SOME EXISTENCE THEOREMS FOR FUNCTIONAL EQUATIONS ARISING IN DYNAMIC PROGRAMMING

Zeqing Liu, Jeong Sheok Ume*, and Shin Min Kang

Abstract. The existence, uniqueness and iterative approximation of solutions for a few classes of functional equations arising in dynamic programming of multistage decision processes are discussed. The results presented in this paper extend, improve and unify the results due to Bellman [2, 3], Bhakta-Choudhury [6], Bhakta-Mitra [7], and Liu [12].

1. Introduction and preliminaries

\[f(x) = \sup_{y \in D} H(x, y, f(T(x, y))), \quad x \in S, \]

where \(x \) and \(y \) represent the state and decision vectors, respectively, \(T \) represents the transformation of the process, and \(f(x) \) represents the optimal return function with initial state \(x \). Baskaran and Subrahmanyam [1], Bhakta and Choudhury [6], Bhakta and Mitra [7], Chang [8], Chang and Ma [9], Liu [10]-[12] and others extended the results of [2]-[5] in
various directions. Bhakta and Mitra [7] established the existence and uniqueness of solutions for the functional equation:

\[(1.2) \quad f(x) = \sup_{y \in D} \{ u(x,y) + f(T(x,y)) \}, \ x \in S. \]

Under suitable conditions, Bellman [2], Bhakta and Choudhury [6] and Liu [12] obtained the existence or uniqueness of solutions for the functional equations:

\[(1.3) \quad f(x) = \inf_{y \in D} \max \{ u(x,y), f(T(x,y)) \}, \ x \in S. \]

\[(1.4) \quad f(x) = \inf_{y \geq x} \{ u(x,y) + v(x,y) \left[\int_{y}^{+\infty} p(s-y)q(s)ds \right. \\
+ f(0) \int_{y}^{+\infty} q(s)ds + \int_{0}^{y} f(y-s)q(s)ds \left. \right] \}. \]

Inspired and motivated by the work in [1]-[12], in this paper, we prove the existence, uniqueness and iterative approximation of solutions for the functional equations (1.4)-(1.6):

\[(1.5) \quad f(x) = \sup_{y \in D} \{ u(x,y) + f(T(x,y)) \}, \ x \in S; \]

\[(1.6) \quad f(x) = \sup_{y \in D} \max \{ u(x,y), f(T(x,y)) \}, \ x \in S, \]

where the \(\sup \) denotes the sup or inf. The results presented in this paper extend, improve and unify the corresponding results of Bellman [2, 3], Bhakta-Choudhury [6], Bhakta-Mitra [7], and Liu [12].

Throughout this paper, \(N \) denotes the set of all positive integers, \(R = (-\infty, +\infty) \) and \(R^+ = [0, +\infty) \). Define

\[\Phi_1 = \{ \varphi : \varphi : R^+ \rightarrow R^+ \text{ is nondecreasing} \}, \]

\[\Phi_2 = \{ \varphi : \varphi \in \Phi_1 \text{ and } \lim_{n \rightarrow -\infty} \varphi^n(t) = 0 \text{ for } t > 0 \}, \]

\[\Phi_3 = \{ \varphi : \varphi \in \Phi_1, \varphi(0) = 0 \text{ and } \varphi \text{ is right continuous at } 0 \}. \]

Remark 1.1. It is easy to see that \(\varphi \in \Phi_2 \) implies \(\varphi(t) < t \) for any \(t > 0 \).
Let us recall the following concept. Let X be a nonempty set and let \(\{d_n\}_{n \in \mathbb{N}} \) be a countable family of pseudometrics on X such that for any distinct $x, y \in X$, $d_k(x, y) \neq 0$ for some $k \in \mathbb{N}$. Define
\[
 d(x, y) = \sum_{k=1}^{\infty} 2^{-k} \frac{d_k(x, y)}{1 + d_k(x, y)} \quad \text{for all } x, y \in X.
\]
It is clear that d is a metric on X. A sequence $\{x_n\}_{n \in \mathbb{N}}$ in X converges to a point $x \in X$ if and only if $d_k(x_n, x) \to 0$ as $n \to \infty$ and $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence if and only if $d_k(x_n, x_m) \to 0$ as $n, m \to \infty$ for each $k \in \mathbb{N}$.

Lemma 1.1. ([12]) Let a, b, c be in \mathbb{R}. Then
\[
|\text{opt} \{a, c\} - \text{opt} \{b, c\}| \leq |a - b|.
\]

2. Existence and uniqueness theorems

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|')$ be real Banach spaces, $S \subseteq X$ be the state space, and $D \subseteq Y$ be the decision space. Denote by $BB(S)$ the set of all real-valued mappings on S that are bounded on bounded subsets of S. It is easy to verify that $BB(S)$ is a linear space over \mathbb{R} under usual definitions of addition and multiplication by scalars. For any $k \in \mathbb{N}$ and $a, b \in BB(S)$, let
\[
 d_k(a, b) = \sup \{\|a(x) - b(x)\| : x \in \overline{B}(0, k)\},
\]
\[
 d(a, b) = \sum_{k=1}^{\infty} 2^{-k} \frac{d_k(a, b)}{1 + d_k(a, b)},
\]
where $\overline{B}(0, k) = \{x : x \in S \text{ and } \|x\| \leq k\}$. Clearly, $\{d_k\}_{k \in \mathbb{N}}$ is a countable family of pseudometrics on $BB(S)$ and $(BB(S), d)$ is a complete metric space.

Theorem 2.1. Let $u : S \times D \to \mathbb{R}$, $T : S \times D \to S$ be mappings and
\[
a_0(x) = \sup_{y \in D} u(x, y),
\]
\[
a_n(x) = \sup_{y \in D} \{u(x, y) + a_{n-1}(T(x, y))\}, \quad x \in S, \quad n \in \mathbb{N}.
\]
If there exist $\varphi \in \Phi_2$ and $\psi \in \Phi_1$ such that

\begin{equation}
\|T(x, y)\| \leq \varphi(\|x\|) \text{ for all } (x, y) \in S \times D,
\end{equation}

\begin{equation}
|u(x, y)| \leq \psi(\|x\|) \text{ for all } (x, y) \in S \times D,
\end{equation}

and

\begin{equation}
\sum_{n=0}^{\infty} \psi(\varphi^n(t)) < \infty \text{ for all } t > 0,
\end{equation}

then the functional equation (1.2) possesses a solution $w \in BB(S)$ such that

\begin{equation}
\lim_{n \to \infty} w(x_n) = 0 \text{ for any } x_0 \in S,
\end{equation}

\begin{equation}
\{y_n\}_{n \in N} \subseteq D, \ x_n = T(x_{n-1}, y_n), \ n \in N.
\end{equation}

Moreover, the solution w of the functional equation (1.2) is also unique with respect to (2.5).

Proof. Put

$$
H(x, y, a) = u(x, y) + a(T(x, y)) \text{ for all } (x, y, a) \in S \times D \times BB(S),
$$

$$
f(a) = \sup_{y \in D} H(x, y, a) \text{ for all } (x, a) \in S \times BB(S).
$$

For any $k \in N$, $y \in D$ and $x \in \overline{B}(0, k)$, by (2.2), (2.3), and Remark 1.1, we have

\begin{equation}
|u(x, y)| \leq \psi(\|x\|) \leq \psi(k), \|T(x, y)\| \leq \varphi(\|x\|) \leq \varphi(k).
\end{equation}

Using (2.6) and the definition of f, we infer that $f a \in BB(S)$ for any $a \in BB(S)$. That is, f maps $BB(S)$ into $BB(S)$.

Now we prove that f is a nonexpansive mapping in $BB(S)$. For any $a, b \in BB(S)$, $\varepsilon > 0$, $k \in N$ and $x \in \overline{B}(0, k)$, there exist $y, z \in D$ such that

\begin{equation}
f(a) - \varepsilon < H(x, y, a), \ f(b) - \varepsilon < H(x, z, b),
\end{equation}

\begin{equation}
f(a) \geq H(x, z, a), \ f(b) \geq H(x, y, b).
\end{equation}
It follows from (2.7) that

\[|fa(x) - fb(x)| \\
< \max\{|H(x, z, a) - H(x, z, b)|, |H(x, y, a) - H(x, y, b)|\} + \varepsilon \\
= \max\{|a(T(x, z) - b(T(x, z))|, |a(T(x, y)) - b(T(x, y))|\} + \varepsilon \\
\leq d_k(a, b) + \varepsilon, \]

which implies that \(d_k(fa, fb) \leq d_k(a, b) + \varepsilon\). Letting \(\varepsilon \to 0\), we have

\[d_k(fa, fb) \leq d_k(a, b) \text{ for all } a, b \in BB(S), \ k \in N, \]

which yields that

\[d(fa, fb) = \sum_{k=1}^{\infty} 2^{-k} \frac{d_k(fa, fb)}{1 + d_k(fa, fb)} \leq \sum_{k=1}^{\infty} 2^{-k} \frac{d_k(a, b)}{1 + d_k(a, b)} = d(a, b). \]

That is,

\[(2.8) \quad d(fa, fb) \leq d(a, b) \text{ for all } a, b \in BB(S). \]

We claim that for any \(n \geq 0\),

\[(2.9) \quad |a_n(x)| \leq \sum_{i=0}^{n} \psi(\varphi^i(||x||)) \text{ for all } x \in S. \]

In fact, by (2.3) we conclude that

\[-\psi(||x||) \leq u(x, y) \leq \psi(||x||) \text{ for all } (x, y) \in S \times D, \]

which means that

\[|a_0(x)| = |\sup_{y \in D} u(x, y)| \leq \psi(||x||) \text{ for all } x \in S. \]

Assume that (2.9) holds for some \(n \geq 0\). It follows from (2.2) that

\[(2.10) \quad |a_n(T(x, y))| \leq \sum_{i=0}^{n} \psi(\varphi^i(||T(x, y)||)) \leq \sum_{i=0}^{n} \psi(\varphi^{i+1}(||x||)) \]
for all \((x, y) \in S \times D\). From (2.3) and (2.10) we know that

\[
- \sum_{i=0}^{n+1} \psi(\varphi^i(\|x\|)) \leq u(x, y) + a_n(T(x, y))
\]

\[
\leq \sum_{i=0}^{n+1} \psi(\varphi^i(\|x\|)) \quad \text{for all } (x, y) \in S \times D.
\]

This yields that

\[
|a_{n+1}(x)| = \left| \sup_{y \in D} \{u(x, y) + a_n(T(x, y))\} \right|
\]

\[
\leq \sum_{i=0}^{n+1} \psi(\varphi^i(\|x\|)) \quad \text{for all } x \in S.
\]

That is, (2.9) holds for all \(n \geq 0\).

Next we prove that \(\{a_n\}_{n \geq 0}\) is a Cauchy sequence in \(BB(S)\). Let \(k \in N, \varepsilon > 0\) and \(x_0 \in B(0, k)\) be given. (2.4) ensures that there exists some \(m \in N\) such that

\[
(2.11) \quad \sum_{i=n}^{n+p} \psi(\varphi^i(k)) < \varepsilon \quad \text{for all } n \geq m \text{ and } p \in N.
\]

For any \(n \geq m\) and \(p \in N\), by (2.1) we know that there exist \(v_1, w_1 \in D\) and \(y_1 = T(x_0, v_1), z_1 = T(x_0, w_1)\) satisfying

\[
(2.12) \quad a_{n+p}(x_0) < H(x_0, v_1, a_{n+p-1}) + 2^{-1}\varepsilon, \quad a_n(x_0) \geq H(x_0, v_1, a_{n-1}),
\]

\[
a_n(x_0) < H(x_0, w_1, a_{n-1}) + 2^{-1}\varepsilon, \quad a_{n+p}(x_0) \geq H(x_0, w_1, a_{n+p-1}).
\]

From (2.12) we have

\[
(2.13) \quad |a_{n+p}(x_0) - a_n(x_0)|
\]

\[
< \max\{|H(x_0, v_1, a_{n+p-1}) - H(x_0, v_1, a_{n-1})|, |H(x_0, w_1, a_{n+p-1}) - H(x_0, w_1, a_{n-1})|\} + 2^{-1}\varepsilon
\]

\[
= \max\{|a_{n-1}(y_1) - a_{n+p-1}(y_1)|, |a_{n-1}(z_1) - a_{n+p-1}(z_1)|\} + 2^{-1}\varepsilon
\]

\[
= |a_{n-1}(x_1) - a_{n+p-1}(x_1)| + 2^{-1}\varepsilon,
\]
where \(x_1 = y_1 \) or \(z_1 \) and

\[
|a_{n-1}(x_1) - a_{n+p-1}(x_1)| \\
= \max\{|a_{n-1}(y_1) - a_{n+p-1}(y_1)|, |a_{n-1}(z_1) - a_{n+p-1}(z_1)|\}.
\]

Similarly, we conclude that there exist \(v_i, w_i \in D, y_i = T(x_{i-1}, v_i), z_i = T(x_{i-1}, w_i) \), \(x_i = y_i \) or \(z_i \) for \(2 \leq i \leq n \) satisfying

\[
|a_{n+p-1}(x_1) - a_{n-1}(x_1)| < |a_{n+p-2}(x_2) - a_{n-2}(x_2)| + 2^{-2} \varepsilon, \\
|a_{n+p-2}(x_2) - a_{n-2}(x_2)| < |a_{n+p-3}(x_3) - a_{n-3}(x_3)| + 2^{-3} \varepsilon, \\
\vdots \\
|a_{p+1}(x_{n-1}) - a_1(x_{n-1})| < |a_p(x_n) - a_0(x_n)| + 2^{-n} \varepsilon.
\]

(2.14)

It follows from \(\varphi \in \Phi_2, (2.2) \) and Remark 1.1 that

\[
\|x_n\| \leq \varphi(\|x_{n-1}\|) \leq \varphi^2(\|x_{n-2}\|) \leq \cdots \leq \varphi^n(\|x_0\|) \leq \|x_0\| \leq k
\]

(2.15)

for any \(n \in N \). In the light of (2.9), (2.11), and (2.13)-(2.15), we obtain that

\[
|a_{n+p}(x_0) - a_n(x_0)| < |a_p(x_n) - a_0(x_n)| + \varepsilon, \\
\leq |a_p(x_n)| + |a_0(x_n)| + \varepsilon \\
\leq \psi(\|x_n\|) + \sum_{i=0}^{p} \psi(\varphi^i(\|x_n\|)) + \varepsilon \\
\leq \psi(\varphi^n(\|x_0\|)) + \sum_{i=0}^{p} \psi(\varphi^{i+n}(\|x_0\|)) + \varepsilon \\
\leq 2 \sum_{i=n}^{n+p} \psi(\varphi^i(\|k\|)) + \varepsilon \\
< 3\varepsilon
\]

(2.16)

for any \(n \geq m \) and \(p \in N \). Thus (2.15) and (2.16) yield that \(d_k(a_n, a_{n+p}) \leq 3\varepsilon \). That is, \(\{a_n\}_{n \geq 0} \) is a Cauchy sequence in \((BB(S), d) \) and hence it converges to some \(w \in BB(S) \). By virtue of (2.8), we get that

\[
d(fw, w) \leq d(fw, fa_n) + d(a_{n+1}, w) \leq d(w, a_n) + d(a_{n+1}, w) \to 0
\]
as $n \to \infty$. That is, $w = f w$ is a fixed point of f and hence the functional equation (1.2) possesses a solution $w \in BB(S)$.

We prove that (2.5) holds. For any $x_0 \in S$, \{\(y_n\)\}_{n \in \mathbb{N}} \subseteq D, x_n = T(x_{n-1}, y_n), n \in \mathbb{N}$, we have by (2.2)

\begin{equation}
\|x_n\| = \|T(x_{n-1}, y_n)\| \leq \varphi(\|x_{n-1}\|) \leq \cdots \leq \varphi^n(\|x_0\|) \to 0, \text{ as } n \to \infty.
\end{equation}

Put $k = [\|x_0\|] + 1$, where $[t]$ denotes the largest integer not exceeding t. From Remark 1.1 and (2.17) we conclude that \{\(x_n\)\}_{n \geq 0} \subseteq \overline{B}(0, k)$. Let k be in N. Note that $\lim_{m \to \infty} d_k(w, a_m) = 0$. For given $\varepsilon > 0$, by (2.4) and (2.17) we know that there exists some $m \in N$ such that

\begin{equation}
\max \left\{d_k(w, a_m), \sum_{i=n}^{m+n} \psi(\varphi^i(\|x_0\|)) \right\} < \varepsilon \text{ for any } n \geq m.
\end{equation}

By virtue of (2.9) and (2.18), we infer that

\begin{align*}
|w(x_n)| &\leq |w(x_n) - a_m(x_n)| + |a_m(x_n)| \\
&\leq d_k(w, a_m) + \sum_{i=0}^{m} \psi(\varphi^i(\|x_n\|)) \\
&\leq d_k(w, a_m) + \sum_{i=n}^{m+n} \psi(\varphi^i(\|x_0\|)) \\
&< 2\varepsilon
\end{align*}

for all $n \geq m$. Therefore $\lim_{m \to \infty} w(x_n) = 0$.

Finally we prove that w is a unique solution of the functional equation (1.2) in $BB(S)$ satisfying (2.5). Suppose that v is also a solution of the functional equation (1.2) in $BB(S)$ satisfying (2.5). Let $x_0 = t_0 \in S$ and $\varepsilon > 0$ be given. By the definition of w and v, we conclude that there exist \{\(y_n\)\}_{n \geq 1} \subseteq D, \{z_n\}_{n \geq 1} \subseteq D, \{x_n\}_{n \geq 1} \subseteq S$ and \{\(t_n\)\}_{n \geq 1} \subseteq S with $x_n = T(x_{n-1}, y_n), t_n = T(t_{n-1}, z_n)$ for all $n \in N$, such that

\begin{align}
&w(x_i) < u(x_i, y_{i+1}) + w(x_{i+1}) + 2^{-i-1}\varepsilon, \\
&v(t_i) < u(t_i, z_{i+1}) + v(t_{i+1}) + 2^{-i-1}\varepsilon,
\end{align}

\begin{align}
&w(t_i) \geq u(t_i, z_{i+1}) + w(t_{i+1}), \ v(x_i) \geq u(x_i, y_{i+1}) + v(x_{i+1})
\end{align}
for all \(i \geq 0 \). By (2.19) we easily deduce that

\[
\begin{align*}
 w(x_0) &< u(x_0, y_1) + u(x_1, y_2) + \cdots + u(x_{n-1}, y_n) \\
 &\quad + w(x_n) + (1 - 2^{-n})\varepsilon, \\
 v(t_0) &< u(t_0, z_1) + u(t_1, z_2) + \cdots + u(t_{n-1}, z_n) \\
 &\quad + v(t_n) + (1 - 2^{-n})\varepsilon, \\
 w(t_0) &\geq u(t_0, z_1) + u(t_1, z_2) + \cdots + u(t_{n-1}, z_n) + w(t_n), \\
 v(x_0) &\geq u(x_0, y_1) + u(x_1, y_2) + \cdots + u(x_{n-1}, y_n) + v(x_n)
\end{align*}
\]

(2.20)

for any \(n \in \mathbb{N} \). Using (2.20) and \(x_0 = t_0 \), we have

\[
|w(x_0) - v(x_0)| < |w(x_n) - v(x_n)| + |w(t_n) - v(t_n)| + (1 - 2^{-n})\varepsilon.
\]

Letting \(n \to \infty \) in the above inequality, we obtain that \(|w(x_0) - v(x_0)| \leq \varepsilon \), which implies that \(w(x_0) = v(x_0) \) by letting \(\varepsilon \to 0 \). This completes the proof.

\[\square\]

Remark 2.1. Theorem 2.4 in [7] is a special case of Theorem 2.1 with \(\psi(t) = Mt \) for all \(t \in \mathbb{R}^+ \), where \(M \) is a positive constant. The following example reveals that Theorem 2.1 generalizes properly Theorem 2.4 in [7].

Example 2.1. Let \(X = Y = \mathbb{R}, S = D = \mathbb{R}^+ \). Define \(u : S \times D \to \mathbb{R}, T : S \times D \to S \) by

\[
u(x, y) = \frac{x^2(1 - xy)}{1 + xy}, \quad T(x, y) = \frac{x\sin^2(x + y)}{2 + y^2} \quad \text{for all } (x, y) \in S \times D.
\]

Choose \(\varphi(t) = 2^{-1}t \) and \(\psi(t) = t^2 \) for all \(t \in \mathbb{R}^+ \). It is easy to verify that the conditions of Theorem 2.1 are satisfied. Hence the functional equation (1.2) possesses a solution in \(\mathcal{BB}(S) \). But Theorem 2.4 in [7] is not applicable since

\[
|u(x, y)| = |u(M + 1, 0)| = (M + 1)^2 > M|x|
\]

for any \(M > 0 \) with \((x, y) = (M + 1, 0) \in S \times D \).

A proof similar to that of Theorem 2.1 gives the following result and is thus omitted.
THEOREM 2.2. Let $u : S \times D \to R$, $T : S \times D \to S$ be mappings and

$$a_0(x) = \inf_{y \in D} u(x, y), a_n(x)$$

$$= \inf_{y \in D} \{u(x, y) + a_{n-1}(T(x, y))\}, \quad x \in S, \quad n \in N. \quad (2.21)$$

Suppose that there exist $\varphi \in \Phi_2$ and $\psi \in \Phi_1$ satisfying (2.2)-(2.4). Then the functional equation

$$f(x) = \inf_{y \in D} \{u(x, y) + f(T(x, y))\}, \quad x \in S, \quad (2.22)$$

possesses a solution $w \in BB(S)$ such that (2.5) holds. Moreover, the solution w of the functional equation (2.22) is also unique with respect to (2.5).

THEOREM 2.3. Let $u : S \times D \to R$, $T : S \times D \to S$ be mappings and

$$a_0(x) = \sup_{y \in D} u(x, y), a_n(x)$$

$$= \sup_{y \in D} \max\{u(x, y), a_{n-1}(T(x, y))\}, \quad x \in S, \quad n \in N. \quad (2.23)$$

Suppose that there exist $\varphi \in \Phi_2$ and $\psi \in \Phi_3$ satisfying (2.2) and (2.3). Then the functional equation

$$f(x) = \sup_{y \in D} \max\{u(x, y), f(T(x, y))\}, \quad x \in S, \quad (2.24)$$

possesses a solution $w \in BB(S)$ such that (2.5) holds and

$$w(x) \geq 0 \quad \text{for all} \quad x \in S. \quad (2.25)$$

Moreover, the solution w of the functional equation (2.24) is also unique with respect to (2.5).

Proof. Set

$$H(x, y, a) = \max\{u(x, y), a(T(x, y))\} \quad \text{for all} \quad (x, y, a) \in S \times D \times BB(S),$$

$$fa(x) = \sup_{y \in D} H(x, y, a) \quad \text{for all} \quad (x, a) \in S \times BB(S).$$

As in the proof of Theorem 2.1, we can conclude that f maps $BB(S)$ into $BB(S)$ and (2.8) holds. Now we claim that for all $n \geq 0$,

$$|a_n(x)| \leq \psi(\|x\|) \quad \text{for all} \quad x \in S. \quad (2.26)$$
It is easy to verify that (2.3) implies that (2.26) holds for \(n = 0 \). Suppose that (2.26) holds for some \(n \geq 0 \). From (2.2), \(\varphi \in \Phi_2 \) and Remark 1.1, we infer that

\[
|a_n(T(x, y))| \leq \psi(\|T(x, y)\|) \\
\leq \psi(\varphi(\|x\|)) \leq \psi(\|x\|) \text{ for all } (x, y) \in S \times D.
\]

Using (2.3) and (2.27), we have

\[-\psi(\|x\|) \leq \max\{u(x, y), a_n(T(x, y))\} \leq \psi(\|x\|) \text{ for all } (x, y) \in S \times D,
\]

which implies that

\[|a_{n+1}(x)| = |\sup_{y \in D} \max\{u(x, y), a_n(T(x, y))\}| \leq \psi(\|x\|) \text{ for all } x \in S.
\]

Hence (2.26) holds for all \(n \geq 0 \). On the other hand, (2.23) ensures that

\[a_0(x) \leq a_1(x) \leq \ldots \leq a_n(x) \leq a_{n+1}(x) \leq \ldots \text{ for all } x \in S.
\]

Next we show that \(\{a_n\}_{n \geq 0} \) is a Cauchy sequence in \(BB(S) \). Let \(k \in N, \varepsilon > 0 \) and \(x_0 \in \overline{B}(0, k) \) be given. Since \(\varphi \in \Phi_2 \) and \(\psi \in \Phi_3 \), it follows that there exists some \(m \in N \) such that

\[\psi(\varphi^n(k)) < \varepsilon \text{ for all } n \geq m.
\]

For any \(n \geq m \) and \(p \in N \), by (2.23) we easily conclude that there exist \(y_1 \in D \) and \(x_1 = T(x_0, y_1) \) satisfying

\[a_{n+p}(x_0) < H(x_0, y_1, a_{n+p-1}) + 2^{-1}\varepsilon, \ a_n(x_0) \geq H(x_0, y_1, a_{n-1}).
\]

By virtue of (2.28), (2.30), and Lemma 1.1, we have

\[0 \leq a_{n+p}(x_0) - a_n(x_0)
\]

\[< H(x_0, y_1, a_{n+p-1}) - H(x_0, y_1, a_{n-1}) + 2^{-1}\varepsilon
\]

\[= \max\{u(x_0, y_1), a_{n+p-1}(x_1)\} - \max\{u(x_0, y_1), a_{n-1}(x_1)\} + 2^{-1}\varepsilon
\]

\[\leq a_{n+p-1}(x_1) - a_{n-1}(x_1) + 2^{-1}\varepsilon.
\]
Similarly, we conclude that there exist \(y_i \in D, x_i = T(x_{i-1}, y_i) \in S, \) \(2 \leq i \leq n \) satisfying

\[
0 \leq a_{n+p-1}(x_1) - a_{n-1}(x_1) < a_{n+p-2}(x_2) - a_{n-2}(x_2) + 2^{-2}\varepsilon, \\
0 \leq a_{n+p-2}(x_2) - a_{n-2}(x_2) < a_{n+p-3}(x_3) - a_{n-3}(x_3) + 2^{-3}\varepsilon, \\
\vdots \\
0 \leq a_{p+1}(x_{n-1}) - a_1(x_{n-1}) < a_p(x_n) - a_0(x_n) + 2^{-n}\varepsilon.
\]

It follows from (2.2), (2.3), (2.26), (2.29), (2.31), and (2.32) that

\[
0 \leq a_{n+p}(x_0) - a_n(x_0) < a_p(x_n) - a_0(x_n) + \varepsilon \\
\leq |a_p(x_n)| + |a_0(x_n)| + \varepsilon \leq 2\psi(\|x_n\|) + \varepsilon \\
= 2\psi(\|T(x_{n-1}, y_n)\|) + \varepsilon \leq 2\psi(\varphi(\|x_{n-1}\|)) + \varepsilon \\
\leq 2\psi(\varphi^n(\|x_0\|)) + \varepsilon \leq 2\psi(\varphi^n(k)) + \varepsilon < 3\varepsilon
\]

for any \(n \geq m \) and \(p \in N \). This gives that \(d_k(a_n, a_{n+p}) \leq 3\varepsilon \) for any \(n \geq m \) and \(p \in N \). Consequently, \(\{a_n\}_{n \geq 0} \) is a Cauchy sequence in \((BB(S), d) \) and it converges to some \(w \in BB(S) \). From (2.8), we deduce that \(w = fw \). That is, the functional equation (2.24) possesses a solution \(w \in BB(S) \).

We prove that (2.5) holds. For any \(x_0 \in S, \{y_n\}_{n \in N} \subseteq D, x_n = T(x_{n-1}, y_n), n \in N \), (2.2) yields that (2.17) holds. Note that \(\psi(0) = 0 \) and \(\psi \) is right continuous at 0. Thus (2.17) means that

\[
\lim_{n \to \infty} \psi(\|x_n\|) = \psi(0) = 0.
\]

Put \(k = [\|x_0\|] + 1 \). It is easy to verify that \(\{x_n\}_{n \in N} \subseteq \overline{B}(0, k) \). Let \(k \) be in \(N \) and \(\varepsilon > 0 \). Since \(\{a_n\}_{n \in N} \) converges to \(w \), by (2.33) we know that there exists some \(m \in N \) such that

\[
\max\{d_k(w, a_m), \psi(\|x_n\|)\} < \varepsilon \text{ for any } n \geq m.
\]

By virtue of (2.26) and (2.34), we have

\[
|w(x_n)| \leq |w(x_n) - a_m(x_n)| + |a_m(x_n)| \leq d_k(w, a_m) + \psi(\|x_n\|) < 2\varepsilon
\]

for all \(n \geq m \). That is, \(\lim_{n \to \infty} w(x_n) = 0 \).
Given $x_0 \in S$ and $\{y_n\}_{n \in \mathbb{N}} \subseteq D$, take $x_n = T(x_{n-1}, y_n)$ for all $n \in \mathbb{N}$. Since w is a solution of the functional equation (2.24), by (2.5) we immediately infer that

$$w(x_0) \geq \max \{u(x_0, y_1), w(T(x_0, y_1))\} \geq w(x_1) \geq \ldots \geq w(x_n) \to 0$$

as $n \to \infty$. That is, $w(x_0) \geq 0$ for all $x_0 \in S$.

Finally we prove that w is a unique solution of the functional equation (2.24) in $BB(S)$ satisfying (2.5). Suppose that v is also a solution of the functional equation (2.24) in $BB(S)$ satisfying (2.5). Let $x_0 = t_0 \in S$ and $\varepsilon > 0$ be given. By the definition of w and v, we conclude that there exist $\{y_n\}_{n \geq 1} \subseteq D$, $\{z_n\}_{n \geq 1} \subseteq D$, $\{x_n\}_{n \geq 1} \subseteq S$ and $\{t_n\}_{n \geq 1} \subseteq S$ with $x_n = T(x_{n-1}, y_n)$, $t_n = T(t_{n-1}, z_n)$ for all $n \in \mathbb{N}$, such that

(2.35)

$$w(x_i) < \max \{u(x_i, y_{i+1}), w(x_{i+1})\} + 2^{-i-1} \varepsilon,$$

$$v(t_i) < \max \{u(t_i, z_{i+1}), v(t_{i+1})\} + 2^{-i-1} \varepsilon,$$

$$w(t_i) \geq \max \{u(t_i, z_{i+1}), w(t_{i+1})\}, \quad v(x_i) \geq \max \{u(x_i, y_{i+1}), v(x_{i+1})\}$$

for all $i \geq 0$. By (2.35) we easily deduce that

(2.36)

$$w(x_0) < \max \{u(x_0, y_1), u(x_1, y_2), \ldots, u(x_{n-1}, y_n), w(x_n)\} + (1 - 2^{-n}) \varepsilon,$$

$$v(t_0) < \max \{u(t_0, z_1), u(t_1, z_2), \ldots, u(t_{n-1}, z_n), v(t_n)\} + (1 - 2^{-n}) \varepsilon,$$

$$w(t_0) \geq \max \{u(t_0, z_1), u(t_1, z_2), \ldots, u(t_{n-1}, z_n), w(t_n)\},$$

$$v(x_0) \geq \max \{u(x_0, y_1), u(x_1, y_2), \ldots, u(x_{n-1}, y_n), v(x_n)\}$$

for any $n \in \mathbb{N}$. Using (2.36), Lemma 1.1 and $x_0 = t_0$, we have

$$|w(x_0) - v(x_0)| < |w(x_n) - v(x_n)| + |w(t_n) - v(t_n)| + (1 - 2^{-n}) \varepsilon.$$

Letting $n \to \infty$ in the above inequality, we obtain that $|w(x_0) - v(x_0)| \leq \varepsilon$, which implies that $w(x_0) = v(x_0)$ by letting $\varepsilon \to 0$. This completes the proof. \square

Following a similar argument as in the proof of Theorem 2.3, we have the following.
THEOREM 2.4. Let $u : S \times D \to R, T : S \times D \to S$ be mappings and
\begin{equation}
 a_0(x) = \inf_{y \in D} u(x, y), a_n(x) = \inf_{y \in D} \max\{u(x, y), a_{n-1}(T(x, y))\}, \quad x \in S, \; n \in \mathbb{N}.
\end{equation}
Suppose that there exist $\varphi \in \Phi_2$ and $\psi \in \Phi_3$ satisfying (2.2) and (2.3). Then the functional equation
\begin{equation}
 f(x) = \inf_{y \in D} \max\{u(x, y), f(T(x, y))\}, \quad x \in S,
\end{equation}
possesses a solution $w \in BB(S)$ such that (2.5) and (2.25) hold. Moreover, the solution w of the functional equation (2.38) is also unique with respect to (2.5).

REMARK 2.2. Theorem 2.4 extends, improves and unifies Theorem 3.5 of Bhakta and Choudhury [6], Theorem 3.5 of Liu [12] and a result of Bullman [2, p.135]. The example below shows that Theorem 2.4 is indeed a generalization of the results due to Bhakta and Choudhury [6], Liu [12], and Bullman [2].

EXAMPLE 2.2. Let X, Y, S, D be as in Example 2.1. Define $u : S \times D \to R, T : S \times D \to S$ by
\[
 u(x, y) = \frac{x^4(1 + xy)}{1 + x^2 + y^2}, \quad T(x, y) = \frac{x|\sin(x + y)|}{1 + x} \quad \text{for all } (x, y) \in S \times D.
\]
Put $\varphi(t) = \frac{t}{1+t^4}$, $\psi(t) = t^4$ for all $t \in R^+$. Then the assumptions of Theorem 2.4 are fulfilled. However, we cannot invoke the results of Bhakta and Choudhury [6], Liu [12], and Bullman [2] to establish that the functional equation (2.38) possesses a solution in $BB(S)$ because
\[
 |u(x, y)| = \left|u\left(\frac{3}{2}(M + 1), \frac{3}{2}(M + 1)\right)\right| \geq \frac{2}{3} \left[\frac{3}{2}(M + 1)\right]^2 > M|x|
\]
for any $M > 0$ with $(x, y) = \left(\frac{3}{2}(M + 1), \frac{3}{2}(M + 1)\right) \in S \times D$.

Let $BC(R^+)$ denote the set of all bounded continuous real-valued functions on R^+. Put $d(a, b) = \sup\{|a(x) - b(x)| : x \in R^+\}$ for all $a, b \in BC(R^+)$. It is easily seen that $(BC(R^+), d)$ is a complete metric space.
Theorem 2.5. Let $X = Y = R$, $S = D = R^+$. Let $u, v : S \times D \to R^+$ be continuous, $u(x, x)$ be bounded on S, $\lim_{y \to +\infty} u(x, y) = +\infty$, $u(x, \cdot)$ and $v(x, \cdot)$ be nondecreasing with respect to the second argument on $[x, +\infty)$ for every $x \in S$, and

$$(2.39) \quad 0 \leq v(x, y) \leq r \text{ for all } (x, y) \in S \times D,$$

where r is a positive constant. Let $p, q : S \to R^+$ satisfy that p is continuous, nondecreasing, $\int_0^{+\infty} p(s)q(s)ds < +\infty$ and

$$(2.40) \quad \int_0^{+\infty} q(s)ds = t > 0.$$

Assume that

$$(2.41) \quad a_0(x) = \inf_{y \geq x} u(x, y), \quad x \in S,$$

$$a_{n+1}(x) = \inf_{y \geq x} \left\{ u(x, y) + v(x, y) \left[\int_y^{+\infty} p(s-y)q(s)ds \right. \right.$$

$$+ a_n(0) \int_y^{+\infty} q(s)ds + \int_0^y a_n(y-s)q(s)ds \bigg]\}, \quad x \in S, n \geq 0.$$

If $rt < 1$, then the functional equation (1.4) possesses a unique solution $w \in BC(R^+)$ and

$$(2.42) \quad d(a_{n+1}, w) \leq (rt)^{n+1}(1 - rt)^{-1} d(a_0, a_1) \text{ for all } n \geq 0.$$

Proof. For all $(x, y, b) \in S \times D \times BC(R^+)$, set

$$H(x, y, b) = u(x, y) + v(x, y) \left[\int_y^{+\infty} p(s-y)q(s)ds \right. \right.$$

$$+ b(0) \int_y^{+\infty} q(s)ds + \int_0^y b(y-s)q(s)ds \bigg].$$

Let

$$(2.43) \quad fb(x) = \inf_{y \geq x} H(x, y, b) \text{ for all } (x, b) \in S \times BC(R^+).$$
It is easy to see that f maps $BC(R^+)$ into itself. Let $\varepsilon > 0$, $x \in S$ and $b, c \in BC(R^+)$ be given. It follows from (2.43) that there exist $y_1 \geq x$ and $y_2 \geq x$ such that

\begin{equation}
fb(x) > H(x, y_1, b) - \varepsilon, \quad fc(x) > H(x, y_2, c) - \varepsilon,
\end{equation}

\begin{equation}
f(x) \leq H(x, y_2, b), \quad f(x) \leq H(x, y_1, c).
\end{equation}

By virtue of (2.39), (2.40), and (2.44), we deduced that

\[
|fb(x) - fc(x)| \\
< \max \left\{ |H(x, y_i, b) - H(x, y_i, c)| : i = 1, 2 \right\} + \varepsilon \\
\leq \max \left\{ \left| v(x, y_i) \left[|b(0) - c(0)| \int_{y_i}^{+\infty} q(s)ds \right. \right. \\
+ \left. \left. \int_0^{y_i} |b(y_i - s) - c(y_i - s)|q(s)ds \right| : i = 1, 2 \right\} + \varepsilon \\
\leq \max \left\{ rd(b, c) \left[\int_{y_i}^{+\infty} q(s)ds + \int_0^{y_i} q(s)ds \right] : i = 1, 2 \right\} + \varepsilon \\
= rtd(b, c) + \varepsilon,
\]

which implies that

\[
d(fb, fc) = \sup \{|fb(x) - fc(x)| : x \in S\} \leq rtd(b, c) + \varepsilon.
\]

Letting $\varepsilon \to 0$, we easily conclude that

\[
d(fb, fc) \leq rtd(b, c) \text{ for all } b, c \in BC(R^+).
\]

It follows from Banach fixed-point theorem that f has a unique fixed point $w \in BC(R^+)$ and (2.42) holds. Obviously, w is a unique solution of the functional equation (1.4). This completes the proof. □

Remark 2.3. Theorem 2.5 generalizes Theorem 3.6 of Bhakta and Choudhury [6] and a result of Bellman [2, p.129].

Problem 2.1. If $rt < 1$ is replaced by $rt = 1$ in Theorem 2.5, does the functional equation (1.4) possess a solution in $BC(R^+)$?

Problem 2.2. If the answer to Problem 2.1 is no, then what additional hypotheses on u, v, p, q are needed to guarantee the existence of a solution of the functional equation (1.4)?
References

Zeqing Liu
Department of Mathematics
Liaoning Normal University
Dalian, Liaoning, 116029, P. R. China
E-mail: zeqinliu@sina.com.cn

Jeong Sheok Ume
Department of Applied Mathematics
Changwon National University
Changwon 641-773, Korea
E-mail: jsume@changwon.ac.kr
Shin Min Kang
Department of Mathematics
and Research Institute of Natural Science
Gyeongsang National University
Chinju 660-701, Korea
E-mail: smkang@nongae.gsu.ac.kr