \(R \) and \(e_i \) is a left semicentral idempotent of \(R \). Since each \(e_i \) is left semicentral idempotents of \(R \), \(e = e_1 e_2 \cdots e_m \) is idempotent of \(R \), and so \(r_R(I) = eR \). The converse is clear.

Lemma 2.2. Let \(R \) be a \(\sigma \)-rigid ring. If \(e \in R \) is a left semicentral idempotent, then \(e \) is also a left semicentral idempotent in \(R[x; \sigma] \).

Proof. Let \(f = \sum_{i=0}^{m} a_i x^i \in R[x; \sigma] \) be arbitrary. Since \(R \) is \(\sigma \)-rigid, \(\sigma(e) = e \) for any idempotent \(e \in R \) by Lemma 1.8. Since \(e \) is a left semicentral idempotent, \(ea_i e = a_i e \) for each \(i \). Then \(fe = \sum_{i=0}^{m} a_i \sigma_i(e)x^i = \sum_{i=0}^{m} a_i e x^i = \sum_{i=0}^{m} ea_i e x^i = efe \). Hence \(e \) is a left semicentral idempotent in \(R[x; \sigma] \).

Theorem 2.3. Let \(R \) be a ring with an endomorphism \(\sigma \) and let \(\sigma \) be the set of all extended endomorphisms on \(A = R[x; \sigma] \) of \(\sigma \). If \(R \) is \(\sigma \)-rigid, then the following are equivalent:

1. \(R \) is \(\sigma \)-quasi-Baer;
2. \(A \) is quasi-Baer;
3. \(A \) is \(\theta \)-quasi-Baer for all \(\theta \in \sigma \).

Proof. (1) \(\Rightarrow \) (2). Suppose that \(R \) is \(\sigma \)-quasi-Baer. Let \(I \) be an arbitrary ideal of \(A \). If \(g \in r_A(I) \), then \(fg = 0 \) for all \(f \in I \). Let \(f = \sum_{i=0}^{m} a_i x^i, g = \sum_{j=0}^{n} b_j x^j \). Then by Corollary 1.9, \(a_i b_j = 0 \) for all \(i, j \). Consider the set \(I_c \) of all coefficients of polynomials in \(I \). Then \(I_c \) is an ideal of \(R \) and \(b_0, b_1, \ldots, b_n \in r_R(I_c) \). We can observe that \(I_c \) is an \(\sigma \)-ideal of \(R \). Indeed, for any \(f = \sum_{i=0}^{m} a_i x^i \in I, xf = \sum_{i=0}^{m+1} \sigma(a_i)x^i \), and so \(\sigma(a_i) \in I_c \) for each \(i \). Thus \(I_c \) is a \(\sigma \)-ideal of \(R \). Since \(R \) is \(\sigma \)-quasi-Baer and \(I_c \) is a \(\sigma \)-ideal of \(R \), \(r_R(I_c) = eR \) for some idempotent \(e \in R \). Thus \(g = ge \) and hence \(r_A(I) \subseteq eA \). Now \(I_c e = 0 \). Since \(\sigma(e) =...
by Lemma 1.8, we have $Ie = 0$ so $eA \subseteq r_A(I)$. Therefore $r_A(I) = eA$. Hence A is quasi-Baer.

(2) \Rightarrow (3). It is clear.

(3) \Rightarrow (1). Suppose that A is θ-quasi-Baer for all $\theta \in \Sigma_\sigma$. Let I be any σ-ideal of R. Then by Lemma 1.7, IA is a θ-ideal of A. Since A is θ-quasi-Baer, $r_A(IA) = eA$ for some semicentral idempotent $e \in A$. Since A is θ-rigid (and so A is reduced) by Lemma 1.8, e is a central idempotent in A, and hence e is an idempotent in R by [10, Theorem 3.15]. Since $r_R(I) = r_A(IA) \cap R = eR$, R is σ-quasi-Baer.

Remark. (1) If σ is an automorphism, we can check the condition “R is σ-rigid” does not need by using a similar method in the proof of Theorem 1.2 in [6]. (2) there is an example of a σ-quasi-Baer ring R and an endomorphism σ of R such that $R[x; \sigma]$ is not quasi-Baer (refer Example 1.4 in [6]).

Corollary 2.4. Let R be a ring with an endomorphism σ and let Σ_σ be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ. If R is σ-rigid, then the following are equivalent:

1. R is σ-Baer;
2. A is Baer;
3. A is θ-quasi-Baer for all $\theta \in \Sigma_\sigma$.

Proof. It follows from Lemma 1.3 and Theorem 2.3.

Corollary 2.5. [1, Theorem A] Let R be a reduced ring and let $A = R[x]$. Then R is Baer if and only if $R[x]$ is Baer.

Proof. It follows from Corollary 1.4 and Corollary 2.4.

Theorem 2.6. Let R be a ring with an endomorphism σ and let Σ_σ be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ. If R is σ-rigid, then the following are equivalent:

1. R is right σ-p.q.-Baer;
2. R is σ-p.q.-Baer;
3. A is right p.q.-Baer;
4. A is p.q.-Baer;
5. A is θ-p.q.-Baer for all $\theta \in \Sigma_\sigma$;
6. A is right θ-p.q.-Baer for all $\theta \in \Sigma_\sigma$.

Proof. (1) \Leftrightarrow (2) follows from Lemma 1.5. (3) \Leftrightarrow (4) also follows from Lemma 1.5 by letting $\sigma = 1$. (4) \Rightarrow (5) \Rightarrow (6) is clear. It remains to show that (1) \Rightarrow (3) and (6) \Rightarrow (1).

(1) \Rightarrow (3). Suppose that R is right σ-p.q.-Baer. Let I be any right principal ideal of A generated by $h = \sum_{k=0}^{n} a_{k}x^{k}$. If $g \in r_{A}(I)$, then $fg = 0$ for all $f \in I$. Let $f = \sum_{i=0}^{l} c_{i}x^{i}, g = \sum_{j=0}^{m} b_{j}x^{j}$. Then by Lemma 1.6, $c_{i}b_{j} = 0$ for all i, j. Let I_{c} be the set of all coefficients of all $f \in I$. Note that I_{c} is a right σ-ideal of R and $b_{0}, b_{1}, \ldots, b_{n} \in r_{R}(I_{c})$ as given in the proof of Theorem 2.3. Since I is a right principal ideal of A, I_{c} is a right finitely generated ideal of R with a generating set $\{a_{0}, \ldots, a_{n}\}$. Since R is right σ-p.q.-Baer and I_{c} is a right finitely generated σ-ideal of R, $r_{R}(I_{c}) = eR$ for some idempotent e of R by Lemma 2.1. Hence $r_{A}(I) = eA$, and so A is right σ-p.q.-Baer.

(6) \Rightarrow (1). Suppose that A is right θ-p.q.-Baer for all $\theta \in \Sigma_{\sigma}$. Let I be any right principal σ-ideal of R. Then by Lemma 1.1, IA is a right principal θ-ideal of A. Since A is θ-p.q.-Baer, $r_{A}(IA) = eA$ for some semicentral idempotent $e \in A$. Since A is θ-rigid (and so reduced) by Lemma 1.8, e is a central idempotent in A, and hence e is an idempotent in R by [10, Theorem 3.15]. Since $r_{R}(I) = r_{A}(IA) \cap R = eR$, R is right σ-p.q.-Baer.

Corollary 2.7. Let R be a ring with an endomorphism σ and let Σ_{σ} be the set of all extended endomorphisms on $A = R[x; \sigma]$ of σ. If R is σ-rigid, then the following are equivalent:

1. R is right σ-p.p.;
2. R is σ-p.p.;
3. A is right $p.p.$;
4. A is $p.p.$;
5. A is θ-p.p. for all $\theta \in \Sigma_{\sigma}$;
6. A is right θ-p.p. for all $\theta \in \Sigma_{\sigma}$.

Proof. It follows from the Lemma 1.5 and Theorem 2.6. □

Corollary 2.8. [1, Theorem B] Let R be a reduced. Then R is p.p.-Baer if and only if $R[x]$ is p.p.-Baer;

Proof. It follows from the Lemma 1.5 (by letting $\sigma = 1$) and Corollary 2.7. □

Acknowledgement. The author expresses his thanks to the referee for the thorough reading and useful suggestions for making the paper more readable.
References

Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail: jchan@pusan.ac.kr