IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

SANG CHEOL LEE*, SUNAH KIM, AND SANG-CHO CHUNG

ABSTRACT. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that $N = IM$. Let M be a non-zero multiplication R-module. Then we prove the following:

1. there exists a bijection: $N(M) \cap V(\text{ann}_R(M)) \to \text{Spec}_R(M)$
and in particular, there exists a bijection:

$$N(M) \cap \text{Max}(R) \to \text{Max}_R(M),$$

2. $N(M) \cap V(\text{ann}_R(M)) = \text{Supp}(M) \cap V(\text{ann}_R(M))$,
3. for every ideal I of R,

$$((\sqrt{I + \text{ann}_R(M)})M : R M) = \cap_{P \subseteq N(M) \cap V(\text{ann}_R(M))} P.$$

The ideal $\theta(M) = \sum_{m \in M} (Rm : R M)$ of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, $P \in \text{Spec}(R)$, and M a non-zero R-module satisfying

1. M is a finitely generated multiplication module,
2. PM is a multiplication module, and
3. $P^n M \neq P^{n+1} M$ for every positive integer n,

then $\cap_{n=1}^{\infty} (P^n + \text{ann}_R(M)) \in V(\text{ann}_R(M)) = \text{Supp}(M) \subseteq N(M)$.

1. Introduction

Throughout this paper, we consider only commutative rings with identity and modules which are unitary. Let R be a commutative ring

Received March 17, 2004.
Key words and phrases: prime submodules, maximal submodules, finitely generated modules, multiplication modules.
*The first author was supported by research funds of Chonbuk National University.
and M an R-module. Then $\text{Spec}(R)$ denotes the set of all prime ideals of R and $\text{Spec}_R(M)$ denotes the set of all prime submodules of M. Obviously, $\text{Spec}_R(R) = \text{Spec}(R)$. If N is a submodule of M, then $(N :_R M)$ is defined by \{ $r \in R \mid rM \subseteq N$ \}. In particular, $(0 :_R M)$ is called the annihilator of M and is denoted by $\text{ann}_R(M)$. There are three subsets of $\text{Spec}(R)$ which depend on M:

1. $N(M) = \{ P \in \text{Spec}(R) \mid PM \neq M \}$,
2. $V(\text{ann}_R(M)) = \{ P \in \text{Spec}(R) \mid \text{ann}_R(M) \subseteq P \}$,
3. $\text{Supp}(M) = \{ P \in \text{Spec}(R) \mid M_P \neq 0 \}$.

$\text{Max}(R)$ denotes the set of all maximal ideals of R and $\text{Max}_R(M)$ denotes the set of all maximal submodules of M. Clearly, $\text{Max}_R(R) = \text{Max}(R)$.

By a quasi-local ring, we mean a commutative ring with a unique maximal ideal.

Let R be a commutative ring and let M be an R-module. Then a submodule N of M is said to be extended if $N = IM$ for some ideal I of R. M is called a multiplication module if every submodule of M is extended. For example, every proper submodule of the \mathbb{Z}-module $\mathbb{Z}(p^\infty)$ is a multiplication module but the \mathbb{Z}-module $\mathbb{Z}(p^\infty)$ itself is not. We generalize [8, Theorem 6] as follows. If M is a non-zero multiplication module then there exists a bijection $N(M) \cap V(\text{ann}_R(M)) \rightarrow \text{Spec}_R(M)$ and in particular, there exists a bijection $N(M) \cap \text{Max}(R) \rightarrow \text{Max}_R(M)$.

In commutative ring theory, it is well-known that, for every non-zero finitely generated module over a commutative ring R,

$$\emptyset \neq V(\text{ann}_R(M)) = \text{Supp}(M).$$

In Section 2, we prove that if M is a non-zero multiplication module over a commutative ring R, then $N(M) \cap V(\text{ann}_R(M)) = \text{Supp}(M) \cap V(\text{ann}_R(M))$.

In Section 3, we are concerned with relationships between the ideals of a commutative ring and the submodules of a multiplication module over the ring. A well-known result of commutative algebra saying that the radical of an ideal I of a commutative ring is the intersection of all prime ideals containing I is generalized to non-zero multiplication modules. Let R be a commutative ring and M an R-module. For an ideal I of R, we define the ideal $\theta(IM) = \sum_{x \in I,M}(Rx :_R M)$ of R. This is a generalization of the ideal $\theta(M)$ of R which was introduced in [1] and recently, the ideal $\theta(M)$ was studied in [3]. Let R be a commutative ring with identity and let $P \in \text{Spec}(R)$. If M is a non-zero R-module satisfying

1. M is a finitely generated multiplication module,
(2) PM is a multiplication module, and
(3) $P^n M \neq P^{n+1} M$ for every positive integer n,
then we prove by making use of the notion of the ideal \(\theta(M) \) of \(R \) that

\[
\bigcap_{n=1}^{\infty} (P^n + \text{ann}_R(M)) \in V(\text{ann}_R(M)) = \text{Supp}(M) \subseteq N(M).
\]

Let \(R \) be a quasi-local ring with unique maximal ideal \(P \). Let \(M \) be a non-zero \(R \)-module satisfying

(1) \(M \) is a finitely generated multiplication module,
(2) \(PM \) is a multiplication module, and
(3) \(P^n M \neq P^{n+1} M \) for every positive integer \(n \).

Then we prove that \(R/\text{ann}_R(M) \) is a discrete valuation domain. Finally, in particular, it is found under what conditions a Noetherian local ring is a discrete valuation domain.

Our first lemma gives three well-known results that will be used throughout this paper.

Lemma 1.1. Let \(R \) be a commutative ring and \(M \) an \(R \)-module.

(1) If \(M \) is a multiplication \(R \)-module, then it is locally cyclic.
(2) If \(M \) is a multiplication \(R \)-module, then

\[
\bigcap_{I \in \mathcal{I}} (IM) = \left(\bigcap_{I \in \mathcal{I}} (I + \text{ann}_R(M)) \right) M
\]

for any non-empty collection \(\mathcal{I} \) of ideals of \(R \).
(3) Let \(M \) be a non-zero multiplication \(R \)-module. Then
(i) for every proper submodule \(N \) of \(M \), there exists \(K \in \text{Max}_R(M) \) of \(M \) such that \(N \subseteq K \), and
(ii) \(K \in \text{Max}_R(M) \) if and only if there exists \(P \in \text{Max}(R) \) such that \(K = PM \neq M \).

Proof. (1) Let \(M \) be a multiplication \(R \)-module. Let \(P \) be any element of \(\text{Spec}(R) \). Then \(M_P \) is a multiplication \(R_P \)-module by [2, Corollary 3.5]. Since over a quasi-local ring every multiplication module is cyclic, \(M_P \) is cyclic. (2) follows from [5, Corollary 1.7]. (3) follows from [5, Theorem 2.5]. \(\square \)
2. Prime spectra of multiplication modules

If \(M \) is a module over a commutative ring \(R \), then for every submodule \(N \) of \(M \), \((N :_R M) = \text{ann}_R(M / N) \). The following lemma was motivated by definitions in [5, p.765] and [6, p.791].

Lemma 2.1. Let \(M \) be a non-zero \(R \)-module and let \(N \) be a submodule of \(M \) with \(N \neq M \). Then the following statements are equivalent:

1. \((N :_R K) = (N :_R M) \) for every submodule \(K \) of \(M \) such that \(K \supseteq N \).
2. If \(ax \in N \), where \(a \in R \) and \(x \in M \), then \(a \in (N :_R M) \) or \(x \in N \).

Proof. Assume (1). Assume \(ax \in N \), where \(a \in R \) and \(x \in M \). Assume \(x \notin N \). Then \(N \not\subseteq N + Rx \subseteq M \). By (1), \((N :_R (N + Rx)) = (N :_R M) \). Since \(ax \in N \), we have \(a(N + Rx) = aN + Rax \subseteq N \). This shows that \(a \in (N :_R (N + Rx)) \). Hence, \(a \in (N :_R M) \).

Conversely, assume (2). Let \(K \) be any submodule of \(M \) such that \(K \supseteq N \). Then \(K / N \subseteq M / N \) and so,

\[
(N :_R K) = \text{ann}_R(K / N) \supseteq \text{ann}_R(M / N) = (N :_R M)
\]

Let \(a \) be any element of \((N :_R K) \). Since \(N \not\subseteq K \), we can find an element \(x \) of \(K \setminus N \). Then \(ax \in N \). Hence, by (2), \(a \in (N :_R M) \).

Let \(R \) be a commutative ring and let \(M \) be a non-zero \(R \)-module. Let \(N \) be a submodule of \(M \). Then \(N \) is called a prime submodule of \(M \) if

1. \(N \neq M \) and
2. \(N \) satisfies either (hence both) of the statements in Lemma 2.1.

Let \(R \) be a commutative ring and \(M \) an \(R \)-module. Then a submodule \(N \) of \(M \) is called an extended submodule if there exists an ideal \(I \) of \(R \) such that \(N = IM \). \(M \) is called a multiplication module if every submodule of \(M \) is extended.

Example 2.2. Consider the ring \(\mathbb{Z} \) of integers. Let \(p \) be a fixed prime number. If we adapt the proof of the well-known fact that \(\mathbb{Z}(p^{\infty}) \) is divisible, then we can get the following:

1. the only proper, extended submodule of the \(\mathbb{Z} \)-module \(\mathbb{Z}(p^{\infty}) \) is 0, and
2. every proper submodule of the \(\mathbb{Z} \)-module \(\mathbb{Z}(p^{\infty}) \) is a multiplication module but the \(\mathbb{Z} \)-module \(\mathbb{Z}(p^{\infty}) \) itself is not.
Every finite-dimensional vector space with dimension greater than 1 cannot be a multiplication module. \(\square\)

Compare the next result with [5, Corollary 1.7].

Proposition 2.3. Let \(R\) be a commutative ring and \(M\) an \(R\)-module. Then \(M\) is a multiplication module if and only if \(\bigcap_{A \in \mathcal{A}} A = (\bigcap_{A \in \mathcal{A}} (A :_R M))M\) for any non-empty collection \(\mathcal{A}\) of submodules of \(M\).

Proof. Assume that \(M\) is a multiplication module. Let \(\mathcal{A}\) be any non-empty collection of submodules of \(M\). Then

\[
\bigcap_{A \in \mathcal{A}} A = (\bigcap_{A \in \mathcal{A}} A :_R M)M = (\bigcap_{A \in \mathcal{A}} (A :_R M))M
\]

with the first equality following since \(M\) is a multiplication module and the second since residuation distributes over intersection.

Conversely, assume that \(\bigcap_{A \in \mathcal{A}} A = (\bigcap_{A \in \mathcal{A}} (A :_R M))M\) for any non-empty collection \(\mathcal{A}\) of submodules of \(M\). Let \(N\) be any submodule of \(M\). Then \(\{N\}\) is a non-empty collection of a submodule of \(M\). By our assumption, \(N = (N :_R M)M\). Hence, \(M\) is a multiplication module. \(\square\)

Let \(R\) be a ring. If \(M\) is a non-zero \(R\)-module, then \(\text{ann}_R(M) \neq R\). By Zorn’s Lemma, \(V(\text{ann}_R(M)) \neq \emptyset\).

Lemma 2.4. Let \(R\) be a commutative ring. Let \(M\) be a non-zero multiplication module. Then

1. \((PM :_R M) = \begin{cases} \text{P + ann}_R(M) & \text{if } P \in N(M) \\ R & \text{if } P \notin N(M) \end{cases}\)
2. \(PM\) is an element of \(\text{Spec}_R(M)\) if \(P \in N(M)\).

Proof. (1) Clearly, \(P + \text{ann}_R(M) \subseteq (PM :_R M)\). Conversely, let \(a\) be any element of \((PM :_R M)\). Then \(aM \subseteq PM\). Assume that \(P \in N(M)\). Then we can take an element \(x \in M \setminus PM\). Hence, \(ax \in PM\).

\(M\) can be given \(R/\text{ann}_R(M)\)-module structure as follows: for any \(r \in R\) and \(m \in M\), define \((r + \text{ann}_R(M))m = rm\). Then the module structure is well-defined. \(M\) becomes an \(R/\text{ann}_R(M)\)-module. Moreover, as an \(R/\text{ann}_R(M)\)-module, \(M\) is a multiplication module. Since \(ax \in PM\), we have \((a + \text{ann}_R(M))x = (P/\text{ann}_R(M))M\). Further, since \(x \notin PM\), we have \(x \notin (P/\text{ann}_R(M))M\). By [5, Lemma 2.10], we have \(a + \text{ann}_R(M) \in P/\text{ann}_R(M)\). This implies \(a \in P + \text{ann}_R(M)\). Thus, \((PM :_R M) \subseteq P + \text{ann}_R(M)\). Therefore, \((PM :_R M) = P + \text{ann}_R(M)\).
Assume now that \(PM = M \). Then \((PM :_RM) = (M :_RM) = R\).

(2) Let \(ax \in PM \), where \(a \in R \) and \(x \in M \). Then as in the proof of (1), we can show that either \(a \in P + \text{ann}_R(M) \) or \(x \in PM \). If \(a \in P + \text{ann}_R(M) \), then \(a \in (PM :_RM) \). Thus, either \(a \in (PM :_RM) \) or \(x \in PM \). Hence, \(PM \) is a prime submodule of \(M \) if \(PM \neq M \). \(\square \)

The following result generalizes [8, Theorem 6. (c) \(\Rightarrow \) (d)] and [7, p.216, Property 1].

Theorem 2.5. Let \(R \) be a commutative ring. Let \(M \) be a non-zero multiplication module. Then there is a one-to-one order-preserving correspondence: \(N(M) \cap V(\text{ann}_R(M)) \rightarrow \text{Spec}_R(M) \)

Proof. Let \(\mathcal{X} = N(M) \cap V(\text{ann}_R(M)) \) and let \(\mathcal{Y} = \text{Spec}_R(M) \). Define a map \(\varphi : \mathcal{X} \rightarrow \mathcal{Y} \) by \(\varphi(P) = PM \), where \(P \in \mathcal{X} \). Then by Lemma 2.4(2), \(\varphi \) is well-defined. Now, define a map \(\psi : \mathcal{Y} \rightarrow \mathcal{X} \) by \(\psi(N) = (N :_RM) \), where \(N \in \mathcal{Y} \). Let \(N \) be any prime submodule of \(M \). Then \(\text{ann}_R(M/N) \) is a prime ideal of \(R \) and \(\text{ann}_R(M) \subseteq \text{ann}_R(M/N) \) by definitions and hence \((N :_RM)\) is a prime ideal of \(R \) containing \(\text{ann}_R(M) \). Further, since \(M \) is a multiplication module, we have \((N :_RM)M = N \neq M \). Hence, \(\psi \) is well-defined.

Let \(P \) be any element of \(\mathcal{X} \). Then by Lemma 2.4(1),

\[
(\psi \circ \varphi)(P) = \psi(\varphi(P)) = \psi(PM) = (PM :_RM) = P.
\]

Hence, \(\psi \circ \varphi = 1_\mathcal{X} \). Thus, \(\varphi \) is one-to-one.

Let \(N \) be any element of \(\mathcal{Y} \). Then since \(M \) is a multiplication module,

\[
(\varphi \circ \psi)(N) = \varphi(\psi(N)) = \varphi(N :_RM) = (N :_RM)M = N
\]

Hence, \(\varphi \circ \psi = 1_\mathcal{Y} \). Thus, \(\varphi \) is onto. Therefore, \(\varphi \) is a one-to-one correspondence between \(\mathcal{X} \) and \(\mathcal{Y} \). Moreover, it is clear that \(\varphi \) is order-preserving. \(\square \)

If \(M \) is a non-zero multiplication module over a commutative ring \(R \), then it follows from Theorem 2.5 that every prime submodule of \(M \) is of the form \(PM \), where \(P \in N(M) \cap V(\text{ann}_R(M)) \).

Lemma 2.6. Let \(R \) be a commutative ring and \(M \) a non-zero module. Then \(N(M) \cap \text{Max}(R) \subseteq V(\text{ann}_R(M)) \).
Proof. Assume that \(P \) is a maximal ideal of \(R \) such that \(PM \neq M \). Suppose \(\text{ann}_R(M) \not\subset P \). Then \(P + \text{ann}_R(M) = R \). Hence,
\[
M = RM = (P + \text{ann}_R(M))M \subseteq PM + (\text{ann}_R(M))M = PM,
\]
and so \(M = PM \). This contradiction shows that \(\text{ann}_R(M) \subseteq P \). \(\square \)

Let \(R \) be a commutative ring and let \(M \) be a non-zero multiplication module. Then by Lemma 1.1 or [8, Theorem 2 (4)], \(\text{Max}_R(M) \neq \emptyset \). Compare the following result with [8, Theorem 2 (1)].

Corollary 2.7. Let \(R \) be a commutative ring and \(M \) a non-zero multiplication module. Then there is a one-to-one order-preserving correspondence:
\[
N(M) \cap \text{Max}(R) \to \text{Max}_R(M).
\]

Proof. Let \(\mathcal{X} = N(M) \cap V(\text{ann}_R(M)) \) and let \(\mathcal{Y} = \text{Spec}_R(M) \). Define a map \(\varphi : \mathcal{X} \to \mathcal{Y} \) by \(\varphi(P) = PM \), where \(P \in \mathcal{X} \). Then by the proof of Theorem 2.5, \(\varphi \) is a one-to-one correspondence. Let \(\mathcal{X}' = N(M) \cap \text{Max}(R) \) and let \(\mathcal{Y}' = \text{Max}_R(M) \). Since every maximal ideal of \(R \) is prime, it follows from Lemma 2.6 that \(\mathcal{X}' \subseteq \mathcal{X} \). We can now consider the restriction of \(\varphi \) to \(\mathcal{X}' \) \(\varphi|_{\mathcal{X}'} : \mathcal{X}' \to \mathcal{Y} \). Then since \(\varphi \) is one-to-one, so is \(\varphi|_{\mathcal{X}'} \).

Let \(P \) be a maximal ideal of \(R \) such that \(M \neq PM \). Then by Lemma 1.1, there is a maximal submodule \(K \) of \(M \) such that \(PM \subseteq K \). Hence, \(P \subseteq PM :_R M \subseteq K :_R M \neq R \) and so \(P = K :_R M \). Thus, \(K = (K :_R M)M = PM \). This shows that \(PM \) is a maximal submodule of \(M \). Therefore, in particular, \(\text{Im}(\varphi|_{\mathcal{X}'}) \subseteq \mathcal{Y}' \). Further, it follows from Lemma 1.1 that \(\mathcal{Y}' \subseteq \text{Im}(\varphi|_{\mathcal{X}'}) \). Hence, \(\text{Im}(\varphi|_{\mathcal{X}'}) = \mathcal{Y}' \). Thus, \(\varphi|_{\mathcal{X}'} : \mathcal{X}' \to \mathcal{Y}' \) is a one-to-one correspondence. Moreover, it is clear that \(\varphi|_{\mathcal{X}'} \) is order-preserving. \(\square \)

If \(M \) is a non-zero multiplication module over a commutative ring \(R \), then it follows from Corollary 2.7 that every maximal submodule of \(M \) is of the form \(PM \) where \(P \in N(M) \cap \text{Max}(R) \).

3. Multiplication modules

Let \(I \) be an ideal of a commutative ring \(R \). Recall from [6, p.792] that an \(R \)-module \(M \) is said to be \(I \)-torsion if for each \(m \in M \) there exists an element \(i \in I \) such that \((1 - i)m = 0 \). Let \(I \) be an ideal of \(R \) and \(M \) a finitely generated \(R \)-module. Then it follows from standard determinant argument that \(M \) is \(I \)-torsion if and only if \(M = IM \).
LEMMA 3.1. Let I be an ideal of R and M a multiplication R-module. Then M is I-torsion if and only if $M = IM$.

Proof. Adapt the proof of [10, p.229, Lemma 6] to show this. \qed

Let P be a maximal ideal of a commutative ring R. Recall [10, p.223] that an R-module M is said to be P-cyclic if there exists an element $x \in M$ and an element $p \in P$ such that $(1 - p)M \subseteq Rx$.

DEFINITION 3.2. Let I be an ideal of a commutative ring R. An R-module M is said to be I-cyclic if there exists a maximal ideal P of R containing I such that M is P-cyclic.

Every R-module is R-torsion but no R-module is R-cyclic.

Let P be a maximal ideal of a commutative ring R. Let M be an R-module. Then we remark that M is P-cyclic when we regard P as an ideal if and only if it is P-cyclic when we regard P as a maximal ideal.

PROPOSITION 3.3. Let R be a commutative ring and M an R-module. Then the following statements are equivalent.

1. For every proper ideal I of R, M is I-cyclic.
2. For every maximal ideal P of R, M is P-cyclic.

Proof. Assume (1). Let P be any maximal ideal of R. Then P is a proper ideal of R. By (1), there exists a maximal ideal Q of R with $Q \supseteq P$ such that M is Q-cyclic. Since P is maximal, we must have $Q = P$. Hence, M is P-cyclic.

Assume (2). Let I be any proper ideal of R. There exists a maximal ideal P of R such that $P \supseteq I$. By (2), M is P-cyclic. Thus, M is I-cyclic. \qed

THEOREM 3.4. Let R be a commutative ring and let M be a non-zero R-module. Then the following statements are equivalent.

1. M is a multiplication module.
2. For every ideal I of R either M is I-torsion or M is I-cyclic.
3. For every maximal ideal P of R either M is P-torsion or M is P-cyclic.

Proof. Assume (1). Let I be any ideal of R. Then $M = IM$ or $M \neq IM$.

Assume that $M = IM$. Then by Lemma 3.1, M is I-torsion.

Assume now that $M \neq IM$. Then by Lemma 1.1, there is a maximal submodule K of M such that $IM \subseteq K$. Further, by Lemma 1.1, there is
a maximal ideal P of R such that $K = PM$. Since $PM \neq M$, it follows from Lemma 2.6 that $ann_R(M) \subseteq P$. Hence, by Lemma 2.4, $(PM :_R M) = P$. Thus, $I \subseteq (IM :_R M) \subseteq (K :_R M) = (PM :_R M) = P$. Since $PM \not\subseteq M$, we can take an element $x \in M \setminus PM$. By (1), there exists an ideal J of R such that $Rx = JM$. If J were a subset of P, then x would be an element of PM since $x \in Rx = JM \subseteq PM$. Hence, $J \not\subseteq P$. Since P is maximal, we have $P + J = R$. There exists an element $p \in P$ such that $1 - p \in J$. Further, $(1 - p)M \subseteq JM = Rx$. Hence, M is P-cyclic. This shows that M is I-cyclic. Therefore, (2) follows.

It follows from the remark just prior to Proposition 3.3 that (2) implies (3).

Finally, it follows from [5, Theorem 1.2] that (3) implies (1). \qed

Theorem 3.5. Let R be a commutative ring and M a non-zero multiplication R-module. Then

1. $Supp(M) \subseteq N(M)$.
2. $N(M) \cap V(ann_R(M)) = Supp(M) \cap V(ann_R(M))$.

Proof. (1) There are two ways to prove this.

Method I. Use Lemma 3.1 to show this.

Method II. Assume that P is a prime ideal of R and M is a non-zero multiplication module with $M = PM$. By Lemma 1.1, M_P is cyclic. Further, $M_P = PR_PM_P$. By Nakayama's Lemma, $M_P = 0$.

(2) By (1), it suffices to prove $N(M) \cap V(ann_R(M)) \subseteq Supp(M) \cap V(ann_R(M))$.

Assume that $P \in N(M) \cap V(ann_R(M))$. By Lemma 3.1, M is not P-torsion. By Theorem 3.4, M is P-cyclic. Hence, there exists an element $x \in M$ and an element $p \in P$ such that $(1 - p)M \subseteq Rx$. Then $x/1$ is a non-zero element of M_P. For, otherwise there exists an element $s \in R \setminus P$ such that $sx = 0$; hence

$$s(1 - p)M \subseteq s(Rx) = (sR)x = (Rs)x = R(sx) = 0$$

and so $s(1 - p) \in ann_R(M) \subseteq P$, a contradiction. Therefore, $M_P \neq 0$. \qed

4. Ideals and submodules of multiplication modules.

In this section we will be concerned with relationships between the ideals of a commutative ring and the submodules of a non-zero multiplication module over the commutative ring.
PROPOSITION 4.1. Let R be a commutative ring and M a non-zero multiplication module. Then the following statements hold.

(1) For every ideal I of R with $M \neq IM$, there exists a maximal ideal P of R containing $I + \text{ann}_R(M)$ such that PM is a maximal submodule of M.

(2) If P is a prime ideal of R containing $\text{ann}_R(M)$ such that $M \neq PM$, then $P + J = R$ for every ideal J of R with $M = JM$.

(3) For every ideal I of R with $M \neq IM$ and for every ideal J of R with $M = JM$, there exists a maximal ideal P of R containing $I + \text{ann}_R(M)$ such that $P + J = R$ and PM is a maximal submodule of M.

Proof. (1) Let I be any ideal of R with $M \neq IM$. Then by Lemma 1.1, there is a maximal submodule K of M such that $IM \subseteq K$. Further, by Lemma 1.1, there is a maximal ideal P of R such that $K = PM$. Since $PM \neq M$, it follows Lemma 2.6 that $\text{ann}_R(M) \subseteq P$. Suppose that $I \nsubseteq P$. Then $I + P = R$. Since $IM \subseteq K = PM$, it then follows that

$$M = RM = (I + P)M \subseteq IM + PM = PM.$$

Hence, $M = PM$. This contradiction shows that $I \subseteq P$. Thus, $I + \text{ann}_R(M) \subseteq P$.

(2) Let P be any prime ideal of R containing $\text{ann}_R(M)$ such that $M \neq PM$. Let J be any ideal of R with $M = JM$. Then there exists an element $x \in M \setminus PM$. Further, since M is a multiplication module and $M = JM$, it follows from Lemma 3.1 that M is J-torsion. Hence, there exists an element $j \in J$ such that $(1 - j)x = 0$. Further, $(1 - j)x = 0 \in PM$. By Lemma 2.4(2), PM is a prime submodule of M. Hence, $1 - j \in P$. Therefore, $P + J = R$.

(3) follows from (1) and (2). \qed

Given an ideal I of a commutative ring R, the radical of I, denoted by \sqrt{I}, is defined by $\{r \in R \mid r^n \in I$ for some positive integer $n\}$. It is well-known that if I is an ideal of a commutative ring R, then $\sqrt{I} = \bigcap_{P \in \mathcal{V}(I)} P$. We will generalize this.

THEOREM 4.2. Let R be a commutative ring. Let M be a non-zero multiplication module. Then for every ideal I of R,

$$\left(\left(\sqrt{I + \text{ann}_R(M)}\right)M\right):_RM = \bigcap_{P \in \mathcal{V}(I + \text{ann}_R(M)) \cap N(M)} P.$$
Proof. Let I be any ideal of R. Assume that $IM = M$. Then

$$R = (M :_R M) = (IM :_R M) \subseteq ((\sqrt{I + \text{ann}_R(M)})M :_R M).$$

Hence, $$((\sqrt{I + \text{ann}_R(M)})M :_R M) = R.$$ Let $A = V(I + \text{ann}_R(M)) \cap N(M)$. Then $A = \emptyset$. For, otherwise there exists a prime ideal P of R containing $I + \text{ann}_R(M) \subseteq P$ and $PM \neq M$. Then

$$M = IM = (I + \text{ann}_R(M))M \subseteq PM \not\subseteq M,$$

a contradiction. Hence, $\bigcap_{p \in A} P = R$. Therefore,

$$\left(\left(\sqrt{I + \text{ann}_R(M)}\right)M :_R M\right) = \bigcap_{p \in A} P.$$

Now, assume $IM \neq M$. Then $I + \text{ann}_R(M) \neq R$. There exists a prime ideal Q of R such that $I + \text{ann}_R(M) \subseteq Q$. Let $P = V(I + \text{ann}_R(M))$. Then $Q \in P$. In particular, $P \neq \emptyset$. Then it is easy to show that

$$\left(\left(\bigcap_{p \in P} (PM) :_R M\right) = \bigcap_{p \in P} (PM :_R M)\right).$$

By Proposition 4.1(1), $A \neq \emptyset$. Let $B = V(I + \text{ann}_R(M)) \cap (\text{Spec}(R) \setminus N(M))$. Then $P = A \cup B$. Hence, by Lemma 1.1 and Lemma 2.4(1), we have

$$\left(\left(\sqrt{I + \text{ann}_R(M)}\right)M :_R M\right)$$

$$= \left(\left(\bigcap_{p \in P} P\right)M :_R M\right)$$

$$= \left(\left(\bigcap_{p \in P} (PM) :_R M\right)$$

$$= \bigcap_{p \in P} (PM :_R M)$$

$$= \bigcap_{p \in A} (PM :_R M) \cap \bigcap_{p \in B} (PM :_R M)$$

$$= \bigcap_{p \in A} P. \quad \square$$
COROLLARY 4.3. If M is a non-zero faithfully flat multiplication module over a commutative ring R, then for every ideal I of R,

$\left((\sqrt{I + \text{ann}_R(M)}M) :_RM \right) = \sqrt{I + \text{ann}_R(M)}$.

Proof. Let I be any ideal of R. Then with the same notations as in the proof of Theorem 4.2,

$\sqrt{I + \text{ann}_R(M)} = \bigcap_{P \in \mathcal{P}} P = \left(\bigcap_{P \in \mathcal{A}} P \right) \bigcap \left(\bigcap_{P \in \mathcal{B}} P \right)$.

If M is faithfully flat, it follows from [9, Theorem 7.2] that $\mathcal{B} = \emptyset$. Hence, by Theorem 4.2,

$\sqrt{I + \text{ann}_R(M)} = \bigcap_{P \in \mathcal{A}} P = \left((\sqrt{I + \text{ann}_R(M)}M :_RM \right)$.

For any ideal I of R, let $I^0M = M$ and $I^\infty M = \bigcap_{n=1}^\infty (I^nM)$. [6, p.791, Lemma 3.1 (ii)] can be recast as follows.

LEMMA 4.4. Let R be a commutative ring and P an ideal of R. Let M be an R-module such that PM is a multiplication module. Then for any submodule N of PM, either $N \subseteq P^\infty M$ or there exists a positive integer k and k ideals $I_0, I_1, \cdots, I_{k-1}$ of R with $I_0 \not\subseteq P, I_1 \not\subseteq P^2, \cdots, I_{k-1} \not\subseteq P^k$ such that

$N = I_0P^kM = I_1P^{k-1}M = \cdots = I_{k-1}PM$.

Proof. Assume that N is a submodule of PM such that $N \not\subseteq P^\infty M$. Then there exists a positive integer k such that $N \subseteq P^kM$ but $N \not\subseteq P^{k+1}M$. Since for each $i \in \{0, 1, \cdots, k-1\}$, $N \subseteq P^kM \subseteq P^{k-i}M$ and by [6, Lemma 3.1(i)] $P^{k-i}M$ is a multiplication module, we have, for each $i \in \{0, 1, \cdots, k-1\}$, $N = (N :_R P^{k-i}M)P^{k-i}M$. Further, $(N :_R P^{k-i}M) \supseteq \text{ann}_R(P^{k-i}M)$ implies $(N :_R P^{k-i}M) + \text{ann}_R(P^{k-i}M) = N :_R P^{k-i}M$. Hence, it follows from Lemma 1.1 and the modular law.
that for each \(i \in \{0, 1, \cdots, k - 1\}, \)

\[
N = N \cap P^k M \\
= N \cap (P^i P^{k-i} M) \\
= ((N :_R P^{k-i} M) P^{k-i} M) \cap (P^i P^{k-i} M) \\
= (((N :_R P^{k-i} M) + \text{ann}_R(P^{k-i} M)) \\
\cap (P^i + \text{ann}_R(P^{k-i} M))) P^{k-i} M \\
= ((N :_R P^{k-i} M) \cap (P^i + \text{ann}_R(P^{k-i} M))) P^{k-i} M \\
= ((N :_R P^{k-i} M) \cap P^i) P^{k-i} M \\
= ((N :_R P^{k-i} M) \cap P^i) P^{k-i} M
\]

Now, for each \(i \in \{0, 1, \cdots, k - 1\}, \) let \(I_i = (N :_R P^{k-i} M) \cap P^i. \) Then

\[
N = I_0 P^k M = I_1 P^{k-1} M = \cdots = I_{k-1} P M.
\]

Further, since \(N \not\subseteq P^{k+1} M, \) we get \(I_0 \not\subseteq P, I_1 \not\subseteq P^2, \cdots, I_{k-1} \not\subseteq P^k, \) as required.

Let \(R \) be a commutative ring and \(M \) an \(R \)-module. The ideal \(\theta(M) = \sum_{m \in M}(Rm :_R M) \) of \(R \) has proved useful in studying multiplication modules. We generalize this ideal as follows: \(\theta(IM) = \sum_{x \in IM}(Rx :_R M) \) for an ideal of a commutative ring \(R \) and an \(R \)-module \(M. \) It is always true that \(I\theta(M) \subseteq \theta(IM) \) for every ideal \(I \) of a commutative ring \(R \) and for every module \(M \) over the ring \(R. \) If \(M \) is a multiplication module over a commutative ring \(R, \) then for every ideal \(I \) of \(R, \)

\[
IM = \sum_{x \in IM} Rx \\
= \sum_{x \in IM} ((Rx :_R M) M) \\
= \left(\sum_{x \in IM} (Rx :_R M) \right) M \\
= \theta(IM) M
\]

and \(IM = (IM :_R M) M. \) Hence, we have the following result.
Lemma 4.5. Let R be a commutative ring and M a multiplication R-module. Then the following conditions are equivalent:

1. M is finitely generated, and
2. for every ideal I of R, $\theta(IM) = (IM :_RM) = I + \text{ann}_R(M)$.

Proof. $(1) \Rightarrow (2)$ follows from [10, Theorem 9 Corollary].

$(2) \Rightarrow (1)$. (2) gives $\theta(M) = R$. Hence, it follows from [3, Corollary 2.2] that M is finitely generated. \hfill \Box

Theorem 4.6. Let R be a commutative ring and let P be a maximal ideal of R. Let M be a non-zero R-module satisfying

1. M is a finitely generated multiplication module,
2. PM is a multiplication module, and
3. $P^nM \neq P^{n+1}M$ for every positive integer n.

Then $\bigcap_{n=1}^{\infty} (P^n + \text{ann}_R(M)) \in V(\text{ann}_R(M)) = \text{Supp}(M) \subseteq \text{N}(M)$.

Proof. By [6, Corollary 3.2], $P^\infty M$ is a prime submodule of M. By the statement just prior to Lemma 2.6, there exists a prime ideal Q of R containing $\text{ann}_R(M)$ with $QM \neq M$ such that $P^\infty M = QM$. It suffices to prove that $Q = \bigcap_{n=1}^{\infty} (P^n + \text{ann}_R(M))$.

By Lemma 1.1, we have

$$QM = P^\infty M = \bigcap_{n=1}^{\infty} (P^nM) = \left(\bigcap_{n=1}^{\infty} (P^n + \text{ann}_R(M))\right)M.$$

Hence, by Lemma 4.5, we have

$$Q = \theta(QM) = \theta \left(\left(\bigcap_{n=1}^{\infty} (P^n + \text{ann}_R(M))\right)M\right)$$

$$= \bigcap_{n=1}^{\infty} (P^n + \text{ann}_R(M)),$$

as required. \hfill \Box

Note that intersection of powers of multiplication ideals are considered in [4, Theorem 2.2]. [4, Theorem 4.1] says: Let (R, P) be a quasi-local ring whose maximal ideal P is finitely generated. Then R is Noetherian if and only if for every finitely generated ideal I of R, $\bigcap_{n=1}^{\infty} (P^n + I) = I$. Therefore, by Theorem 4.6, we have the following result.
COROLLARY 4.7. Let R be a Noetherian local ring with unique maximal ideal P. Let M be a non-zero R-module satisfying

1. M is a multiplication module,
2. PM is a multiplication module, and
3. $P^nM \neq P^{n+1}M$ for every positive integer n.

Then $R/\text{ann}_R(M)$ is a discrete valuation domain.

Proof. Over a quasi-local ring a multiplication module is cyclic. So $M = R/\text{ann}_R(M)$. Now $PM = P/\text{ann}_R(M)$ is principal so $R/\text{ann}_R(M)$ is a PIR. Then (3) gives that $R/\text{ann}_R(M)$ is a DVR. Further, by Theorem 4.6, $R/\text{ann}_R(M)$ is an integral domain. □

Notice that if a module over a commutative ring satisfies the assumptions of Corollary 4.7, then it is Noetherian module but not Artinian.

COROLLARY 4.8. Let R be a Noetherian local ring with unique maximal ideal P satisfying

1. P is a multiplication ideal of R and
2. $P^n \neq P^{n+1}$ for every positive integer n.

Then R is a discrete valuation domain.

References

Sang Cheol Lee
Department of Mathematics Education
Chonbuk National University
Chonju 561-756, Korea
E-mail: scl@chonbuk.ac.kr

Sunah Kim
Department of Mathematics
Chosun University
Kwangju 501-759, Korea
E-mail: sakim@mail.chosun.ac.kr

Sang-Cho Chung
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
E-mail: scchung@math.cnu.ac.kr