NORM ESTIMATES AND UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS

Saminathan Ponnusamy and Toshiyuki Sugawa

Abstract. Norm estimates of the pre-Schwarzian derivatives are given for meromorphic functions in the outside of the unit circle. We deduce several univalence criteria for meromorphic functions from those estimates.

1. Introduction

Let \(\mathcal{A} \) denote the set of analytic functions \(f \) in the unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) normalized so that \(f(0) = 0 \) and \(f'(0) = 1 \). The set \(\mathcal{S} \) of univalent functions in \(\mathcal{A} \) has been intensively studied by many authors. It is well recognized that the set \(\Sigma \) of univalent meromorphic functions \(F \) in the domain \(\Delta = \{ \zeta : |\zeta| > 1 \} \) plays an indispensable role in the study of \(\mathcal{S} \).

In parallel with the analytic case, we consider the set \(\mathcal{M} \) of meromorphic functions in \(\Delta \) with the expansion (1.1) around \(\zeta = \infty \). For some technical reason, we also consider the set \(\mathcal{M}_n \) of functions \(F \) in \(\Sigma \) of the form

\[
F(\zeta) = \zeta + \sum_{n=0}^{\infty} b_n \zeta^{-n}
\]

(1.1)

for each nonnegative integer \(n \). Note that \(\mathcal{M}_0 = \mathcal{M} \).

Practically, it is an important problem to determine univalence of a given function in \(\mathcal{A} \) or in \(\mathcal{M} \). The best known conditions for univalence are probably those involving pre-Schwarzian or Schwarzian derivatives, which are defined by

\[
T_f = \frac{f''}{f'} \quad \text{and} \quad S_f = \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2.
\]

Received March 19, 2007; Revised August 22, 2007.

2000 Mathematics Subject Classification. Primary 30C55; Secondary 30F60.

Key words and phrases. univalence criterion, pre-Schwarzian derivative.

The second author was partially supported by NBHM (DAE, India) grant and JSPS Grant-in-Aid for Scientific Research (B), 17340039.
We define quantities for functions \(f \in \mathcal{A} \) and \(F \in \mathcal{M} \) by
\[
B(f) = \sup_{|z| < 1} (1 - |z|^2)|zT_f(z)|,
\]
\[
B^*(F) = \sup_{|\zeta| > 1} (|\zeta|^2 - 1)|\zeta T_F(\zeta)|,
\]
\[
N(f) = \sup_{|z| < 1} (1 - |z|^2)^2|S_f(z)|,
\]
\[
N^*(F) = \sup_{|\zeta| > 1} (|\zeta|^2 - 1)^2|S_F(\zeta)|.
\]

Note that these quantities may take \(\infty \) as their values. For example, if \(F \) has a pole at a finite point, then \(B^*(F) = \infty \). Those functions with finite norms constitute complex Banach spaces, which play a fundamental role in the universal Teichmüller space. See [19] for a survey on the universal Teichmüller space.

If \(f \in \mathcal{A} \) and \(F \in \mathcal{M} \) have the relation \(f(z) = 1/F(1/z) \), then we can easily see that the relation
\[
(1 - |z|^2)^2S_f(z) = (|\zeta|^2 - 1)^2S_F(\zeta)
\]
holds for \(z = 1/\zeta \). In particular, we have \(N(f) = N^*(F) \).

Nehari [18] proved the following univalence criteria except for the quasiconformal extension property, which is due to Ahlfors and Weill [1].

Theorem A. Every \(f \in \mathcal{I} \) satisfies \(N(f) \leq 6 \). Conversely, if \(f \in \mathcal{A} \) satisfies \(N(f) \leq 2 \), then \(f \) must be univalent. Moreover, if \(N(f) \leq 2k < 2 \), then \(f \) extends to a \(k \)-quasiconformal mapping of the extended plane. The constants 6 and 2 are best possible. The same is true for meromorphic \(F \).

Here and hereafter, a quasiconformal mapping \(g \) is called \(k \)-quasiconformal if its Beltrami coefficient \(\mu = g_\bar{z}/g_z \) satisfies \(\|\mu\|_\infty \leq k \). An extensive survey on those univalent functions in \(\mathcal{I} \) or \(\Sigma \) which extend to quasiconformal mappings of the Riemann sphere was recently supplied by Krushkal [16].

Though \(z f'(z)/f(z) = \zeta F'(\zeta)/F(\zeta) \), there is no such a simple relation between \(zT_f(z) \) and \(\zeta T_F(\zeta) \), and thus, between \(B(f) \) and \(B^*(F) \) for \(f(z) = 1/F(\zeta) \), \(\zeta = 1/z \). Indeed, we have the formula
\[
F'(\zeta) = \left(\frac{z}{f(z)} \right)^2 f'(z),
\]
which leads to
\[
\frac{\zeta F''(\zeta)}{F'(\zeta)} = 2 \left(1 - \frac{zf'(z)}{f(z)} \right) + \frac{zf''(z)}{f'(z)}.
\]
Nevertheless, it is rather surprising that formally the same conclusion can be deduced for \(f \) and \(F \). Compare Theorem B with Theorem C.
Theorem B. Every $f \in \mathcal{S}$ satisfies $B(f) \leq 6$. Conversely, if $f \in \mathcal{A}$ satisfies $B(f) \leq 1$, then $f \in \mathcal{S}$. Moreover, if $B(f) \leq k < 1$, then f extends to a k-quasiconformal mapping of the extended plane. The constants 6 and 1 are best possible.

The sufficiency of univalence and quasiconformal extendibility is due to Becker [7]. The sharpness of the constant 1 is due to Becker and Pommerenke [9]. The sharp inequality $B(f) \leq 6$ follows from a standard inequality appearing in coefficient estimation (see, e.g., [10, Theorem 2.4]).

Theorem C. Every $F \in \Sigma$ satisfies $B^*(F) \leq 6$. Conversely, if $F \in \mathcal{M}$ satisfies $B^*(F) \leq 1$, then $F \in \Sigma$. Moreover, if $B^*(F) \leq k < 1$, then F extends to a k-quasiconformal mapping of the extended plane. The constants 6 and 1 are best possible.

The sufficiency of univalence and quasiconformal extendibility is due to Becker [8]. The sharpness of the constant 1 is again due to Becker and Pommerenke [9]. On the other hand, the estimate $B^*(F) \leq 6$ lies deeper. Avhadiev [4] first showed the sharp inequality $B^*(F) \leq 6$ by appealing to Goluzin’s inequality (see [11, p. 139]).

Note that many authors use a different norm for the pre-Schwarzian derivative of $f \in \mathcal{A}$, namely, $\|T_f\| = \sup_{|z| < 1} (1 - |z|^2)|T_f(z)|$, see [12], [13], [15] and [20]. By definition, we observe $B(f) \leq \|T_f\|$. The norm $\|T_f\|$ has some advantage such as invariance properties. For meromorphic functions, however, the corresponding norm is not suitable (see [19, §4.2]).

Recall that a plane domain $\Omega \subset \mathbb{C}$ is called hyperbolic if $\partial \Omega$ contains at least two points. The uniformization theorem ensures existence of the (complete) hyperbolic metric $\rho_{\Omega}(w)|dw|$ on Ω with constant Gaussian curvature -4. Let Ω be a hyperbolic plane domain such that $1 \in \Omega$ but $0 \notin \Omega$ and set

$$\Pi(\Omega) = \{ F \in \mathcal{M} : F'(\zeta) \in \Omega \text{ for all } \zeta \in \Delta \}.$$

Set also $\Pi_n(\Omega) = \Pi(\Omega) \cap \mathcal{M}_n$ for $n = 0, 1, 2, \ldots$.

In [14], the quantity

$$W(\Omega) = \sup_{w \in \Omega} \frac{1}{|w|\rho_{\Omega}(w)}$$

is studied and called the circular width of Ω. Note that the circular width can also be expressed by $W(\Omega) = \sup_{z \in \mathbb{D}} (1 - |z|^2)|p'(z)/p(z)|$, where $p : \mathbb{D} \to \Omega$ is any analytic universal covering projection of \mathbb{D} onto Ω (We do not demand the condition $p(0) = 1$). For concrete values of circular widths of specific domains, see [14].

One of our main results in the present paper is an estimate of $B^*(F)$ for $F \in \Pi_n(\Omega)$. The proof of the following theorem will be given in Section 2.
Theorem 1. Let Ω be a hyperbolic domain such that $1 \in \Omega$ but $0 \notin \Omega$. For every $F \in \Pi_n(\Omega)$, $n \geq 0$, the inequality
\[B^*(F) \leq C_n W(\Omega) \]
holds, where C_n are the constants given by
\[C_0 = 2 \text{ and } C_n = \sup_{0 < r < 1} \frac{(n + 1)(1 - r^2)r^{n-1}}{1 - r^{2n+2}}, \quad n \geq 1. \]

As we shall show later (see Proposition 5), we have $C_1 = 2$ and $1 < C_n < (n + 1)/n$ for $n \geq 2$. We note that an analytic counterpart of this theorem is known and it is much simpler to prove (see [13, Theorem 4.1]);
\[B(f) \leq \|Tf\| \leq W(\Omega) \]
holds for $f \in A$ with $f'(\mathbb{D}) \subset \Omega$.

The univalence criterion in the following is due to Aksent’ev [2] (see also [6, p. 11]). Later, Krzyż [17] gave quasiconformal extensions.

Theorem D (Aksent’ev, Krzyż). Let $0 \leq k \leq 1$. If $F \in M$ satisfies the inequality
\[|F'(\zeta) - 1| \leq k, \quad |\zeta| > 1, \]
then F is univalent. Furthermore, if $k < 1$, then F extends to a k-quasiconformal mapping of the extended plane. The radii 1 and k are best possible.

The above criterion implies univalence of $F \in M$ when the range of F' is contained in the disk $|w - 1| < 1$. We remind the reader of the fact that the Noshiro-Warschawski theorem asserts that the condition $\Re f' > 0$ is sufficient for $f \in A$ to be univalent (cf. [10, Theorem 2.16]). However, the meromorphic counterpart does not hold. Moreover, the range of F' cannot be enlarged to any disk of the form $|w - r| < r$, $r > 1$, to ensure univalence of F (Aksent’ev and Avhadiev [3], see also §4).

Applying Theorem 1 to specific domains Ω, we have several results similar to Theorem D. The following are a couple of examples. Note that the univalence criteria in Theorems 2 and 3 for the case $n = 0$ were first given by Avhadiev and Aksent’ev [5].

Let x_m be the unique solution to the equation
\[2F_1(1, -\frac{1}{m}; 1 - \frac{1}{m}; x) = \frac{1}{2} \]
in the interval $0 < x < 1$ for each integer $m \geq 2$ (see Section 4 for details). Put also $x_1 = x_2$.

Theorem 2. Let $n \geq 0$ and $0 \leq k \leq 1$. Suppose that a function $F \in M_n$ satisfies the condition
\[|\arg F'(\zeta)| \leq \frac{kn}{4C_n}, \quad |\zeta| > 1, \]
then \(F \) must be univalent. Furthermore, if \(k < 1 \), then \(F \) extends to a \(k \)-quasiconformal mapping of the extended plane. As for univalence, the constant \(\pi/(4C_n) \) cannot be replaced by any larger number than \((4/\pi) \arctan x_{n+1} \).

Note that \(x_1 = x_2 \approx 0.4198 \) and that \((4/\pi) \arctan x_1 \approx 0.506057 \approx 1.28866(\pi/8) \).

In the following univalence criterion, \(F' \) is even allowed to take values with negative real part. Let \(\beta_m \) be the unique solution to the equation
\[
\frac{2\beta}{\pi/4} \int_0^{\pi/4} (\cot x)^{1/m} e^{2\beta(x-\pi/4)} dx = 1
\] in \(0 < \beta < \infty \) for each integer \(m \geq 2 \) (see Example 11 in Section 4). Set \(\beta_1 = \beta_2 \).

Theorem 3. Let \(n \geq 0 \) and \(0 \leq k \leq 1 \). Suppose that a function \(F \in \mathcal{M}_n \) satisfies the condition
\[
|\log |F'_{\infty}|| \leq \frac{k\pi}{4C_n}, \quad |\zeta| > 1,
\]
then \(F \) must be univalent. Furthermore, if \(k < 1 \), then \(F \) extends to a \(k \)-quasiconformal mapping of the extended plane. As for univalence, the constant \(\pi/(4C_n) \) cannot be replaced by any larger number than \(\pi\beta_{n+1}/2 \).

A numerical computation gives \(\pi\beta_{1}/2 \approx 0.719122 \approx 1.83123(\pi/8) \). These results can also be translated into those for the functions \(f \in \mathcal{A} \) by using the relation (1.2). The proofs of the above theorems and slightly more refined results will be presented in Section 5.

2. Proof of Theorem 1

Let \(\Omega \) be a plane domain with \(1 \in \Omega \) and \(0, \infty \in \hat{\mathbb{C}} \setminus \Omega \) and let \(p \) be an analytic universal covering map of \(\mathbb{D} \) onto \(\Omega \) with \(p(0) = 1 \). Let \(F \in \Pi_\Omega(\Omega) \) be given. When \(n = 0 \), the function \(F \) can be expressed in the form \(F = F_0 + b_0 \), where \(F_0 \in \mathcal{M}_1 \) and \(b_0 \) is a constant and hence \(F_0 \in \Pi_\Omega(\Omega) \). Recall that \(C_0 = C_1 = 2 \). Therefore, we may further assume that \(n \geq 1 \).

Let \(\omega : \mathbb{D} \to \mathbb{D} \), \(\omega(0) = 0 \), be the lift of the mapping \(z \mapsto F'(1/z) \) of \(\mathbb{D} \) into \(\Omega \) via the covering map \(p : \mathbb{D} \to \Omega \), namely,
\[
F'(\frac{1}{z}) = p(\omega(z)), \quad |z| < 1.
\]

Since \(F \in \mathcal{M}_n \), it can be expressed in the form
\[
F(\zeta) = \zeta + \sum_{k=n}^{\infty} b_k \zeta^{-k}, \quad |\zeta| > 1,
\]
we have

$$F'(1/z) = 1 - \sum_{k=n}^{\infty} k b_k z^{k+1} = 1 - \sum_{k=n+1}^{\infty} (k - 1) b_{k-1} z^{k}, \quad |z| < 1.$$

In particular, ω has a zero of at least order $n + 1$ at the origin. This implies that the function $\varphi(z) = \omega(z)/z^{n+1}$ is analytic and satisfies $|\varphi(z)| \leq 1$ by the maximum modulus principle. We now apply the Schwarz-Pick lemma to the function φ to get

$$|\varphi'(z)| \leq \frac{1 - |\varphi(z)|^2}{1 - |z|^2}, \quad |z| < 1,$$

and equivalently,

$$|z \varphi'(z) - (n + 2) \omega(z)| \leq \frac{|z|^{2n+2} - |\omega(z)|^2}{|z|^n(1 - |z|^2)}, \quad |z| < 1.$$

In particular, we obtain

$$|z \omega'(z)| \leq (n + 2)|\omega(z)| + \frac{|z|^{2n+2} - |\omega(z)|^2}{|z|^n(1 - |z|^2)}, \quad |z| < 1.$$

The last inequality can be expressed by

$$|z|^{2n+2} |\omega'(z)| \leq (1 - |\omega(z)|^2) F(|z|, |\omega(z)|), \quad |z| < 1,$$

where the function $F(r, s)$ is defined by

$$F(r, s) = \frac{(n + 1)(1 - r^2)r^n s + r^{2n+2} - s^2}{r^{n+2}(1 - s^2)}.$$

Since $|\varphi(z)| \leq 1$, we see that $|\omega(z)| \leq |z|^{n+1}$ holds. We now show the following elementary result.

Lemma 4.

$$F(r, s) \leq F(r, r^{n+1}) = \frac{(n + 1)(1 - r^2)r^{n-1}}{1 - r^{2n+2}}, \quad 0 \leq s \leq r^{n+1}.$$

Proof. We first see the inequality

$$\frac{\partial F}{\partial s}(r, s) = \frac{1 + s^2}{r^{n+2}(1 - s^2)^2} \left[(n + 1)r^n(1 - r^2) - 2(1 - r^{2n+2}) \right] \frac{s}{1 + s^2} \right] \geq \frac{1 + s^2}{r^{n+2}(1 - s^2)^2} \left[(n + 1)r^n(1 - r^2) - 2(1 - r^{2n+2}) \right] \frac{r^{n+1}}{1 + r^{2n+2}} \right]$$

$$= \frac{(1 + s^2)}{r^2(1 - s^2)(1 + r^{2n+2})} G(r), \quad 0 \leq s \leq r^{n+1},$$
because the function \(s/(1 + s^2) \) is increasing in \(0 < s < 1 \) and \(s \leq r^{n+1} \) is assumed. Here,

\[
G(r) = (n + 1)(1 - r^2)(1 + r^{2n+2}) - 2r(1 - r^{2n+2})
\]

\[
= (1 - r^2) \left[(n + 1)(1 + r^{2n+2}) - 2r \sum_{j=0}^{n} r^{2j} \right]
\]

\[
= (1 - r^2) \left[(n + 1)(1 + r^{2n+2}) - r \sum_{j=0}^{n} (r^{2j} + r^{2n-2j}) \right]
\]

\[
= (1 - r^2) \sum_{j=0}^{n} \left(1 + r^{2n+2} - r(r^{2j} + r^{2n-2j}) \right)
\]

\[
= (1 - r^2) \sum_{j=0}^{n} (1 - r^{2j+1})(1 - r^{2n+1-2j}) > 0.
\]

Therefore, we conclude that \((\partial F/\partial s)(r, s) > 0 \) in \(0 < s < r^{n+1} \), which implies the monotonicity of the function \(F(r, s) \) in \(s \). Thus the inequality \(F(r, s) \leq F(r, r^{n+1}) \) holds in \(0 \leq s \leq r^{n+1} \). □

We now complete the proof of Theorem 1. By taking the logarithmic derivative of the both sides of (2.1), we have the relation

\[
-F''(1/z) = \frac{p'(\omega(z))}{p(\omega(z))} \omega'(z), \quad |z| < 1.
\]

Letting \(\zeta = 1/z \), we thus obtain

\[
(\zeta^2 - 1) \left| \frac{\zeta F''(\zeta)}{F'(\zeta)} \right| = (1 - |\zeta|^2)|\zeta|^{-1} \left| \frac{p'(\omega(z))}{p(\omega(z))} \right| |\omega'(z)|.
\]

Recall here that \(C_n \) is nothing but the supremum of \(F(r, r^{n+1}) \) over \(0 < r < 1 \).

We then make use of (2.4) and Lemma 4 to deduce the inequality

\[
(\zeta^2 - 1) \left| \frac{\zeta F''(\zeta)}{F'(\zeta)} \right| \leq C_n (1 - |\omega(z)|^2) \left| \frac{p'(\omega(z))}{p(\omega(z))} \right| F(|\zeta|, |z|^{n+1})
\]

\[
\leq C_n (1 - |\omega(z)|^2) \left| \frac{p'(\omega(z))}{p(\omega(z))} \right| W(\Omega).
\]

The assertion of the theorem now follows.

Remark. The theorem is sharp if the relation \(\rho_0 = r_0^{n+1} \) is satisfied by chance, where \(r = r_0 \) is the point where the maximum is attained in the definition of \(C_n \) and \(r = \rho_0 \) is the radius where the maximum is attained for \((1 - |z|^2)|p'(z)/p(z)| \). Let \(w_0 \) be the maximum point of \((1 - |z|^2)|p'(z)/p(z)| \) with \(|w_0| = \rho_0 \), and set \(z_0 = r_0 \). Then we choose \(\omega_0 \) so that \(\omega_0(z_0) = w_0 \) and equalities hold in (2.2).
and (2.3) at $z = z_0$ simultaneously (see the proof of Dieudonné’s lemma in [10, p. 198]). Then, we actually have $B^*(F) = C_n W(\Omega)$ in this case, where F is determined by $F'(1/z) = p(\omega_0(z))$ in $|z| < 1$.

As we mentioned in Section 1, we give some information about the constants C_n.

Proposition 5. The constants C_n given by (1.3) satisfy the following:

(2.5) \[C_0 = C_1 = 2, \quad C_2 = \frac{3\sqrt{6(\sqrt{13} - 1)}}{5 + \sqrt{13}} \approx 1.37838, \]

(2.6) \[1 < C_n < \frac{n + 1}{n}, \quad n = 2, 3, \ldots. \]

Proof. The relations in (2.5) can be checked in a straightforward way. We omit the details. We show only (2.6). Let $n \geq 2$ and set

\[g_n(x) = \frac{1 - x^{n+1}}{x^{(n-1)/2}(1 - x)}, \quad x \in (0, 1). \]

Then clearly, $C_n = (n + 1)/\inf_{0 < x < 1} g_n(x)$. First note that

\[\lim_{x \to 1} g_n(x) = n + 1. \]

Therefore, we have $C_n \geq 1$. In order to show strictness, we set $x = 1 - \varepsilon$, $\varepsilon > 0$. Then

\[g_n(1 - \varepsilon) = (n + 1) - \frac{n + 1}{2 \varepsilon} + O(\varepsilon^2), \quad \varepsilon \to 0, \]

which implies that $g_n(x)$ is smaller than $n + 1$ when $x < 1$ is close enough to 1. Therefore, $C_n > 1$.

We next show the reverse inequality. Since $g_n(x) \to +\infty$ as $x \to 0^+$, the function g_n takes its minimum at a point in $(0, 1)$. We now estimate $g_n(x)$ from below:

\[
\begin{align*}
g_n(x) &= x^{(1-n)/2} \sum_{j=0}^{n} x^j \\
&> x^{(1-n)/2} \sum_{j=0}^{n-1} x^j \\
&= x^{(1-n)/2} \sum_{j=0}^{n-1} x^j + x^{n-1-j} \\
&= \sum_{j=0}^{n-1} x^{j-(n-1)/2} + x^{(n-1)/2-j} \\
&\geq \sum_{j=0}^{n-1} 1 = n.
\end{align*}
\]
Thus we get the inequality \(\min_{0 < x \leq 1} g_n(x) > n \), which in turn implies \(C_n < (n + 1)/n \).

3. A variant of Theorem 1

We give a variant of Theorem 1 in the present section. In the following theorem, the condition \(p(0) = 1 \) for the analytic universal covering map \(p \) of \(D \) onto \(\Omega \) is required and the constant involved might not be computed easily, but the estimate is independent of \(n \) and better than Theorem 1 at least when \(n = 0 \).

Theorem 6. Let \(\Omega \) be a plane domain with \(1 \in \Omega \) but \(0, \infty \not\in \Omega \) and let \(p \) be an analytic universal covering map of the unit disk \(D \) onto \(\Omega \) with \(p(0) = 1 \).

Then, for every \(F \in \Pi(\Omega) \) the inequality

\[
B^*(F) \leq 2 \sup_{|z| < 1} \frac{|p'(z)|}{|p(z)|}
\]

holds.

Proof. The proof proceeds basically in the same line as in the previous section. In order to show that the constant is really independent of \(n \) for which \(F \in \Pi_n(\Omega) \) holds, we prove the assertion under the additional assumption that \(F \in \Pi_n(\Omega) \) for a fixed \(n \geq 1 \). We replace the inequality (2.4) by

(3.1) \((1 - |z|^2)|z|^{-1}\omega'(z)| \leq (1 - |\omega(z)|)H(|z|, |\omega(z)|), \quad |z| < 1, \)

where

\[
H(r, s) = \frac{(n + 1)(1 - r^2)r^n s + r^{2n+2} - s^2}{r^{n+2}(1 - s)^2}.
\]

Recall here that \(|\omega(z)| \leq |z|^{n+1} \) holds. Since the function \(s^2 - 2s \) is decreasing in \(0 < s < r^{n+1} \), we have

\[
\frac{\partial H}{\partial s}(r, s) = \frac{s^2 - 2s + (n + 1)(1 - r^2)r^n + r^{2n+2}}{r^{n+2}(1 - s)^2}
\]

\[
\geq \frac{2n+2 - 2r^{n+1} + (n + 1)(1 - r^2)r^n + r^{2n+2}}{r^{n+2}(1 - s)^2}.
\]

The numerator of the last term can be written in the form

\[
r^n \left[(n + 1)(1 - r^2) - 2r(1 - r^{n+1})\right]
\]

\[
= r^n (1 - r) \left[(n + 1)(1 + r) - 2r(1 + r + r^2 + \cdots + r^n)\right]
\]

\[
= r^n (1 - r) \sum_{j=0}^{n} (1 + r - 2r^{j+1}).
\]

It is now clear that \((\partial H/\partial s)(r, s) > 0 \) in \(0 < s \leq r^{n+1} \). Thus \(H(r, s) \) is increasing in \(s \) and therefore

\[
H(r, s) \leq H(r, r^{n+1}) = \frac{(n + 1)(1 - r^2)r^{n-1}}{1 - r^{n+1}} = g(r).
\]
Since
\[
g'(r) = \frac{(n + 1)r^{n-2}((n - 1)(1 - r^2) - 2r^2(1 - r^{n-1}))}{(1 - r^{n+1})^2}
\]
\[
= \frac{(n + 1)r^{n-2}(1 - r)}{(1 - r^{n+1})^2} \sum_{j=0}^{n-2} [1 - r^{j+2} + r(1 - r^{j+1})] > 0,
\]
the function \(g(r) \) is increasing and thus \(g(r) < g(1-) = 2 \) for \(0 \leq r < 1 \). Therefore, we obtain
\[
\sup_{0 < s \leq r^{n+1} < 1} H(r, s) = \sup_{0 < r < 1} g(r) = 2,
\]
which is, indeed, independent of \(n \).

The rest is same as in the previous section. We omit the details. \(\square \)

Since \(1 - r \leq 1 - r^2 = (1 + r)(1 - r) \leq 2(1 - r) \), the inequalities
\[
\sup_{|z| < 1} (1 - |z|) \left| \frac{p'(z)}{p(z)} \right| \leq W(\Omega) = \sup_{|z| < 1} (1 - |z|^2) \left| \frac{p'(z)}{p(z)} \right| \leq 2 \sup_{|z| < 1} (1 - |z|) \left| \frac{p'(z)}{p(z)} \right|
\]
hold. Thus, when \(n = 0 \), the estimate in Theorem 6 is better than that in Theorem 1.

4. Examples of non-univalent functions

In this section, we present non-univalent meromorphic functions in the class \(\mathcal{M} \) to examine our univalence criteria given in introduction. First, we introduce the example given by Aksent’ev and Avhadiev [3].

Example 7. Let \(r > 1 \) be given and set \(\Omega = \{ w \in \mathbb{C} : |w - r| < r \} \). For a number \(c \in (0, 1/2] \), we set \(\Phi = G \circ F \), where \(F(\zeta) = \zeta + c/\zeta \) and \(G(\zeta) = \zeta + (1 + c)^2/\zeta \). Then
\[
\Phi'(\zeta) = 1 - \zeta^{-2} + c\psi(\zeta^{-2}),
\]
where
\[
\psi(z) = \psi_c(z) = -\frac{(c + 3) - (c^2 + 3)z + (c^2 - c)z^2}{(1 + cz)^2}.
\]
Note that the functions \(1 - \zeta^{-2} \) and \(\psi(\zeta^{-2}) \) take the value \(0 \) at \(\zeta = \pm 1 \). Since \(\psi_c \) is uniformly bounded in \(\mathbb{D} \) and \(\psi'(1) > 0 \), in order to see that \(F'(\mathbb{D}) \subset \Omega \) for sufficiently small \(c \), it is enough to check that the (signed) curvature of the curve \(\theta \mapsto \psi(e^{i\theta}) \) is positive at \(\theta = 0 \), in other words, \(\Re (1 + z\psi''(z)/\psi'(z))/|\psi'(z)| \) is positive at \(z = 1 \). A direct computation gives
\[
1 + z\psi''(z)/\psi'(z) = \frac{3 - 10c + 2(c^2 + c)z - c^2z^2}{(3 - cz)(1 + cz)},
\]
which shows \(\Re (1 + \psi''(1)/\psi'(1))/|\psi'(1)| > 0 \) for a small enough \(c > 0 \) as required.

We see now that \(\Phi \) is not univalent in \(\Delta \) by observing that the two points \(\pm i(1 + c + \sqrt{1 + 6c + c^2})/2 \) in \(\Delta \) are zeros of \(\Phi \).
The above example is qualitatively very nice but somewhat implicit because it is not simple to give a right value of \(c \) for a given \(r > 1 \). The next two examples are more concrete.

Example 8. We consider the function \(F_m \in \mathcal{M} \) given by

\[
F_m(\zeta) = \zeta - 2 \sum_{j=1}^{\infty} \frac{\zeta^{1-mj}}{mj - 1}
\]

for each integer \(m \geq 2 \), where \(_2F_1(a, b; c; x) \) stands for the hypergeometric function. Note that \(F_m \) has the \(m \)-fold symmetry

\[
F_m(e^{2\pi i/m} \zeta) = e^{2\pi i/m} F_m(\zeta)
\]

and belongs to the class \(\mathcal{M}_{m-1} \). Since the function \(h_m \) defined by

\[
h_m(x) = _2F_1(1, -\frac{1}{m}; 1 - \frac{1}{m}; x) - 1 \quad (x \in (0, 1))
\]

has the properties that \(h_m \) is monotone decreasing, \(h_m(0) = 1 \) and \(\lim_{x \to 1^{-}} h_m(x) = -\infty \), there is the unique point \(x_m \) such that \(h(x_m) = 0 \) in the interval \(0 < x < 1 \). Hence, the function \(F_m \) has the \(m \) zeros \(e^{2\pi ij/m} x_m^{-1/m}, \ j = 0, 1, \ldots, m - 1 \), in \(\Delta \) and, in particular, is not univalent in \(\Delta \). On the other hand, we have

\[
F_m'(\zeta) = 1 + 2 \sum_{j=1}^{\infty} \zeta^{-mj} = p(\zeta^{-m}),
\]

where \(p(z) = (1 + z)/(1 - z) \). It is a standard fact that \(p \) maps the unit disk onto the right half-plane \(H = \{ w \in \mathbb{C} : \text{Re} w > 0 \} \). Therefore, \(F_m' \) maps \(\Delta \) onto \(H \) in an \(m \)-to-1 way and \(\text{Re} F_m' > 0 \) holds.

In particular, we have shown the following.

Proposition 9. For each integer \(n \geq 0 \), there is a non-univalent function \(F \) in the class \(\mathcal{M}_n \) such that \(\text{Re} F'(\zeta) > 0 \) in \(|\zeta| > 1 \).

Note that the function \(F_2 \) in the above example can be expressed also by

\[
F_2(\zeta) = \zeta - \log \frac{\zeta + 1}{\zeta - 1}, \quad |\zeta| > 1.
\]

A numerical computation yields, for instance,

\[
x_2 \approx 0.419798,
x_3 \approx 0.667508,
x_4 \approx 0.808289.
\]

The above functions can be used to examine univalence criteria. Note that, for a function \(F \in \mathcal{M} \), the new function

\[
F^t(\zeta) = t F\left(\frac{\zeta}{t} \right), \quad |\zeta| > 1,
\]
for \(t \in (0, 1) \) satisfies the relation \((F^t)'(\zeta) = F'(\zeta/t)\). For instance, for \(m \geq 2 \),
the function \(F^t_m(\zeta) = tF_m(\zeta/t) \) is not univalent as far as \(t^m > x_m \), because
\((\zeta/t)^{-m} = x_m \) has \(m \) roots in \(|\zeta| > 1 \) in this case. On the other hand, \((F^t_m)'\)
has the range \(\{ w \in \mathbb{C} : w = (1 + t^m z)/(1 - t^m z) \} \) for some \(z \in \mathbb{D} \) = \(\{ w \in \mathbb{C} : \)
\(|w - (1 + t^2m)/(1 - t^2m)| < 2t^m/(1 - t^2m)\} \). In this way, we have shown the
following.

Proposition 10. Let \(\Omega_s = \{ w \in \mathbb{C} : |w - (1 + s^2)/(1 - s^2)| < 2s/(1 - s^2) \} \) and \(n \geq 1 \). If \(s > x_{n+1} \), then the class \(\Pi_n(\Omega_s) \) contains non-univalent functions.

Example 11. The construction is similar to that of Example 8. First note that
the analytic function \((1 + z)/(1 - z))^{i\beta} \) gives a universal covering projection
of the unit disk onto the annulus \(\{ w = e^{-\pi \beta/2} < |w| < e^{\pi \beta/2} \} \) for a positive constant \(\beta \). Let \(G \in \mathcal{M}_{m-1} \) be the function determined by the relation
\(G'(\zeta) = ((\zeta^m + 1)/(|\zeta^m - 1|))^{i\beta} \) for an integer \(m \geq 2 \). Then \(G \) also has the \(m \)-fold symmetry. Let \(h_\beta(z) = 1/z - \int_0^z t^{m-2}q_\beta(t^m)dt \), where \((1 + z)/(1 - z))^{i\beta} = 1 + zq_\beta \), so that \(G(\zeta) = h_\beta(1/\zeta) \). Now take any root \(\omega \) of the polynomial
\(z^m + i \) and set \(\varphi(\beta) = \omega h_\beta(\omega) \). Since \(1 + i \beta xq_\beta(ix) = ((1 + ix)/(1 - ix))^{i\beta} = \exp(2i\beta \arctan(ix)) = \exp(-2\beta \arctan x) \), we have for \(0 < r \leq 1 \)
\begin{align*}
\omega h_\beta(\omega r) &= \frac{1}{r} + \int_0^r it^{m-2}q_\beta(-it^m)dt \\
&= \frac{1}{r} - \int_0^r (\exp(2\beta \arctan(t^m)) - 1) t^{-2}dt.
\end{align*}
Thus,
\begin{align*}
\varphi(\beta) &= 1 - \int_0^1 (\exp(2\beta \arctan(t^m)) - 1) t^{-2}dt.
\end{align*}
Since \(\varphi(0) = 1, \varphi(+\infty) = -\infty \) and
\begin{align*}
\varphi'(\beta) &= -\int_0^1 t^{-2} \arctan(t^m) \exp(2\beta \arctan(t^m))dt < 0,
\end{align*}
there exists a unique \(\beta_m \) such that \(\varphi(\beta_m) = 0 \). We now simplify the equation
\(\varphi(\beta) = 0 \). Performing integration by parts and then setting \(x = \arctan(t^m) \), we have
\begin{align*}
\varphi(\beta) &= e^{\pi \beta/2} - 2\beta \int_0^{\pi/4} e^{2\beta x}(\tan x)^{-1/m}dx \\
&= e^{\pi \beta/2} \left(1 - 2\beta \int_0^{\pi/4} e^{2\beta(x-\pi/4)}(\cot x)^{1/m}dx \right).
\end{align*}
Thus we now have arrived at the form in (1.5).

We now fix any \(\beta > \beta_m \). Then \(\omega h_\beta(\omega r) > 0 \) for a small enough \(r > 0 \)
whereas \(\varphi(\beta) = \omega h_\beta(\omega) < 0 \). Therefore, there exists an \(\rho \in (0, 1) \) such that \(G(1/\omega \rho) = h_\beta(\omega \rho) = 0 \). In particular, \(G \) has at least \(m \) zeros in \(\Delta \) and thus
is not univalent. By the above observations, we have the following proposition.
Proposition 12. Let n be an integer with $n \geq 1$ and let $\beta > \beta_{n+1}$. Then there exists a non-univalent function $G \in \mathcal{H}_n$ such that $e^{-\pi \beta/2} < |G'(\zeta)| < e^{\pi \beta/2}$ for $|\zeta| > 1$.

By a numerical computation, one has

\[
\beta_2 \approx 0.457807,
\beta_3 \approx 0.786518,
\beta_4 \approx 1.03144.
\]

5. Applications to univalence criteria

We combine Theorem 1 or Theorem 6 with Theorem C to deduce several univalence criteria for functions in \mathcal{M}. The same method can be applied also to \mathcal{H}_n for $n \geq 1$, but we do not go into details here. In order to make statements concise, we introduce the notation $\Sigma(k)$ to designate the set of those functions in Σ which can be extended to k-quasiconformal mappings of the extended plane. For $k = 1$, simply we define $\Sigma(1) = \Sigma$ for convenience.

To examine Theorems 1 and 6, we assume Ω to be a disk containing 1 but not containing 0. Then we can express Ω as $D(a, \rho) = \{ w : |w - a| < \rho \}$, where $0 < \rho \leq |a|$ and $|1 - a| < \rho$. If we put $p(z) = a + \rho z$, then we compute

\[
W(D(a, \rho)) = \sup_{z \in D} (1 - |z|^2) \frac{\rho}{|a + \rho z|}
= \sup_{0 < r < 1} (1 - r^2) \frac{\rho}{|a| - pr}
= \frac{\rho}{|a|} \sup_{0 < r < 1} \frac{1 - r^2}{1 - (\rho/|a|)^2}
= \frac{2\rho/|a|}{1 + \sqrt{1 - (\rho/|a|)^2}},
\]

where we have made a standard but tedious computation at the final step (see, for instance, [15, Lemma 4.2]). Therefore, by Theorem 1, we conclude that

\[
(5.1) \quad B^*(F) \leq \frac{2C_n \rho/|a|}{1 + \sqrt{1 - (\rho/|a|)^2}}
\]

for $F \in \Pi_n(D(a, \rho))$. It is easy to see that the right-hand side of the last inequality is less than or equal to k if and only if $\rho/|a| \leq 4C_n k/(4C_n^2 + k^2)$. Thus we can show the following by appealing to Theorem C.

Theorem 13. Let n be an integer with $n \geq 0$ and $a \in \mathbb{C}$, $\rho > 0$ satisfy $\rho \leq |a|$ and $|a - 1| < \rho$. Suppose that

\[
\frac{\rho}{|a|} \leq \frac{4C_n k}{4C_n^2 + k^2}
\]

for a constant k with $0 \leq k \leq 1$. Then $\Pi_n(D(a, \rho)) \subset \Sigma(k)$.
We recall that Theorem D gives the stronger assertion $\Pi(\mathbb{D}(1,k)) \subset \Sigma(k)$ when $a = 1$ and $\rho = k$.

We next consider to apply Theorem 6. It is not simple to treat the case when a is not real. Therefore, we further assume that $a > 0$ for simplicity. Then the conformal map p of \mathbb{D} onto $\mathbb{D}(a,\rho)$ with $p(0) = 1$ can be taken in the form $p(z) = (1 + Az)/(1 + Bz)$, where $-1 < B < A \leq 1$. A simple computation gives us the relations $A = (\rho^2 - a^2 + a)/\rho$ and $B = (1 - a)/\rho$.

First observe the expression (see [15, Lemma 4.1])

$$W = \sup_{z \in \mathbb{D}} |p'(z)/p(z)| = \begin{cases} (A - B) \sup_{0 < r < 1} \frac{1 - r}{(1 - Ar)(1 - Br)} & \text{if } A + B \leq 0, \\ (A - B) \sup_{0 < r < 1} \frac{1 - r}{(1 + Ar)(1 + Br)} & \text{if } A + B \geq 0. \end{cases}$$

At any event, we can easily see that $W = A - B$. Therefore, by Theorem 6, we obtain the estimate

$$(5.2) \quad B^*(F) \leq 2(A - B) = 2(\rho^2 - (a - 1)^2)/\rho$$

for $F \in \Pi(\mathbb{D}(a,\rho))$. In the same way as above, we have the following.

Theorem 14. Let $a > 0$, $\rho > 0$ satisfy $\rho \leq a$ and $|a - 1| < \rho$. Suppose that

$$\rho^2 - (a - 1)^2 \leq \frac{kp}{2}$$

for a constant k with $0 \leq k \leq 1$. Then $\Pi(\mathbb{D}(a,\rho)) \subset \Sigma(k)$.

As an example, let us consider the disk $\Omega_s = \{w \in \mathbb{C} : |w - (1+s^2)/(1-s^2)| < 2s/(1-s^2)\}$. In this case, $A = s, B = -s$, and therefore,

$$\frac{4\rho/|a|}{1 + \sqrt{1 - (\rho/|a|)^2}} = 4s = 2(A - B),$$

which means that the estimates (5.1) with $n = 0$ and (5.2) are identical in this case. In particular, Theorems 13 and 14 both imply that $\Pi(\Omega_s) \subset \Sigma$ if $s \leq 1/4$. This is, however, weaker than Theorem D because $\Omega_s \subset \mathbb{D}(1,1)$ for $s \leq 1/3$. On the other hand, Proposition 10 implies that $\Pi(\Omega_s)$ is not contained in Σ for $s > x_2 \approx 0.4198$.

However, Theorems 13 and 14 may imply the inclusion $\Pi(\mathbb{D}(a,\rho)) \subset \Sigma$ for a disk $\mathbb{D}(a,\rho)$ which is not contained in $\mathbb{D}(1,1)$. For instance, by Theorem 14, we see that $\Pi(\mathbb{D}(3/2,4/5)) \subset \Sigma$ but $\mathbb{D}(3/2,4/5)$ is not a subset of $\mathbb{D}(1,1)$. By the way, this is not implied by Theorem 13.

We next recall basic results for the values of $W(\Omega)$ for special domains Ω. We set

$$S(\alpha, \gamma) = \{w \in \mathbb{C} : |\arg w - \gamma| < \pi\alpha/2\}$$

$$A(r_1, r_2) = \{w \in \mathbb{C} : r_1 < |w| < r_2\},$$

where $0 < \alpha \leq 2$, $\gamma \in \mathbb{R}$ and $0 < r_1 < r_2 < \infty$. The domain $S(\alpha, \gamma)$ is called a sector with opening $\pi\alpha$ and vertex at 0. The domain $A = A(r_1, r_2)$ is
called a round annulus centered at 0 with modulus \(m = \log(r_2/r_1) \). We write \(m = \text{mod } A \). Then we have the following.

Lemma 15 ([14]).

\[
W(S(\alpha, \gamma)) = 2\alpha, \quad 0 < \alpha \leq 2,
\]

\[
W(A(r_1, r_2)) = \frac{2}{\pi} \log \frac{r_2}{r_1} = \frac{2}{\pi} \text{mod } A(r_1, r_2), \quad 0 < r_1 < r_2 < \infty.
\]

Combining this lemma with Theorems 1 and C, we can prove the following two results. Theorems 2 and 3 are just special cases of them up to non-univalent examples, which were supplied in the previous section.

Theorem 16. Let \(0 \leq k \leq 1 \). If \(\Omega \) is a sector with opening \(k\pi/4 \) and vertex at 0 such that \(1 \in \Omega \), then \(\Pi(\Omega) \subset \Sigma(k) \).

Theorem 17. Let \(0 \leq k \leq 1 \). If \(\Omega \) is a round annulus centered at 0 with modulus \(k\pi/4 \) such that \(1 \in \Omega \), then \(\Pi(\Omega) \subset \Sigma(k) \).

References

Saminathan Ponnusamy
Department of Mathematics
Indian Institute of Technology Madras
Chennai- 600 036, India
E-mail address: samy@iitm.ac.in

Toshiyuki Sugawa
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
*Current address:
Graduate School of Information Sciences
Tohoku University
Sendai 980-8579, Japan
E-mail address: sugawa@math.is.tohoku.ac.jp