HYPONORMALITY OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE

IN SUNG HWANG

ABSTRACT. In this paper we consider the hyponormality of Toeplitz operators T_φ on the Bergman space $L^2_a(\mathbb{D})$ in the cases, where $\varphi := f + \overline{g}$ (f and g are polynomials). We present some necessary or sufficient conditions for the hyponormality of T_φ under certain assumptions about the coefficients of φ.

1. Introduction

The purpose of this paper is to study the hyponormality of Toeplitz operators acting on the Bergman space $L^2_a(\mathbb{D})$. Our interest is with Toeplitz operators with trigonometric polynomial symbols.

A bounded linear operator A on a Hilbert space is said to be hyponormal if its selfcommutator $[A^*, A] := A^* A - AA^*$ is positive semidefinite. Let \mathbb{D} denote the open unit disk in the complex plane, dA the area measure on the plane. The space $L^2(\mathbb{D})$ is a Hilbert space with the inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{\mathbb{D}} f(z)\overline{g(z)}dA(z).$$

The Bergman space $L^2_a(\mathbb{D})$ is the subspace of $L^2(\mathbb{D})$ consisting of functions analytic on \mathbb{D}. Let $L^\infty(\mathbb{D})$ be the space of bounded area measurable function on \mathbb{D}. For $\varphi \in L^\infty(\mathbb{D})$, the multiplication operator M_φ on the Bergman space are defined by $M_\varphi(f) = \varphi \cdot f$, where f is in L^2_a. If P denotes the orthogonal projection of $L^2(\mathbb{D})$ onto the Bergman space L^2_a, the Toeplitz operator T_φ on the Bergman space is defined by

$$T_\varphi(f) = P(\varphi \cdot f),$$

where φ is measurable and f is in L^2_a. It is clear that those operators are bounded if φ is in $L^\infty(\mathbb{D})$. The Hankel operator $H_\varphi : L^2_a \rightarrow L^2_a$ is defined by

$$H_\varphi(f) = (I - P)(\varphi \cdot f).$$

Received November 19, 2006; Revised January 25, 2007.
2000 Mathematics Subject Classification. Primary 47B20, 47B35.
Key words and phrases. Toeplitz operators, hyponormal operators, Bergman space.
This work was supported by Korea Research Foundation Grant funded by Korea Government(MOEHRD, Basic Research Promotion Fund) (KRF-2005-015-C00029).

©2008 The Korean Mathematical Society
Let $H^2(\mathbb{T})$ denote the Hardy space of the unit circle $\mathbb{T} = \partial \mathbb{D}$. Recall that given $\psi \in L^\infty(\mathbb{T})$, the Toeplitz operator on the Hardy space is the operator T_ψ on $H^2(\mathbb{T})$ defined by $T_\psi f = P_+(\psi \cdot f)$, where f is in $H^2(\mathbb{T})$ and P_+ denotes the orthogonal projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$.

Basic properties of the Bergman space and the Hardy space can be found in [1, 4, 5]. In [2], Cowen characterized the hyponormality of Toeplitz operator T_ψ on $H^2(\mathbb{T})$ by properties of the symbol $\psi \in L^\infty(\mathbb{T})$. Cowen’s theorem states that if $\psi \in L^\infty(\mathbb{T})$, then the Toeplitz operator T_ψ is hyponormal if and only if the following ‘Cowen’ set $\mathcal{E}(\psi)$ is nonempty:

$$\mathcal{E}(\psi) = \{ k \in H^\infty(\mathbb{T}) : ||k||_\infty \leq 1 \text{ and } \psi - k\overline{\psi} \in H^\infty(\mathbb{T}) \}.$$

We record here some results on the hyponormality of Toeplitz operators on the Hardy space, which have been recently developed in [3, 6, 8, 9, 10].

Proposition 1.1. Suppose that ψ is a trigonometric polynomial of the form $\psi(z) = \sum_{n=-m}^{N} a_n z^n$, where a_{-m} and a_N are nonzero.

(i) If T_ψ is a hyponormal operator, then $m \leq N$ and $|a_{-m}| \leq |a_N|$.

(ii) If T_ψ is a hyponormal operator, then $N - m \leq \text{rank} [T_\psi^*, T_\psi] \leq N$.

(iii) The hyponormality of T_ψ is independent of the particular values of the Fourier coefficients $a_0, a_1, \ldots, a_{N-m}$ of ψ. Moreover the rank of the selfcommutator $[T_\psi^*, T_\psi]$ is also independent of those coefficients.

(iv) If $|a_{-m}| = |a_N| \neq 0$, then T_ψ is hyponormal if and only if the following equation holds:

$$\begin{pmatrix}
 a_{-1} \\
a_{-2} \\
 \vdots \\
a_{-m}
\end{pmatrix}
\begin{pmatrix}
 \overline{a_N} \\
 a_{N-m+1} \\
 \vdots \\
 a_{N-m+2}
\end{pmatrix} = 0.$$

In this case, the rank of $[T_\psi^*, T_\psi]$ is $N - m$.

(v) T_ψ is normal if and only if $m = N$, $|a_{-m}| = |a_N|$, and (1) holds with $m = N$.

The solution (Cowen’s theorem) of the hyponormality of T_ψ on the Hardy space is based on a dilation theorem of Sarason. It also exploited the fact that functions in H^2_{-1} are conjugates of functions in zH^2. For the Bergman space, L^2_{-1} is much larger than the conjugates of functions in zL^2_a, and no dilation theorem (similar to Sarason’s theorem) is available. So we cannot get a similar version of Cowen’s theorem for T_ψ on the Bergman space. Therefore, at present, it seems to be quite difficult to determine the hyponormality of T_ψ.

We will now consider the hyponormality of Toeplitz operators on the Bergman space with a symbol in the class of functions $g + f$, where f and g are polynomials. Since the hyponormality of operators is translation invariant we may assume that $f(0) = g(0) = 0$. We shall list the well-known properties of Toeplitz operators T_ϕ on the Bergman space.
If \(f, g \) are in \(L^\infty(\mathbb{D}) \), then we can easily check that

\[
\begin{align*}
\text{a) } T_{f+g} &= T_f + T_g \\
\text{b) } T_f^* &= T_{\overline{f}} \\
\text{c) } T_f T_g &= T_{\overline{f} g} \text{ if } f \text{ or } g \text{ is analytic.}
\end{align*}
\]

These properties enable us to establish several consequences of hyponormality.

Proposition 1.2 ([11]). Let \(f, g \) be bounded and analytic. Then the followings are equivalent.

1. \(\overline{T}_{\varphi + f} \) is hyponormal.
2. \(H_\varphi^* H_\varphi \leq H_{\overline{\varphi}}^* H_{\overline{\varphi}} \).
3. \(H_\varphi = CH_{\overline{\varphi}} \), where \(C \) is of norm less than or equal to one.

Very recently, in [7], it was shown that if \(\varphi(z) = a_{-m} \overline{z}^m + a_{-N} \overline{z}^N + a_m z^m + a_N z^N \) (\(0 < m < N \)) and \(a_m \overline{a}_N = \overline{a}_{-m} a_{-N} \), then

\(T_{\varphi} \) is hyponormal.

\[
\begin{align*}
\frac{1}{N+1}(|a_N|^2 - |a_{-N}|^2) &\leq \frac{1}{m+1}(|a_{-m}|^2 - |a_m|^2) \quad \text{if } |a_{-N}| \leq |a_N| \\
N^2(|a_{-N}|^2 - |a_N|^2) &\leq m^2(|a_m|^2 - |a_{-m}|^2) \quad \text{if } |a_N| \leq |a_{-N}|.
\end{align*}
\]

In this paper we continue to examine the hyponormality of \(T_{\varphi} \) in the cases, where \(\varphi \) is a trigonometric polynomial.

2. Some necessary conditions for hyponormality of \(T_{\varphi} \)

In this section we present some necessary conditions for hyponormality of \(T_{\varphi} \). First of all, observe that for any \(s, t \) nonnegative integers,

\[
P(\overline{z}^t z^s) = \begin{cases}
\frac{s-t+1}{s+1} z^{s-t} & \text{if } s \geq t \\
0 & \text{if } s < t.
\end{cases}
\]

Let \(\varphi = \overline{g} + f \), where

\[
f(z) = \sum_{n=1}^{N} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{N} a_{-n} z^n.
\]

For \(m, n = 1, 2, \ldots, N \), define

\[
A_{m,n} := \det \begin{pmatrix} a_m & a_{-m} \\ \overline{a}_n & \overline{a}_{-n} \end{pmatrix}
\]

and we abbreviate \(A_{m,n} \) to \(A_{m,n} \).

The following lemma was shown in [7].
Lemma 2.1 ([7]). Let \(\varphi = \bar{g} + f \), where
\[
f(z) = \sum_{n=1}^{N} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{N} a_{-n} z^n.
\]
Suppose \(T_\varphi \) is hyponormal. Then

(i) For each \(i = 0, 1, 2, \ldots, N - 1 \),
\[
\sum_{n=1}^{i} \frac{n^2 A_n}{(n+i+1)(n+1)^2} + \sum_{n=i+1}^{N} \frac{A_n}{n+i+1} \geq 0.
\]

(ii) For each \(i \geq N \),
\[
\sum_{n=1}^{N} \frac{n^2 A_n}{(n+i+1)(n+1)^2} \geq 0.
\]

Our main result treats the extremal cases in view of Lemma 2.1:

Theorem 2.2. Let \(\varphi = \bar{g} + f \), where \(f(z) = \sum_{n=1}^{N} a_n z^n \) and \(g(z) = \sum_{n=1}^{N} a_{-n} z^n \). Suppose that \(T_\varphi \) is hyponormal, and that for some \(0 \leq i_0 \leq N - 1 \),
\[
(3) \quad \sum_{n=0}^{i_0} \frac{n^2 A_n}{(i_0+n+1)(i_0+1)^2} + \sum_{n=i_0+1}^{N} \frac{A_n}{i_0+n+1} = 0.
\]
Then the following conditions hold

(i) \(AB = C \), where
\[
A = [a_{ij}]_{i_0 \times (N-i_0-1)} \quad \text{with} \quad a_{ij} = \begin{cases} 0 & \text{if } i > j \text{ or } j > N-i_0+i-1 \\ A_{i_0+i-j+1} & \text{if } i \leq j, \end{cases}
\]
\[
B = [b_{ij}]_{(N-i_0-1) \times 1} \quad \text{with} \quad b_{j} = \frac{1}{i_0+j+1},
\]
\[
C = [c_{ij}]_{1 \times 1} \quad \text{with} \quad c_{1} = 0 \quad \text{and} \quad c_{j} = -\sum_{n=1}^{j-1} \frac{n(i_0-j+1+n)}{j(i_0+(n+1))} A_{n,i_0-j+1+n}.
\]

(ii) \(AB = D \), where
\[
A = [a_{ij}]_{(N-i_0-1) \times (N-i_0-1)} \quad \text{with} \quad a_{ij} = \begin{cases} 0 & \text{if } i > j \\ A_{i_0+j-i+1,i_0+j+1} & \text{if } i \leq j, \end{cases}
\]
\[
B = [b_{ij}]_{(N-i_0-1) \times 1} \quad \text{with} \quad b_{j} = \frac{1}{2(i_0+1)+j},
\]
\[
D = [d_{ij}]_{(N-i_0-1) \times 1} \quad \text{with} \quad d_{j} := -\sum_{n=1}^{i_0} \frac{n(j+n)}{(i_0+1)(i_0+j+1)(i_0+j+n+1)} A_{n,j+n+1}.
\]

(iii)
\[
\sum_{n=1}^{i_0+j-1} \frac{n(N+j-i_0+n)}{(i_0+1)(N+j+1)(N+j+n+1)} A_{n,N+j-i_0+n} = 0
\]
for each \(0 \leq j \leq i_0 - 1 \).
Proof. Let T_φ be a hyponormal operator and suppose (3) holds for some $0 \leq i_0 \leq N - 1$. Then it follows from Proposition 1.2 that for each non-negative integer $m \neq i_0$ and $c_{i_0}, c_m \in \mathbb{C}$, we have
\[
\left\langle (H_f^* H_f - H_g^* H_g) (c_{i_0} z^{i_0} + c_m z^m), c_{i_0} z^{i_0} + c_m z^m \right\rangle \geq 0,
\]
or equivalently
\[
|c_{i_0}|^2 \left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^{i_0} \right\rangle + |c_m|^2 \left\langle (H_f^* H_f - H_g^* H_g) z^m, z^m \right\rangle \\
+ 2 \text{Re} \left(c_{i_0} \overline{c_m} \left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^m \right\rangle \right) \geq 0.
\]
(4)

Observe that for $0 \leq i_0 \leq N - 1$,
\[
\left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^{i_0} \right\rangle \\
= \sum_{n=1}^{N} \frac{1}{i_0 + n + 1} (|a_n|^2 - |a_{-n}|^2) - \sum_{n=1}^{i_0} \frac{i_0 - n + 1}{(i_0 + 1)^2} (|a_n|^2 - |a_{-n}|^2) \\
= \sum_{n=1}^{i_0} \frac{n^2 A_n}{(i_0 + n + 1)(i_0 + 1)^2} + \sum_{n=i_0+1}^{N} \frac{A_n}{i_0 + n + 1}.
\]

Hence by the assumption,
\[
\left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^{i_0} \right\rangle = 0.
\]
(5)

Since c_{i_0} and c_m are arbitrary, it follows from (4) and (5) that
\[
\left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^{m} \right\rangle = 0.
\]
(6)

If $i_0 < m$ ($i_0 + 1 \leq m \leq N + i_0 - 1$), then we have
\[
\left\langle M_f z^{i_0}, M_f z^{m} \right\rangle = \sum_{n=1}^{N+i_0-m} \frac{1}{m + n + 1} a_{m+n-i_0} \overline{a_n}.
\]
(7)

If instead $i_0 < m < N$, then
\[
\left\langle T_f z^{i_0}, T_f z^{m} \right\rangle = \sum_{n=1}^{i_0} \frac{i_0 + 1 - n}{(i_0 + 1)(m + 1)} a_{m+n-i_0} \overline{a_n}.
\]
(8)

Also if $N \leq m \leq N + i_0 - 1$, then
\[
\left\langle T_f z^{i_0}, T_f z^{m} \right\rangle = \sum_{n=1}^{N-m+i_0} \frac{i_0 + 1 - n}{(i_0 + 1)(m + 1)} a_{m+n-i_0} \overline{a_n}.
\]
(9)
Therefore (7), (8) and (9) give that for $i_0 < m$ ($i_0 + 1 \leq m \leq N + i_0 - 1$),

$$
\langle H_f^z H_f^z z^{i_0}, z^m \rangle = \begin{cases}
\sum_{n=1}^{i_0} \frac{n(m - i_0 + n)}{(i_0 + 1)(m + 1)(m + n + 1)} a_{m+n-i_0} \bar{a}_n & \text{if } i_0 < m < N \\
+ \sum_{n=i_0+1}^{N+i_0-m} \frac{1}{m + n + 1} a_{m+n-i_0} \bar{a}_n & \text{if } N \leq m \leq N + i_0 - 1.
\end{cases}
$$

Similarly, we have

$$
\langle H_f^z H_g^z z^{i_0}, z^m \rangle = \begin{cases}
\sum_{n=1}^{i_0} \frac{n(m - i_0 + n)}{(i_0 + 1)(m + 1)(m + n + 1)} a_{-(m+n-i_0)} \bar{a}_n & \text{if } i_0 < m < N \\
+ \sum_{n=i_0+1}^{N+i_0-m} \frac{1}{m + n + 1} a_{-(m+n-i_0)} \bar{a}_n & \text{if } N \leq m \leq N + i_0 - 1.
\end{cases}
$$

Thus by (10) and (11) we have that for $i_0 < m$ ($i_0 + 1 \leq m \leq N + i_0 - 1$)

$$
\langle (H_f^z H_f^z - H_g^z H_g^z) z^{i_0}, z^m \rangle = \begin{cases}
\sum_{n=1}^{i_0} \frac{n(m - i_0 + n)}{(i_0 + 1)(m + 1)(m + n + 1)} \overline{A_{n,m-i_0+n}} & \text{if } i_0 < m < N \\
+ \sum_{n=i_0+1}^{N+i_0-m} \frac{1}{m + n + 1} \overline{A_{n,m-i_0+n}} & \text{if } N \leq m \leq N + i_0 - 1.
\end{cases}
$$

If $0 \leq m < i_0$, then we get

$$
\langle M_f^z z^{i_0}, M_f^z z^m \rangle = \sum_{n=1}^{N+i_0-m} \frac{1}{i_0 + n + 1} a_n a_{i_0-m+n}
$$

and

$$
\langle T_f^z z^{i_0}, T_f^z z^m \rangle = \sum_{n=1}^{m} \frac{m + 1 - n}{(i_0 + 1)(m + 1)} a_n a_{i_0-m+n}.
$$
Thus we have, for $0 \leq m < i_0$,

$$
\langle H_{i_0}^* H_{i_0} z^{i_0}, z^m \rangle = \sum_{n=1}^{m} \frac{n(i_0 - m + n)}{(i_0 + 1)(m + 1)(i_0 + n + 1)} a_n \overline{a_{i_0-m+n}}
+ \sum_{n=m+1}^{N+m-i_0} \frac{1}{i_0 + n + 1} a_n \overline{a_{i_0-m+n}}.
$$

(13)

Similarly, we have that for $0 \leq m < i_0$,

$$
\langle H_{i_0}^* H_{i_0} z^{i_0}, z^m \rangle = \sum_{n=1}^{m} \frac{n(i_0 - m + n)}{(i_0 + 1)(m + 1)(i_0 + n + 1)} a_n \overline{a_{i_0-m+n}}
+ \sum_{n=m+1}^{N+m-i_0} \frac{1}{i_0 + n + 1} a_n \overline{a_{i_0-m+n}}.
$$

(14)

Thus by (13) and (14) we also have, for $0 \leq m < i_0$,

$$
\langle (H_{i_0}^* H_{i_0} - H_{i_0}^* H_{i_0}) z^{i_0}, z^m \rangle = \sum_{n=1}^{m} \frac{n(i_0 - m + n)}{(i_0 + 1)(m + 1)(i_0 + n + 1)} A_{n,i_0-m+n}
+ \sum_{n=m+1}^{N+m-i_0} \frac{1}{i_0 + n + 1} A_{n,i_0-m+n}.
$$

(15)

It follows from (5), (12), and (15) that for $0 \leq i_0 \leq N - 1$,

$$
\begin{align*}
\sum_{n=m+1}^{N+m-i_0} \frac{1}{i_0 + n + 1} A_{n,i_0-m+n} &= -\sum_{n=1}^{m} \frac{n(i_0 - m + n)}{(i_0 + 1)(m + 1)(i_0 + n + 1)} A_{n,i_0-m+n} & \text{if } 0 \leq m < i_0, \\
\sum_{n=i_0+1}^{N+i_0-m} \frac{1}{m + n + 1} A_{n,i_0+n} &= -\sum_{n=1}^{i_0} \frac{n(m - i_0 + n)}{(i_0 + 1)(m + 1)(m + n + 1)} A_{n,i_0+n} & \text{if } i_0 < m < N,
\end{align*}
$$

and

$$
\begin{align*}
\sum_{n=1}^{N+i_0-m} \frac{n(m - i_0 + n)}{(i_0 + 1)(m + 1)(m + n + 1)} A_{n,i_0+n} &= 0 & \text{if } N \leq m \leq N + i_0 - 1.
\end{align*}
$$

This proves (i), (ii), and (iii). \qed
Theorem 2.3. Let \(\varphi = \varphi + f \), where \(f(z) = \sum_{n=1}^{N} a_n z^n \) and \(g(z) = \sum_{n=1}^{N} a_{-n} z^n \). Suppose that \(T_\varphi \) is hyponormal, and that for some \(i_0 \geq N \),

\[
(16) \quad \sum_{n=1}^{N} \frac{n^2 A_n}{(i_0 + n + 1)(i_0 + 1)^2} = 0.
\]

Then we have

\[
(17) \quad \sum_{n=1}^{N-j} \frac{n(n+j)}{(i_0 + j + 1)(i_0 + j + n + 1)} A_{n,n+j} = 0 \quad \text{for} \quad 1 \leq j \leq N - 1;
\]

\[
(18) \quad \sum_{n=1}^{N-j} \frac{n(n+j)}{(i_0 - j + 1)(i_0 + n + 1)} A_{n,n+j} = 0 \quad \text{for} \quad 1 \leq j \leq N - 1.
\]

Proof. Let \(T_\varphi \) be a hyponormal operator and suppose (16) holds for some \(i_0 \geq N \). Then by assumption we have that for \(i_0 \geq N \),

\[
\left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^{i_0} \right\rangle = \sum_{n=1}^{N} \frac{n^2 A_n}{(i_0 + n + 1)(i_0 + 1)^2} = 0.
\]

Thus it follows from (4) that for each non-negative integer \(m \neq i_0 \), we have

\[
(19) \quad \left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^{m} \right\rangle = 0.
\]

If \(i_0 < m \leq N + i_0 - 1 \), then

\[
\left\langle M_f z^{i_0}, M_f z^{m} \right\rangle = \sum_{n=1}^{N-m+i_0} \frac{1}{m+n+1} \overline{a_n} a_{m-i_0+n}
\]

and

\[
\left\langle T_f z^{i_0}, T_f z^{m} \right\rangle = \sum_{n=1}^{N-m+i_0} \frac{i_0 + 1 - n}{(i_0 + 1)(m + 1)} \overline{a_n} a_{m-i_0+n}.
\]

Thus for \(i_0 < m \leq N + i_0 - 1 \) \(i_0 \geq N \), we get

\[
(20) \quad \left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^{m} \right\rangle = \sum_{n=1}^{N+i_0-m} \frac{n(n+m-i_0)}{(i_0 + 1)(m+1)(m+n+1)} \overline{A_{n,m-i_0+n}}.
\]

Similarly, for \(i_0 - N + 1 \leq m < i_0 \) \(i_0 \geq N \) we have

\[
(21) \quad \left\langle (H_f^* H_f - H_g^* H_g) z^{i_0}, z^{m} \right\rangle = \sum_{n=1}^{N+m-i_0} \frac{n(n+m-i_0)}{(i_0 + 1)(m+1)(i_0 + n + 1)} \overline{A_{n,i_0-m+n}}.
\]

By (19), (20), and (21), we see that for \(i_0 \geq N \),

\[
(22) \quad \sum_{n=1}^{N+i_0-m} \frac{n(n+m-i_0)}{(i_0 + 1)(m+1)(m+n+1)} \overline{A_{n,m-i_0+n}} = 0 \quad \text{if} \quad i_0 < m \leq N + i_0 - 1;
\]
Putting \(j = m - i_0 \) and \(j = i_0 - m \), respectively, in (22) and (23) gives the result.

From Theorems 2.2 and 2.3 we get the following corollaries.

Corollary 2.4. Let \(\varphi = \bar{g} + f \), where \(f(z) = \sum_{n=1}^{N} a_n z^n \) and \(g(z) = \sum_{n=1}^{N} a_{-n} z^n \). If \(T_\varphi \) is hyponormal and (3) holds for some \(0 \leq i_0 \leq N - 1 \), then

\[
\sum_{n=1}^{N-i_0} \frac{1}{n+i_0+1} A_{n,n+i_0} = 0.
\]

Corollary 2.5 ([7]). Let \(\varphi = \bar{g} + f \), where \(f(z) = \sum_{n=1}^{N} a_n z^n \) and \(g(z) = \sum_{n=1}^{N} a_{-n} z^n \). If \(T_\varphi \) is hyponormal and \(||f|| = ||g|| \), then we have

\[
\begin{pmatrix}
A_{1,1} & A_{2,2} & \cdots & \cdots & A_{N,N} \\
0 & A_{1,2} & A_{2,3} & \cdots & A_{N-1,N} \\
0 & 0 & A_{1,3} & \cdots & A_{N-2,N} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & A_{1,N}
\end{pmatrix}
\begin{pmatrix}
\frac{1}{1} \\
\frac{1}{2} \\
\frac{1}{3} \\
\vdots \\
\frac{1}{N+1}
\end{pmatrix}
= 0.
\]

Proof. We have the result by putting \(i_0 = 0 \) in Theorem 2.2 (ii). \(\square \)

Corollary 2.6. Let \(\varphi = \bar{g} + f \), where \(f(z) = \sum_{n=1}^{N} a_n z^n \) and \(g(z) = \sum_{n=1}^{N} a_{-n} z^n \) \((N \geq 3)\). If \(T_\varphi \) is hyponormal and (16) holds for some \(i_0 \geq N \), then we have

\[
A_{1,N} = A_{1,N-1} = A_{2,N} = 0.
\]

Proof. Putting \(j = N - 1 \) in (17) gives \(A_{1,N} = 0 \) and putting \(j = N - 2 \) in (17) and (18) gives that

\[
\begin{pmatrix}
N-1 \\
N-1 \\
N-1 \\
N-1 \\
N-1
\end{pmatrix}
\begin{pmatrix}
\frac{2N}{(i_0+N-1)(i_0+1)} \\
\frac{2N}{(i_0+N-1)(i_0+1)} \\
\frac{2N}{(i_0+N-1)(i_0+1)} \\
\frac{2N}{(i_0+N-1)(i_0+1)} \\
\frac{2N}{i_0+3)(i_0+2)}
\end{pmatrix}
\begin{pmatrix}
A_{1,N-1} \\
A_{2,N}
\end{pmatrix}
= \begin{pmatrix} 0 \\
0 \end{pmatrix}.
\]

Observe that

\[
\det \begin{pmatrix}
N-1 \\
N-1 \\
N-1 \\
N-1 \\
N-1
\end{pmatrix}
\begin{pmatrix}
\frac{2N}{(i_0+N-1)(i_0+1)} \\
\frac{2N}{(i_0+N-1)(i_0+1)} \\
\frac{2N}{(i_0+N-1)(i_0+1)} \\
\frac{2N}{i_0+3)(i_0+2)}
\end{pmatrix}
= 0 \quad \text{if and only if} \quad N = 2.
\]

Thus we have that \(A_{1,N-1} = A_{2,N} = 0 \). \(\square \)

Corollary 2.7. Let \(\varphi = \bar{g} + f \), where \(f(z) = \sum_{n=1}^{3} a_n z^n \) and \(g(z) = \sum_{n=1}^{3} a_{-n} z^n \). If (3) or (16) holds for some \(i_0 \geq 1 \), then \(T_\varphi \) is hyponormal if and only if \(\varphi(z) \) satisfies one of the following two conditions:
(i) \(f(z) = \alpha g(z) \) for some \(|\alpha| = 1 \) (in this case \(T_\varphi \) is normal);
(ii) \(f(z) = a_m z^m + a_N z^N, \ g(z) = a_{-m} z^m + a_{-N} z^N, \ A_{m,N} = 0 \) (1 \(\leq m \leq N \leq 3 \)) and (2) holds.

Proof. Suppose \(T_\varphi \) is hyponormal. We will show that \(A_{1,2} = A_{2,3} = A_{1,3} = 0 \). If \(i_0 \geq 3 \), this follows from Corollary 2.6. If \(i_0 = 1, \) then putting \(j = 0 \) in Theorem 2.2 (iii) gives \(A_{1,3} = 0 \) and by Theorem 2.2 (i) and (ii) we have

\[
\begin{pmatrix}
\frac{1}{3} \\
\frac{1}{12}
\end{pmatrix}
\begin{pmatrix}
A_{1,2} \\
A_{2,3}
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}.
\]

Therefore \(A_{1,2} = A_{2,3} = A_{1,3} = 0 \). If \(i_0 = 2 \) then by Theorem 2.2 (i) we get \(A_{1,3} = 0 \) and \(\frac{1}{12} A_{1,2} + \frac{1}{5} A_{2,3} = 0 \). Putting \(j = 0 \) in Theorem 2.2 (iii) we see that \(2 A_{1,2} + 5 A_{2,3} = 0 \) and therefore \(A_{1,2} = A_{2,3} = 0 \). Thus by (2), (i) or (ii) holds. The converse follows from Proposition 1.2 and (2). This completes the proof. \(\Box \)

Example 2.8. Consider the polynomial

\[\varphi(z) = 4\overline{z}^3 + 2z^2 + \bar{z} + z + 2z^2 + \beta z^3 \quad (|\beta| = 4). \]

Then \(\varphi(z) \) satisfies the equality (3). Thus by Corollary 2.7, \(T_\varphi \) is hyponormal if and only if \(\beta = 4 \).

Example 2.9. Consider the polynomial

\[\varphi(z) = 8\overline{z}^3 + \overline{z}^2 + \beta \overline{z} + \gamma z + 7z^2 + 2z^3 \quad (|\beta| = |\gamma|). \]

Then \(\varphi(z) \) satisfies the equality (3). Thus Corollary 2.7 shows that \(T_\varphi \) is not hyponormal.

3. Some sufficient conditions for hyponormality of \(T_\varphi \)

If \(f(z) = \sum_{n=2}^{N} a_n z^n \) (\(N \geq 2 \)) and \(h(z) = az + f(z) \), then the Toeplitz operator \(T_{f+h} \) on the Hardy space is hyponormal if and only if \(a = 0 \) (Proposition 1.1(iv)). On the contrary, the following theorem shows that the Toeplitz operator \(T_{f+h} \) on the Bergman space is hyponormal if \(|a| \) is sufficiently large.

Theorem 3.1. If \(f(z) = \sum_{n=2}^{N} a_n z^n \) (\(N \geq 2 \)), \(h(z) = az + f(z) \), and \(A := \max\{|a_i| : 2 \leq i \leq N\} \), then \(T_{f+h} \) is hyponormal when \(|a| \geq 2N^2 A \).

Proof. Let \(K_i := \{k_i(z) \in L^2_\alpha : k_i(z) = \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i} \} \) for \(i = 0, 1, 2, \ldots, N-1 \). Then by Proposition 1.2, we have that \(T_{f+h} \) is hyponormal if and only if \(\langle (H_{f+h} - H_{f+h}) \sum_{i=0}^{N-1} k_i(z), \sum_{i=0}^{N-1} k_i(z) \rangle \geq 0 \) for all \(k_i \in K_i \) (\(i = 0, 1, 2, \ldots, N-1 \)).
0, 1, 2, \ldots, N - 1), or equivalently

\[
\sum_{i=0}^{N-1} \left(2\text{Re}\left(H_{\bar{z}} k_i(z), \bar{a}H_{\bar{z}} k_i(z) \right) + |a|^2 \left\langle H_{\bar{z}} k_i(z), H_{\bar{z}} k_i(z) \right\rangle \right) \\
+ \sum_{i \neq j, \ i, j \geq 0} \left(2\text{Re}\left(H_{\bar{z}} k_i(z), \bar{a}H_{\bar{z}} k_j(z) \right) + |a|^2 \left\langle H_{\bar{z}} k_i(z), H_{\bar{z}} k_j(z) \right\rangle \right) \geq 0.
\]

(24)

But we have

\[
\left\langle H_{\bar{z}} k_i(z), \bar{a}H_{\bar{z}} k_i(z) \right\rangle = 0
\]

and for \(i \neq j \) (\(i, j = 0, 1, 2, \ldots, N - 1 \)),

\[
\left\langle H_{\bar{z}} k_i(z), H_{\bar{z}} k_j(z) \right\rangle = 0.
\]

(26)

Putting (25) and (26) in (24) we have that \(T_{\bar{z}+n} \) is hyponormal if and only if

\[
\sum_{i=0}^{N-1} |a|^2 \left\langle H_{\bar{z}} k_i(z), H_{\bar{z}} k_i(z) \right\rangle + \sum_{i \neq j, \ i, j \geq 0} 2\text{Re}\left(a\left\langle H_{\bar{z}} k_i(z), H_{\bar{z}} k_j(z) \right\rangle \right) \geq 0.
\]

(27)

Observe that

\[
\sum_{i=0}^{N-1} \left\langle H_{\bar{z}} k_i(z), H_{\bar{z}} k_i(z) \right\rangle = \sum_{n=0}^{\infty} \frac{1}{(n+2)(n+1)^2} |c_n|^2
\]

and

\[
\sum_{i \neq j, \ i, j \geq 0} \left\langle H_{\bar{z}} k_i(z), H_{\bar{z}} k_j(z) \right\rangle = \sum_{m=2}^{N} \bar{a}_m \sum_{i \neq j, \ i, j \geq 0} \left\langle H_{\bar{z}}^{m} k_i(z), H_{\bar{z}} k_j(z) \right\rangle.
\]

(29)

For \(m = 2, 3, \ldots, N \), we have

\[
\sum_{i \neq j, \ i, j \geq 0} \left\langle M_{\bar{z}}^{m} k_i(z), M_{\bar{z}} k_j(z) \right\rangle = \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{Nn+j+m+1} \frac{c_{Nn+j+m-1}}{c_{Nn+j}}
\]

and

\[
\sum_{i \neq j, \ i, j \geq 0} \left\langle T_{\bar{z}}^{m} k_i(z), T_{\bar{z}} k_j(z) \right\rangle
\]

\[
= \sum_{j=0}^{N-1} \sum_{n=0}^{\infty} \frac{Nn+j}{(Nn+j+m)(Nn+j+1)} c_{Nn+j+m-1} c_{Nn+j}.
\]

(31)

Combining (30) and (31) gives that

\[
\sum_{i \neq j, \ i, j \geq 0} \left\langle H_{\bar{z}}^{m} k_i(z), H_{\bar{z}} k_j(z) \right\rangle = \sum_{n=0}^{\infty} \frac{m}{(n+m+1)(n+m)(n+1)} \frac{c_{n} c_{n+m-1}}{c_{n} c_{n+m-1}}.
\]

(32)
Putting (32) in (29) and putting (28) and (29) in (27) we see that T_{f+h} is hyponormal if and only if

$$
|a|^2 \sum_{n=0}^{\infty} \frac{1}{(n+2)(n+1)^2} |c_n|^2 \\
+ 2 \text{Re} \left(a \sum_{m=2}^{N} \frac{1}{a_m} \sum_{n=0}^{\infty} \frac{m}{(n+m+1)(n+m)(n+1)} c_n c_{n+m-1} \right) \geq 0.
$$

(33)

Note that the inequality (33) holds if the following inequality holds for each $m = 2, 3, \ldots, N$,

$$
\sum_{n=0}^{\infty} \frac{|c_n|^2}{(n+2)(n+1)^2} \geq \frac{2(N-1)|a_m|}{|a|} \sum_{n=0}^{\infty} \frac{m}{(n+m+1)(n+m)(n+1)} |c_n||c_{n+m-1}|.
$$

(34)

So it follows from (34) that T_{f+h} is hyponormal if for all $n \geq 0$, $m = 2, 3, \ldots, N$,

$$
\frac{\alpha_m}{(n+m+1)(n+m)(n+1)} |c_n||c_{n+m-1}| \leq \frac{1}{(n+2)(n+1)^2} |c_n|^2 + \frac{1}{(n+m+1)(n+m)(n+1)^2} |c_{n+m-1}|^2,
$$

(35)

where $\alpha_m = \frac{4(N-1)|a_m|}{|a|}$. Observe that the inequality (35) holds if

$$
\alpha_m^2 \leq \frac{4(n+m+1)}{n+2}.
$$

Let $A := \max\{|a_i| : i = 2, 3, \ldots, N\}$. Then T_{f+h} is hyponormal when $|a| \geq 2N^2 A$. This completes the proof. \qed

Corollary 3.2. Let $f(z) = \sum_{n=2}^{N} a_n z^n$ ($N \geq 2$), $g \in H^\infty$ and $T_{\overline{g}+f}$ be a hyponormal operator. If $h(z) = az + f(z)$ and $|a| \geq 2(N-1)A$, where $A := \max\{|a_i| : 2 \leq i \leq N\}$, then $T_{\overline{g}+h}$ is hyponormal.

Proof. This follows from Proposition 1.2 and Theorem 3.1. \qed

Let $f(z) = \sum_{n=1}^{N-1} (N \geq 2)$ and $h(z) = f(z) + az^N$. Then the Toeplitz operator T_{f+h} on the Hardy space is hyponormal if $|a|$ is sufficiently large ([6]). The following theorem shows that the Toeplitz operator T_{f+h} on the Bergman space has the same property.

Theorem 3.3. Let $f(z) = \sum_{n=1}^{N-1} a_n z^n$ ($N \geq 2$), $h(z) = f(z) + az^N$ and $A := \max\{|a_i| : 1 \leq i \leq N-1\}$. If $|a| \geq 2\sqrt{2(N-1)A}$, then T_{f+h} is hyponormal.
Proof. Let \(K_i := \{ k_i(z) \in L_a^2 : k_i(z) = \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i} \} \) for \(i = 0, 1, 2, \ldots, N - 1 \). Then Proposition 1.2 gives that \(T_{f+h}^* \) is hyponormal if and only if
\[
\langle (H_h^* H_h^* - H_f^* H_f^*) \sum_{i=0}^{N-1} k_i(z), \sum_{i=0}^{N-1} k_i(z) \rangle \geq 0 \text{ for all } k_i \in K_i \ (i = 0, 1, 2, \ldots, N - 1),
\]
or equivalently
\[
\begin{align*}
&\sum_{i=0}^{N-1} |a|^2 \langle H_{\frac{1}{z}} k_i(z), H_{\frac{1}{z}} k_i(z) \rangle \\
&+ \sum_{i\neq j, i,j \geq 0} N \text{Re} \left(a \sum_{m=1}^{N-1} \overline{a}_m \langle H_{\frac{1}{z}}^m k_i(z), H_{\frac{1}{z}}^m k_j(z) \rangle \right) \geq 0.
\end{align*}
\]
On the other hand, we have
\[
\sum_{i=0}^{N-1} \langle H_{\frac{1}{z}}^N k_i(z), H_{\frac{1}{z}}^N k_i(z) \rangle
\]
\[
= \sum_{n=0}^{N-1} \frac{1}{n + N + 1} |c_n|^2 + \sum_{n=N}^{\infty} \frac{N^2}{(n + N + 1)(n + 1)^2} |c_n|^2,
\]
and for each \(m = 1, 2, \ldots, N - 1 \),
\[
\sum_{i\neq j, i,j \geq 0} \langle M_{\frac{1}{z}}^m k_i(z), M_{\frac{1}{z}}^m k_j(z) \rangle = \sum_{i=0}^{N-1} \sum_{n=0}^{\infty} \frac{1}{N(n+1) + i + 1} c_{Nn+i} \overline{c}_{N(n-1)-m+i}
\]
and
\[
\sum_{i\neq j, i,j \geq 0} \langle T_{\frac{1}{z}}^m k_i(z), T_{\frac{1}{z}}^m k_j(z) \rangle
\]
\[
= \sum_{m=1}^{N-1} \sum_{n=1}^{\infty} \frac{Nn - m + i + 1}{(Nn + i + 1)(N(n + 1) - m + i + 1)} c_{Nn+i} \overline{c}_{N(n-1)-m+i}
\]
\[
+ \sum_{i=m}^{N-1} \sum_{n=0}^{\infty} \frac{Nn - m + i + 1}{(Nn + i + 1)(N(n + 1) - m + i + 1)} c_{Nn+i} \overline{c}_{N(n-1)-m+i}.
\]
Combining (38) and (39) we see that
\[
\sum_{i\neq j, i,j \geq 0} \langle H_{\frac{1}{z}}^m k_i(z), H_{\frac{1}{z}}^m k_j(z) \rangle
\]
\[
= \sum_{n=0}^{m-1} \frac{1}{n + N + 1} c_n \overline{c}_{n+N-m}
\]
\[
+ \sum_{n=m}^{\infty} \frac{MN}{(n+1)(n+N-m+1)(n+N+1)} c_n \overline{c}_{n+N-m}.
\]
Putting (37) and (40) in (36) we have that T_{f+h} is hyponormal if and only if

$$
|a|^2 \left(\sum_{n=0}^{N-1} \frac{1}{n + N + 1} |c_n|^2 + \sum_{n=N}^{\infty} \frac{N^2}{(n + N + 1)(n + 1)^2} |c_n|^2 \right) \\
+ 2 \text{Re} \left\{ a \sum_{m=1}^{N-1} a_m \left(\sum_{n=0}^{m-1} \frac{1}{n + N + 1} c_n \overline{c}_{n+N-m} \right) \right. \\
\left. + \sum_{n=m}^{\infty} \frac{mN}{(n + 1)(n + N - m + 1)(n + N + 1)} c_n \overline{c}_{n+N-m} \right\} \geq 0.
$$

(41)

The inequality (41) holds if for each $m = 1, 2, 3, \ldots, N - 1$,

$$
\sum_{n=0}^{N-1} \frac{1}{n + N + 1} |c_n|^2 + \sum_{n=N}^{\infty} \frac{N^2}{(n + N + 1)(n + 1)^2} |c_n|^2 \\
\geq \alpha_m \left(\sum_{n=0}^{m-1} \frac{1}{n + N + 1} |c_n||c_{n+N-m}| \right) \\
+ \sum_{n=m}^{\infty} \frac{mN}{(n + 1)(n + N - m + 1)(n + N + 1)} |c_n||c_{n+N-m}|,
$$

(42)

where $\alpha_m = \frac{2(N-1)|a_m|}{|a|}$. Note that (42) holds if for $m = 1, 2, \ldots, N - 1$,

$$
|a|^2 \geq \frac{4(N-1)^2|a_m|^2(n + 2N - m + 1)}{N + n + 1} ||c_{n+2N-m+1}| |c_{n+2N-m+1}| \quad \text{if } n = 0, 1, 2, \ldots, m - 1,
$$

(43)

$$
|a|^2 \geq \frac{4(N-1)^2|a_m|^2m^2(n + 2N - m + 1)}{(n + 1)^2(n + N + 1)} ||c_{n+2N-m+1}| |c_{n+2N-m+1}| \quad \text{if } n = m, m + 1, \ldots, N - 1,
$$

$$
|a|^2 \geq \frac{4(N-1)^2|a_m|^2m^2(n + 2N - m + 1)}{(n + N + 1)N^2} ||c_{n+2N-m+1}| |c_{n+2N-m+1}| \quad \text{if } n \geq N.
$$

Observe that (43) holds if $|a| \geq 2\sqrt{2}(N-1)|a_m|$ for all $m = 1, 2, \ldots, N - 1$. This completes the proof.

□

Corollary 3.4. Let $f(z) = \sum_{n=1}^{N-1} a_n z^n$ ($n \geq 2$), $g \in H^\infty$ and T_{g+f} be a hyponormal operator. If $|a| \geq 2\sqrt{2}(N-1)|A|$, where $A := \max\{|a_i| : 1 \leq i \leq N - 1\}$ and $h(z) = f(z) + az^N$, then T_{g+h} is hyponormal.

Proof. This follows from Proposition 1.2 and Theorem 3.3. □

Example 3.5. Consider the polynomial

$$
\varphi(z) = 2z^2 + 2\overline{z} + 4z + z^2.
$$

Then (2) shows that T_{φ} is hyponormal. Put $\psi(z) = 2z^2 + 2\overline{z} + 4z + z^2 + 32z^3$. Then Corollary 3.4 shows that T_{ψ} is hyponormal.

Acknowledgement. The author would like to thank the referee for his/her precious comments and advice.
References

Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail address: shwang@skku.edu