SPECTRAL AREA ESTIMATES FOR NORMS OF COMMUTATORS

MUNEÔ CHO * AND TAKAHIKO NAKAZI **

ABSTRACT. Let A and B be commuting bounded linear operators on a Hilbert space. In this paper, we study spectral area estimates for norms of $A^*B - BA^*$ when A is subnormal or p-hyponormal.

1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H}. If T is a hyponormal operator in $\mathcal{B}(\mathcal{H})$ then C. R. Putnam [7] proved that $\| T^*T - TT^* \| \leq \text{Area}(\sigma(T))/\pi$, where $\sigma(T)$ is the spectrum of T. The second named author [5] has proved that if T is a hyponormal operator and K is in $\mathcal{B}(\mathcal{H})$ with $KT = TK$ then

$$\| T^*K - KT^* \| \leq 2\{\text{Area}(\sigma(T))/\pi\}^{1/2}\|K\|.$$

We don’t know whether the constant 2 in the inequality is best possible for a hyponormal operator. In §2, we show that the constant is not best possible for a subnormal operator.

When T is a p-hyponormal operator in $\mathcal{B}(\mathcal{H})$, A. Uchiyama [10] generalized the Putnam inequality, that is,

$$\| T^*T - TT^* \| \leq \phi \left(\frac{1}{p}\right) \|T\|^{2(1-p)}\{\text{Area}(\sigma(T))/\pi\}^p.$$

This inequality gives the Putnam inequality when $p = 1$. In §3, we generalize the above inequality for the spectral area estimate of $\| T^*K - KT^* \|$ when $TK = KT$. H. Alexander [1] proved the following inequality for a uniform algebra A. If f is in A then

$$\text{dist}(\tilde{f}, A) \leq \{\text{Area}(\sigma(f))/\pi\}^{1/2}.$$

Received January 25, 2006.
2000 Mathematics Subject Classification. Primary 47A20.
Key words and phrases. subnormal, p-hyponormal, Putnam inequality.
* This research is partially supported by Grant-in-Aid Scientific Research No.17540139.
** This research is partially supported by Grant-in-Aid Scientific Research No.17540176.

©2007 The Korean Mathematical Society
The second named author [5] gave an operator version for the Alexander inequality. This was used in order to estimate \(\| T^*K - KT^* \| \) when \(T \) is a hyponormal operator and \(KT = TK \). We also give an Alexander inequality for a \(p \)-hyponormal and we use it to estimate \(\| T^*K - KT^* \| \).

In §4, we try to estimate \(\| T^*K - KT^* \| \) for arbitrary contraction. In §5, we show a few results about area estimates for \(p \)-quasihyponormal operators, restricted shifts and analytic Toeplitz operators.

For \(0 < p \leq 1 \), \(T \) is said to be \(p \)-hyponormal if \((T^*T)^p - (TT^*)^p \geq 0 \). A 1-hyponormal operator is hyponormal. For an algebra \(\mathcal{A} \) in \(\mathcal{B}(\mathcal{H}) \), let \(\text{lat}\mathcal{A} \) be the lattice of all \(\mathcal{A} \)-invariant projections. For a compact subset \(X \) in \(\mathcal{C} \), \(\text{rat}(X) \) denotes the set of all rational functions on \(X \).

2. Subnormal operators

In order to prove Theorem 1, we use the original Alexander inequality.

Theorem 1. Let \(T \) be a subnormal operator in \(\mathcal{B}(\mathcal{H}) \) and \(f \) a rational function on \(\sigma(T) \) whose poles are not on it. Then

\[
\| T^*f(T) - f(T)T^* \| \leq \left\{ \frac{\text{Area}(\sigma(T))}{\pi} \right\}^{1/2}\left\{ \frac{\text{Area}(\sigma(f(T)))}{\pi} \right\}^{1/2}.
\]

Proof. Suppose that \(N \in \mathcal{B}(\mathcal{K}) \) is a normal extension of \(T \in \mathcal{B}(\mathcal{H}) \) and \(P \) is an orthogonal projection from \(\mathcal{K} \) to \(\mathcal{H} \). Then \(T = PN \mid \mathcal{H} \) and so

\[
T^*f(T) - f(T)T^* = P(N^*f(N)P - Pf(N)PN^*P = P(N^*f(N)P - f(N)PN^*P = Pf(N)N^*P - f(N)PN^*P = Pf(N)(1 - P)N^*P = Pf(N)(1 - P) \cdot (1 - P)N^*P
\]

because \(f(N)P = Pf(N)P \) and \(f(N)N^* = N^*f(N) \).

Let \(F \) be a rational function in \(\text{rat}(\sigma(T)) \). Put \(\mathcal{B}_F = \) the norm closure of \(\{g(F(N)) ; g \in \text{rat}(\sigma(F(N))) \} \) then \(P \) belongs to \(\text{lat}\mathcal{B}_F \). Hence

\[
\| (1 - P)F(N)^*P \| \leq \text{dist}(F(N)^*, \mathcal{B}_F) \leq \text{dist}(\bar{z}, \text{rat}(\sigma(F(N)))) \leq \left\{ \frac{\text{Area}(\sigma(F(N)))}{\pi} \right\}^{1/2}
\]

by the Alexander's theorem [1]. Hence, applying \(F \) to \(F = z \) or \(F = f \)

\[
\| T^*f(T) - f(T)T^* \| \leq \| (1 - P)f(N)^*P \| \cdot \| (1 - P)N^*P \| \leq \left\{ \frac{\text{Area}(\sigma(f(N)))}{\pi} \right\}^{1/2}\left\{ \frac{\text{Area}(\sigma(N))}{\pi} \right\}^{1/2} \leq \left\{ \frac{\text{Area}(\sigma(f(T)))}{\pi} \right\}^{1/2}\left\{ \frac{\text{Area}(\sigma(T))}{\pi} \right\}^{1/2}.
\]

\[\square\]
If T is a cyclic subnormal operator and $KT = TK$ then using a theorem of T. Yoshino [12] we can prove that
\[\| T^*K - KT^* \| \leq \{ \text{Area}(\sigma(T))/\pi \}^{1/2} \{ \text{Area}(\sigma(K))/\pi \}^{1/2}. \]

The proof is almost same to one of Theorem 1.

3. p-hyponormal operators

In order to prove Theorem 2, we use an operator version of the Alexander inequality for a p-hyponormal operator. Unfortunately Lemma 3 is not best possible for $p = 1$ (see [5]). Lemma 1 is due to W. Arveson [2, Lemma 2] and Lemma 2 is due to A. Uchiyama [11, Theorem 3].

We need the following notation to give Theorem 2 and Proposition 1. Let ϕ be a positive function on $(0, \infty)$ such that
\[\phi(t) = \begin{cases} t & \text{if } t \text{ is an integer} \\ t + 2 & \text{if } t \text{ is not an integer}. \end{cases} \]

We write $\ell^2 \otimes \mathcal{H}$ for the Hilbert space direct sum $\mathcal{H} \oplus \mathcal{H} \oplus \cdots$, and $1 \otimes T$ denotes the operator $T \oplus T \oplus \cdots \in B(\ell^2 \otimes \mathcal{H})$ for each operator $T \in B(\mathcal{H})$.

Lemma 1. Let A be an arbitrary ultra-weakly closed subalgebra of $B(\mathcal{H})$ containing 1, and let $T \in B(\mathcal{H})$. Then
\[\text{dist}(T, A) = \sup\{ \|(1 - P)(1 \otimes T)P\| ; P \in \text{lat}(1 \otimes A) \}. \]

Lemma 2. If T is a p-hyponormal operator, then
\[\| T^*T - TT^* \| \leq \phi \left(\frac{1}{p} \right) \| T \|^{2(1-p)} \{ \text{Area}(\sigma(T))/\pi \}^p. \]

Lemma 3. If T is a p-hyponormal operator then
\[\text{dist}(T^*, A) \leq \sqrt{2\phi \left(\frac{1}{p} \right) \| T \|^{-p} \{ \text{Area}(\sigma(T))/\pi \}^{p/2}}, \]

where A is the strong closure of $\{ f(T) ; f \in \text{rat}(\sigma(T)) \}$.

Proof. Let $S = 1 \otimes T$. Then S is p-hyponormal. In order to prove the lemma, by Lemma 1 it is enough to estimate $\sup\{ \|(1 - P)SP\| ; P \in \text{lat}(1 \otimes A) \}$. If $P \in \text{lat}(1 \otimes A)$ then $SP = PSP$ and so
\begin{align*}
\|(1 - P)SP\|^2 &= \|PSS^*P - PSPS^*P\| \\
&= \|PSS^*P - PS^*SP + PS^*SP - PQPS^*P\| \\
&\leq \|P(S^*S - SS^*)P\| + \|PSP^*(PSP) - (PSP)(PSP)^*\| \\
&\leq \|S^*S - SS^*\| + \|PSP^*(PSP) - (PSP)(PSP)^*\|.
\end{align*}
By [11, Lemma 4], PSP is p-hyponormal and so by Lemma 2 we have
\[\|PSS^*P - PSPS^*P\|^2 \]
\[\leq \phi \left(\frac{1}{p} \right) \|T\|^2 \{ \text{Area}(\sigma(T))/\pi \}^p \]
\[+ \phi \left(\frac{1}{p} \right) \|PSP\|^2 \{ \text{Area}(\sigma(PSP))/\pi \}^p \]
\[\leq 2\phi \left(\frac{1}{p} \right) \|T\|^2 \{ \text{Area}(\sigma(T))/\pi \}^p \]
because $\|PSP\| \leq \|S\| = \|T\|$ and $\sigma(PSP) \subset \sigma(S) = \sigma(T)$. By Lemma 1,
\[\text{dist}(T^*, A) \leq \sqrt{2\phi \left(\frac{1}{p} \right) \|T\|^{1-p} \{ \text{Area}(\sigma(T))/\pi \}^{p/2}}. \]

\[\square \]

Theorem 2. If T is a p-hyponormal operator in $B(\mathcal{H})$ and if K is in $B(\mathcal{H})$ with $KT = TK$, then
\[\|T^*K - KT^*\| \leq 2\sqrt{2\phi \left(\frac{1}{p} \right) \|T\|^{1-p} \{ \text{Area}(\sigma(T))/\pi \}^{p/2}}\|K\|. \]

Proof. When A is the strong closure of $\{ f(T) : f \in \text{rat}(\sigma(T)) \}$, for any $A \in A$
\[||T^*K - KT^*|| = \|(T^* - A)K + AK - KT^*\| \leq 2\|T^* - A\||\|K\|. \]
Now Lemma 3 implies the theorem. \[\square \]

In Theorem 2, if $p = 1$, that is, T is hyponormal then $\|T^*K - KT^*\| \leq 2\sqrt{2\{ \text{Area}(\sigma(T))/2 \}^{1/2}}\|K\|$. The constant $2\sqrt{2}$ is not best because the second author [5] proved that $\|T^*K - KT^*\| \leq 2\{ \text{Area}(\sigma(T))/2 \}^{1/2}\|K\|$. If $p = \frac{1}{2}$, that is, T is semi-hyponormal then
\[||T^*K - KT^*|| \leq 4\|T\|^{1/2} \{ \text{Area}(\sigma(T))/\pi \}^{1/4}\|K\|. \]

4. **Norm estimates**

In general, it is easy to see that $\|T^*T - TT^*\| \leq \|T\|^2$. By Theorem 1, if T is subnormal and f is an analytic polynomial then
\[\|T^*f(T) - f(T)T^*\| \leq \|T\| \|f(T)\|. \]

In this section, we will prove that $\|T^*T^n - T^nT^*\| \leq \|T\|^{n+1}$ for arbitrary T in $B(\mathcal{H})$.

Theorem 3. If T is a contraction on \mathcal{H} and f is an analytic function on the closed unit disc D then $\|T^*f(T) - f(T)T^*\| \leq \sup_{z \in D} |f(z)|$.
Proof. By a theorem of Sz.-Nagy [6], there exists a unitary operator U on \mathcal{K} such that \mathcal{K} is a Hilbert space with $\mathcal{K} \supseteq \mathcal{H}$ and $T^n = PU^n | \mathcal{K}$ for $n \geq 0$, where P is an orthogonal projection from \mathcal{K} to \mathcal{H}. Then it is known that $U^*P = PU^*P$ and $f(T) = Pf(U) | \mathcal{H}$. Hence
\[
T^*f(T) - f(T)T^* = PU^*f(U)P - Pf(U)PU^*P = PU^*f(U)P - Pf(U)U^*P = PU^*(I - P)f(U)P,
\]
because $U^*P = PU^*P$ and $f(U)U^* = U^*f(U)$. Therefore
\[
\| T^*f(T) - f(T)T^* \| = \| PU^*(I - P)f(U)P \| \leq \sup_{z \in D} | f(z) |.
\]

Corollary 1. If T is in $\mathcal{B}(\mathcal{H})$ then for any $n \geq 1$ $\| T^*T^n - T^nT^* \| \leq \| T \|^{n+1}$.

Proof. Put $A = T/\| T \|$ then A is a contraction and so by Theorem 2 $\| A^*A^n - A^nA^* \| \leq 1$ and so $\| T^*T^n - T^nT^* \| \leq \| T \|^{n+1}$.

5. Remarks

In this section, we give spectral area estimates for p-quasihyponomal operators, restricted shifts and analytic Toeplitz operators.

For $0 < p \leq 1$, T is said to be p-quasihyponormal if $T^*\{ (T^*T)^p - (TT^*)^p \} T \geq 0$. A 1-quasihyponormal operator is called quasihyponormal.

Lemma 4. Let T be p-quasihyponormal and P be a projection such that $TP = PTP$. Then PTP is also p-quasihyponormal.

Proof. Since T is p-quasihyponormal, $T^*(T^*T)^p T \geq T^*(TT^*)^p T$. Hence, we have
\[
PT^*(T^*T)^p T P \geq PT^*(TT^*)^p T P.
\]
Since by the Hansen’s inequality [4]
\[
PT^*(T^*T)^p T P = (PTP)^*P(T^*T)^p P(PTP) \leq (PTP)^* (PT^*TP)^p (PTP) = (PTP)^* \{ (PTP)^* (PTP) \}^p (PTP)
\]
and by $0 < p < 1$
\[
PT^*(TT^*)^p T P \geq (PT^*P)(TPT^*)^p (PTP) = (PTP)^* \{ (PTP)(PTP)^* \}^p (PTP),
\]
we have
\[
(PTP)^* \{ (PTP)^* (PTP) \}^p \geq (PTP)^* \{ (PTP)(PTP)^* \}^p (PTP).
\]
Hence, PTP is p-quasihyponormal.
Proposition 1. If T is a p-quasihyponormal operator in $\mathcal{B}(\mathcal{H})$ and if K is in $\mathcal{B}(\mathcal{H})$ with $KT = TK$, then
\[
\|T^*K - KT^*\| \leq 4 \left[\phi \left(\frac{1}{p} \right) \right]^{1/4} \|T\|^{1-p/2} \{\text{Area}(\sigma(T))/\pi\}^{p/4} \|K\|.
\]
In particular, if T is quasihyponormal then
\[
\|T^*K - KT^*\| \leq 4 \|T\|^{1/2} \{\text{Area}(\sigma(T))/\pi\}^{1/4} \|K\|.
\]

Proof. We can prove it as in the proof of Theorem 2. By [11, Theorem 6],
\[
\|T^*T - TT^*\| \leq 2\|T\|^{2-p} \sqrt{\phi \left(\frac{1}{p} \right) \{\text{Area}(\sigma(T))/\pi\}^{p/2}}.
\]
Hence by Lemma 4
\[
\operatorname{dist}(T^*, A) \leq 2\|T\|^{1 - \frac{p}{2}} \phi \left(\frac{1}{p} \right)^{\frac{1}{2}} \{\text{Area}(\sigma(T))/\pi\}^{p/4}.
\]
This implies the proposition. \qed

Let H^2 and H^∞ be the usual Hardy spaces on the unit circle and z the coordinate function. M denotes an invariant subspace of H^2 under the multiplication by z. By the well known Beurling theorem, $M = qH^2$ for some inner function. Suppose N is the orthogonal complement of M in H^2. For a function ϕ in H^∞, S_ϕ is an operator on N such that $S_\phi f = P(\phi f) \ (f \in N)$, where P is the orthogonal projection from H^2 to N. For a symbol ϕ in L^∞, T_ϕ denotes the usual Toeplitz operator on H^2.

Proposition 2. Suppose $\Phi = q^\Phi$ belongs to H^∞. Then
\[
\begin{align*}
(1) \quad & \|S_\phi S_\phi - S_\phi S_\phi^*\| \leq \{\text{Area}(\Phi(D))/\pi\}; \\
(2) \quad & \|S_\phi^* S_\phi - S_\phi S_\phi^*\| \leq \{\text{Area}(\Phi(D))/\pi\}^{n+1} \text{ for } n \geq 0.
\end{align*}
\]

Proof. By a well known theorem of Sarason [8],
\[
\|S_\phi\| = \|\phi + qH^\infty\| = \|\bar{\phi}\phi + H^\infty\| = \|\Phi + H^\infty\|.
\]
By Nehari’s theorem [6], $\|\Phi + H^\infty\| = \|H_\Phi\|$, where H_Φ denotes a Hankel operator from H^2 to $\bar{z}H^2$. Since $\|H_\Phi\|^2 = \|T_\phi^* T_\Phi - T_\Phi T_\phi^*\|$, where T_Φ denotes a Toeplitz operator on H^2, by the Putnam inequality
\[
\|T_\phi^* T_\Phi - T_\Phi T_\phi^*\| \leq \{\text{Area}(\sigma(T_\Phi))/\pi\} = \{\text{Area}(\Phi(D))/\pi\}.
\]
Now since $\|S_\phi^* S_\phi - S_\phi S_\phi^*\| \leq \|S_\phi\|^2$, (1) follows. (2) is also clear by the proof above and Corollary 1. \qed

Proposition 3. Suppose f and g are in H^∞. Then
\[
\|T_f^* T_g - T_g T_f^*\| \leq \{\text{Area}(f(D))/\pi\}^{1/2} \{\text{Area}(g(D))/\pi\}^{1/2}.
\]
Proof. It is easy to see that \(T_f^*T_g - T_gT_f^* = H_f^*H_f \). Hence
\[
\|T_f^*T_g - T_gT_f^*\| \leq \|H_f\| \cdot \|H_f\|.
\]
Since \(H_f^*H_f = T_f^*T_f - T_fT_f^* \), by the Putnam inequality
\[
\|T_f^*T_g - T_gT_f^*\| \leq \{\text{Area}(f(D))/\pi\}^{1/2}\{\text{Area}(g(D))/\pi\}^{1/2}.
\]
\[
\square
\]

References

MUNEHO CHÔ
DEPARTMENT OF MATHEMATICS
KANAGAWA UNIVERSITY
JAPAN
E-mail address: chiyom01@kanagawa-u.ac.jp

TAKAHIKO NAKAZI
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
HOKKAIDO UNIVERSITY
SAPPORO 060-0810, JAPAN
E-mail address: nakazi@math.sci.hokudai.ac.jp