LIE BIALGEBRAS ARISING FROM POISSON BIALGEBRAS

SEI-QWON OH AND EUN-HEE CHO

Abstract. It gives a method to obtain a natural Lie bialgebra from a Poisson bialgebra by an algebraic point of view. Let \(g \) be a coboundary Lie bialgebra associated to a Poission Lie group \(G \). As an application, we obtain a Lie bialgebra from a sub-Poisson bialgebra of the restricted dual of the universal enveloping algebra \(U(g) \).

Introduction

Assume throughout that \(G \) denotes a connected and simply connected Lie group with Lie algebra \(g \), \(O(G) \) the coordinate ring of \(G \) and \(U(g) \) the universal enveloping algebra of \(g \).

If \(G \) is a Poisson Lie group, then \(O(G) \) is a Poisson Hopf algebra and \(g \) becomes a Lie bialgebra. Conversely, if \(g \) has a Lie bialgebra structure, then \(G \) becomes a Poisson Lie group by [2, Chapter 1]. On the other hand, if \(U(g) \) has a co-Poisson Hopf structure with co-Poisson bracket \(\delta \), then \((g, \delta_g) \) becomes a Lie bialgebra. Conversely if \((g, \delta) \) is a Lie bialgebra, then the cobracket \(\delta \) extends uniquely to a Poisson co-bracket on \(U(g) \), which makes \(U(g) \) into a co-Poisson Hopf algebra (see [2, Proposition 6.2.3]). Moreover, the coordinate ring \(O(G) \) is isomorphic as a Hopf algebra to the restricted dual \(U^\circ(g) \) of \(U(g) \) and it is sometimes more convenient to work on \(U^\circ(g) \) than to do on \(O(G) \). For instance, Hodges and his colleagues worked on restricted duals to obtain mathematical properties of a quantum group in [3] and [4]. Hence it makes sense mathematically to study a relationship between Lie bialgebras and restricted duals of their enveloping algebras.

Let \((A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta) \) be a Poisson bialgebra and \(m = \ker \epsilon \). In 1.5, we prove by an algebraic point of view that the pair \(((m/m^2)^*, m/m^2) \) is a natural Lie bialgebra obtained from \((A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta) \).

Let \(g \) be a coboundary Lie bialgebra. The restricted dual \(A \) of \(U(g) \) is the vector space spanned by all coordinate functions \(c^M_{f,v} \), where \(M \) is a finite
dimensional left $U(g)$-module and $f \in M^*, v \in M$. Here we give an explicit Poisson bracket on A that is the Sklyanin Poisson bracket. Let B be a sub-Poisson bialgebra of the restricted dual A. Then, as an application of 1.5, we obtain a Lie bialgebra $((m_B/m_B^2)^*, m_B/m_B^2)$ arising from B, where m_B is the kernel of the counit in B.

Assume throughout that k denotes a field of characteristic zero, all vector spaces considered here are over k and if A is a bialgebra with comultiplication Δ, then we use Sweedler’s notation

$$\Delta(a) = \sum_{(a)} a' \otimes a'', \quad a \in A.$$

Recall that a Poisson algebra A is a k-algebra with k-bilinear map $\{\cdot, \cdot\}$, called a Poisson bracket, such that

1. A is a Lie algebra over k.

2. $\{ab, c\} = a\{b, c\} + \{a, c\}b$ for all $a, b, c \in A$. (Leibniz rule)

1. Lie bialgebra arising from Poisson bialgebra

Definition 1.1. A Poisson algebra A with Poisson bracket $\{\cdot, \cdot\}$ is said to be a Poisson bialgebra if A is also a bialgebra $(A, \iota, m, \epsilon, \Delta)$ over k such that

1. $\Delta(\{a, b\}) = \{\Delta(a), \Delta(b)\}_{A \otimes A}$

for all $a, b \in A$, where the Poisson bracket $\{\cdot, \cdot\}_{A \otimes A}$ on $A \otimes A$ is defined by

$$\{a \otimes b, c \otimes d\}_{A \otimes A} = \{a, c\} \otimes bd + ac \otimes \{b, d\}$$

for all $a, b, c, d \in A$.

A Poisson bialgebra A is often denoted by $A = (A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$. If a Poisson bialgebra A is a Hopf algebra, then A is called a Poisson Hopf algebra (see [2, 6.2.1] and [1, III.5.3]).

Lemma 1.2. If $(A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$ is a Poisson bialgebra, then $\epsilon(\{a, b\}) = 0$ for all $a, b \in A$.

Proof. By (2), we have that

$$\{a, b\} = m \circ (\epsilon \otimes \text{id}_A) \circ \Delta(\{a, b\})$$

$$= m \circ (\epsilon \otimes \text{id}_A)(\sum \{a', b'\} \otimes a''b'' + a'b' \otimes \{a'', b''\})$$

$$= \sum \epsilon(\{a', b'\})a''b'' + \sum \epsilon(a'b')\{a'', b''\}$$

$$= \sum \epsilon(\{a', b'\})a''b'' + \{a, b\}$$

for $a, b \in A$ and thus we have $\sum \epsilon(\{a', b'\})a''b'' = 0$. Hence

$$0 = \epsilon(\sum \epsilon(\{a', b'\})a''b'') = \sum \epsilon(\{a', b'\})\epsilon(a'')\epsilon(b'') = \epsilon(\{a, b\}),$$
as claimed. □

Corollary 1.3. In a Poisson bialgebra \((A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)\), set \(\ker \epsilon = m\). Then \(m/m^2\) is a Lie algebra with Lie bracket

\[
[a + m^2, b + m^2] = [a, b] + m^2, \quad a, b \in m.
\]

Proof. The Lie bracket (3) is well-defined by Lemma 1.2. Clearly \((m/m^2, [\cdot, \cdot])\) is a Lie algebra.

1.4. Let \((A, \iota, m, \epsilon, \Delta)\) be a bialgebra and set

\[A^\circ = \{f \in A^* \mid f(I) = 0\} \text{ for some ideal } I \text{ of } A \text{ such that } \dim(A/I) < \infty.\]

Then \(A^\circ\), called the restricted dual of \(A\), becomes a bialgebra with bialgebra structure: For \(f, g \in A^\circ\) and \(a, b \in A\),

\[(fg)(a) = \sum f(a')g(a''), \quad \Delta(f)(a \otimes b) = f(ab).\]

Denote

\[P_\epsilon(A^\circ) = \{f \in A^\circ \mid f(ab) = \epsilon(a)f(b) + f(a)\epsilon(b), \quad \forall a, b \in A\}.\]

That is, \(P_\epsilon(A^\circ) = \{f \in A^\circ \mid \Delta(f) = \epsilon \otimes f + f \otimes \epsilon\}\). It is well-known that \(P_\epsilon(A^\circ)\) is a Lie algebra with Lie bracket

\[[f, g] = fg - gf\]

for all \(f, g \in P_\epsilon(A^\circ)\).

Denote \(m = \ker \epsilon\) and let \(i : m \rightarrow A\) be the canonical injection. Then \(i^*\) is a surjection of \(A^*\) onto \(m^*\). Let \(f \in \ker i^*\). Then \(f(a - \epsilon(a)) = 0\) for all \(a \in A\) since \(f(m) = 0\) and \(a - \epsilon(a)1 \in m\). Thus \(f = f(1)\epsilon\) for \(f \in \ker i^*\). It follows that \(\ker i^* = k\epsilon\). Given \(f, g \in m^*\), choose representatives \(f' = i^{-1}(f), g' = i^{-1}(g)\). If \(f'_1 = i^{-1}(f), g'_1 = i^{-1}(g)\), then \(f'_1 = f' + \alpha \epsilon, g'_1 = g' + \beta \epsilon\) for some \(\alpha, \beta \in k\).

Thus

\[
f'_1g'_1 - g'_1f'_1 = (f' + \alpha \epsilon)(g' + \beta \epsilon) - (g' + \beta \epsilon)(f' + \alpha \epsilon)
\]

\[
= (f'g' + \beta f' + \alpha g' + \alpha \beta \epsilon) - (g'f' + \beta f' + \alpha g' + \alpha \beta \epsilon)
\]

\[
= f'g' - g'f'
\]

since \(\epsilon\) is the multiplicative identity in \(A^*\). Hence \([f, g] = i^*(f'g' - g'f')\) is independent of representatives and defines a Lie bracket on \(m^*\). Identifying \(\{f \in m^* \mid f(m^2) = 0\}\) with \((m/m^2)^*\), \((m/m^2)^*\) is a Lie subalgebra of \(m^*\) by [8, 2.1.2].

Lemma. The linear map

\[i^*|_{P_\epsilon(A^\circ)} : P_\epsilon(A^\circ) \rightarrow (m/m^2)^*, \quad f \mapsto i^*|_{P_\epsilon(A^\circ)}(f) = f|_m\]

is a Lie isomorphism.
Proof. Note that $A = k_1A \oplus m$ and if $f \in P(A^\circ)$, then $f(m^2) = 0$. Hence $i^*|_{P(A^\circ)}$ is well-defined. If $f \in \ker(i^*|_{P(A^\circ)})$, then
$$f(a_1A + a) = af(1_A) + f(a) = 0$$
for all $a \in k$ and $a \in m$. It follows that $i^*|_{P(A^\circ)}$ is injective. If $f \in m^*$ such that $f(m^2) = 0$, then f is extended to A, denoted by f', by setting
$$f'(k1_A) = 0, \quad f'|_m = f.$$ Then, for any $a, b \in k$ and $a \in m$,
$$f'((\alpha 1_A + a)(\beta 1_A + b)) = f(ab) + f(\beta a)$$
$$= \epsilon(\alpha 1_A + a)f'(\beta 1_A + b) + f'(\alpha 1_A + a)\epsilon(\beta 1_A + b).$$
Hence $f' \in P(A^\circ)$ and thus $i^*|_{P(A^\circ)}$ is surjective. Now $i^*|_{P(A^\circ)}$ is a Lie isomorphism by the definition of Lie brackets.

1.5. Let us recall the definition for Lie bialgebra in [2, 1.3] and [9, 2.1.1]. A Lie bialgebra is a pair (\mathfrak{g}, ψ), where \mathfrak{g} is a Lie algebra and $\psi : \mathfrak{g} \rightarrow \mathfrak{g} \wedge \mathfrak{g}$, called cobracket, satisfying the following conditions:

(a) The dual map $\psi^* : \mathfrak{g}^* \wedge \mathfrak{g}^* \rightarrow \mathfrak{g}^*$ makes \mathfrak{g}^* a Lie algebra.

(b) The cobracket $\psi : \mathfrak{g} \rightarrow \mathfrak{g} \wedge \mathfrak{g}$ is a 1-cocycle on \mathfrak{g} with respect to the \mathfrak{g}-module structure on $\mathfrak{g} \wedge \mathfrak{g}$ given by the adjoint action. In other words, we have that for any $a, b \in \mathfrak{g}$,
$$\psi([a, b]) = a \cdot \psi(b) - b \cdot \psi(a),$$
where
$$a \cdot (b \otimes c) = [a \otimes 1 + 1 \otimes a, b \otimes c] = [a, b] \otimes c + b \otimes [a, c].$$

In a Lie bialgebra (\mathfrak{g}, ψ), a Lie ideal \mathfrak{b} of \mathfrak{g} is said to be a Lie bialgebra ideal if $\psi(\mathfrak{b}) \subseteq \mathfrak{g} \otimes \mathfrak{b} + \mathfrak{b} \otimes \mathfrak{g}$. A Lie homomorphism $\varphi : (\mathfrak{g}, \psi) \rightarrow (\mathfrak{g}', \psi')$ is said to be a Lie bialgebra homomorphism if $(\varphi \otimes \varphi) \circ \psi = \psi' \circ \varphi$. Note that if \mathfrak{b} is a Lie bialgebra ideal of (\mathfrak{g}, ψ), then $(\mathfrak{g}/\mathfrak{b}, \overline{\psi})$ is also a Lie bialgebra. A Lie bialgebra (\mathfrak{g}, ψ) is frequently denoted by $(\mathfrak{g}, \mathfrak{g}^*)$.

Theorem. Let $(A, \iota, m, \{\cdot, \cdot\}, \epsilon, \Delta)$ be a Poisson bialgebra and let $m = \ker \epsilon$. Then $(\mathfrak{m}/\mathfrak{m}^2)^*, \mathfrak{m}/\mathfrak{m}^2$ is a Lie bialgebra.

Proof. We will show that the pair $((\mathfrak{m}/\mathfrak{m}^2)^*, \psi)$ is a Lie bialgebra, where $\psi : (\mathfrak{m}/\mathfrak{m}^2)^* \rightarrow (\mathfrak{m}/\mathfrak{m}^2)^* \wedge (\mathfrak{m}/\mathfrak{m}^2)^*$ is defined by
$$\psi(f)(z_1 \otimes z_2) = f([z_1, z_2])$$
for all $z_1, z_2 \in \mathfrak{m}/\mathfrak{m}^2$. It is enough to prove that ψ is a 1-cocycle on $(\mathfrak{m}/\mathfrak{m}^2)^*$. The natural \mathfrak{k}-bilinear form $\langle \cdot, \cdot \rangle$ defined by
$$\langle \cdot, \cdot \rangle : (\mathfrak{m}/\mathfrak{m}^2)^* \times \mathfrak{m}/\mathfrak{m}^2 \rightarrow \mathfrak{k}, \quad \langle f, a + \mathfrak{m}^2 \rangle = f(a + \mathfrak{m}^2)$$
is a nondegenerate k-bilinear form. Identifying $(m/m^2)^*$ to $P_+(A^0)$ by 1.4, we have that, for $f, g \in (m/m^2)^*$ and $a, b \in m$,

$$
\langle \psi([f, g]), (a + m^2) \otimes (b + m^2) \rangle = \langle [f, g], \{a, b\} + m^2 \rangle = (g\{a, b\}) - (g f)(\{a, b\}) = \sum f(a'b')g(\{a'', b''\}) + f(\{a', b'\})g(\{a'' b''\})$$

by (2). Let

$$
\psi(f) = \sum f_1 \otimes f_2, \quad \psi(g) = \sum g_1 \otimes g_2.
$$

Then, by (4), we have

$$
f(\{a, b\}) = \langle \psi(f), (a + m^2) \otimes (b + m^2) \rangle = \sum f_1(a)f_2(b),$$

$$
g(\{a, b\}) = \langle \psi(g), (a + m^2) \otimes (b + m^2) \rangle = \sum g_1(a)g_2(b)
$$

for all $a, b \in m$. Hence

$$
(f \cdot \psi(g) - g \cdot \psi(f), (a + m^2) \otimes (b + m^2)) = \sum [f, g_1] \otimes g_2 + g_1 \otimes [f, g_2] - [g, f_1] \otimes f_2 - f_1 \otimes [g, f_2],$$

$$(a + m^2) \otimes (b + m^2)) = \sum f(a')g_1(a'')g_2(b) - g_1(a')f(a'')g_2(b)$$

$$+ g_1(a)f(b')g_2(b'') - g_1(a)g_2(b')f(b'')$$

$$- g(a')f_1(a'')f_2(b) + f_1(a'g(a''))f_2(b)$$

$$- f_1(a)g(b')f_2(b'') + f_1(a)f_2(b')g(b'')$$

$$= \sum f(a')g(\{a'', b\}) - g(\{a', b\})f(a'')$$

$$+ f(b')g(\{a', b''\}) - g(\{a', b'\})f(b'')$$

$$- g(a')f(\{a'', b\}) + f(\{a', b\})g(a'')$$

$$- g(b')f(\{a, b''\}) + f(\{a, b'\})g(b'').$$
Thus we have \(\psi([f, g]) = f \cdot \psi(g) - g \cdot \psi(f) \) for all \(f, g \in (m/m^2)^* \) and so \(\psi \) is a 1-cocycle as claimed. \(\square \)

Example 1.6. Let \(q \) be an indeterminate over \(k \). By [1, I.2.2], the coordinate ring of quantum \(n \times n \)-matrices, denoted by \(O_q(M_n(k)) \), is the \(k[q^{\pm 1}] \)-algebra generated by \(x_{ij} \), \(1 \leq i, j \leq n \), subject to the relations

\[
x_{ij}x_{rs} - x_{rs}x_{ij} = \begin{cases}
q x_{rs}x_{ij} & i = r \text{ and } j < s, \\
q^{-1} x_{js}x_{ri} & i < r \text{ and } j > s, \\
0 & i < r \text{ and } j = s, \\
q^{-1}(q - 1)(q + 1)x_{is}x_{jr} & i < r \text{ and } j < s.
\end{cases}
\]

Hence \(O_q(M_n(k))/\langle q - 1 \rangle \) is the commutative \(k \)-algebra \(k[x_{ij} \mid i, j = 1, \ldots, n] \). Moreover \(O_q(M_n(k))/\langle q - 1 \rangle \) is a Poisson algebra with Poisson bracket

\[
\{ x_{ij}, x_{rs} \} = (q - 1)^{-1}(x_{ij}x_{rs} - x_{rs}x_{ij})
\]

by [1, III.5.4]. More precisely, we have that

\[
\{ x_{ij}, x_{rs} \} = \begin{cases}
\frac{x_{rs}}{q} x_{ij} & i = r \text{ and } j < s, \\
\frac{x_{js}}{q} x_{ri} & i < r \text{ and } j = s, \\
0 & i < r \text{ and } j > s, \\
2x_{is}x_{jr} & i < r \text{ and } j < s.
\end{cases}
\]

The coordinate ring of \(n \times n \)-matrices is the commutative \(k \)-algebra

\[
k[x_{ij} \mid i, j = 1, \ldots, n],
\]

denoted by \(O(M_n(k)) \), which is a bialgebra with the coalgebra structure

\[
\epsilon(x_{ij}) = \delta_{ij}, \quad \Delta(x_{ij}) = \sum_{k=1}^{n} x_{ik} \otimes x_{kj}.
\]

The algebra \(O(M_n(k)) \) is also a Poisson algebra with Poisson bracket

\[
\{ x_{ij}, x_{rs} \} = \begin{cases}
x_{ij}x_{rs} & i = r \text{ and } j < s, \\
x_{ij}x_{rs} & i < r \text{ and } j = s, \\
0 & i < r \text{ and } j > s, \\
2x_{is}x_{jr} & i < r \text{ and } j < s.
\end{cases}
\]

by the above paragraph. Moreover \(O(M_n(k)) \) is a Poisson bialgebra since

\[
\Delta(\{ x_{ij}, x_{rs} \}) = \{ \Delta(x_{ij}), \Delta(x_{rs}) \}
\]

for all \(i, j, r, s \), any Poisson bracket satisfies the Leibniz rule and \(\Delta \) is an algebra homomorphism.
In \(m/m^2 \), set
\[
e_{ij} = x_{ij} + m^2, \quad e_{kk} = (x_{kk} - 1) + m^2, \quad i \neq j, \quad 1 \leq k \leq n.
\]
Then \(e_{ij}, i, j = 1, \ldots, n \), form a \(k \)-basis of \(m/m^2 \) and satisfy
\[
[e_{ii}, e_{is}] = e_{is} \quad i < s,
[e_{ii}, e_{is}] = -e_{is} \quad i > s,
[e_{ij}, e_{is}] = 0 \quad i \neq j, i \neq s,
[e_{ii}, e_{ri}] = e_{ri} \quad i < r,
[e_{ii}, e_{ri}] = -e_{ri} \quad i > r,
[e_{ij}, e_{rj}] = 0 \quad i \neq j, r \neq j,
[e_{ij}, e_{rs}] = 0 \quad i < r, j < s, i \neq s, r \neq j.
\]
by (5). The dual \((m/m^2)^* \) has the dual basis \(e^*_{ij} \) for \(e_{ij}, i, j = 1, \ldots, n \), satisfying
\[
[e^*_{ij}, e^*_{rs}] = \delta_{jr} e^*_{is} - \delta_{is} e^*_{jr}
\]
for all \(i, j, r, s \). That is, \((m/m^2)^* \) is isomorphic to the general linear Lie algebra \(gl_n(k) \). Moreover the pair \(((m/m^2)^*, m/m^2) \) is a Lie bialgebra by 1.5. Now the cobracket \(\psi : (m/m^2)^* \rightarrow (m/m^2)^* \wedge (m/m^2)^* \) is given by
\[
\psi(e^*_{i}) = 0
\]
\[
\psi(e^*_{ij}) = e^*_{ij} \wedge e^*_{ij} + e^*_{ij} \wedge e^*_{ij} + \sum_{i < k < j} 2e^*_{ik} \wedge e^*_{kj} \quad i < j,
\]
\[
\psi(e^*_{ij}) = e^*_{ij} \wedge e^*_{ii} + e^*_{ij} \wedge e^*_{ij} + \sum_{j < k < i} 2e^*_{kj} \wedge e^*_{ik} \quad i > j.
\]

Example 1.7. Let \(b \) denote the Lie ideal \(k(\sum e^*_{ii}) \) of \((m/m^2)^* \) in Example 1.6. Then \(b \) is a Lie bialgebra ideal since \(\psi(b) \subseteq (m/m^2)^* \otimes b + b \otimes (m/m^2)^* \) and thus \((m/m^2)^*/b \) is also a Lie bialgebra. In fact, it is checked immediately that the Lie bialgebra \((m/m^2)^*/b \) is isomorphic to the well-known Lie bialgebra \((sl_n(k), \delta) \), where \(\delta : sl_n(k) \rightarrow sl_n(k) \wedge sl_n(k) \) is given by
\[
\delta(h_i) = 0, \quad \delta(E_{ii+1}) = h_i \wedge E_{i+1}, \quad \delta(E_{i+1,i}) = h_i \wedge E_{i+1,i},
\]
where \(E_{ii} \) is the \(n \times n \)-matrix with 0 for all positions except \((i, j) \)-position and 1 and for \((i, j) \)-position and \(h_i = E_{ii} - E_{i+1,i+1} \) for \(i = 1, \ldots, n - 1 \). (The cobracket \(\delta \) is uniquely determined by (6) since \(\delta \) is a 1-cocycle and \(sl_n(k) \) is generated by \(h_i, E_{ii+1}, E_{i+1,i}, i = 1, \ldots, n - 1 \).) The cobracket \(\delta \) in (6) is the standard Lie bialgebra structure in \(sl_n(k) \) (see \([2, 1.3.8]\)).
2. Application

2.1. Let \(A = (A, \iota, m, \epsilon, \Delta) \) be a bialgebra. Note that the dual \(A^* \) is an \(A-A \) bimodule:

\[
(a\varphi b)(x) = \varphi(bax), \quad \varphi \in A^*, \quad a, \ b, \ x \in A.
\]

For a left \(A \)-module \(M \), the dual space \(M^* \) is a right \(A \)-module with structure

\[
(fa)(x) = f(ax), \quad a \in A, \ f \in M^*, \ x \in M.
\]

Let \(\mathcal{C} \) be a class of finite dimensional left \(A \)-modules which is closed under finite direct sums and finite tensor products. For any \(M \in \mathcal{C} \), \(f \in M^* \) and \(v \in M \), the coordinate function \(c_{M,f,v} \in A^* \) is defined by

\[
c_{M,f,v}(x) = f(xv), \quad x \in A.
\]

Then \(c_{M,f,v} \) is an element of the restricted dual \(A^\circ \) of \(A \) since the annihilator \(I \) of \(M \) is an ideal of \(A \) such that the dimension of \(A/I \) is finite and \(c_{M,f,v}(I) = 0 \). It is well-known that the vector space \(A^\mathcal{C} \) spanned by all coordinate functions \(c_{M,f,v} \), \(M \in \mathcal{C} \), \(f \in M^* \), \(v \in M \), is a sub-bialgebra of \(A^\circ \) with structure

\[
\Delta(c_{M,f,v}) = \sum_i c_{M,f_i,v_i} \otimes c_{M,f_i,v_i}, \quad \epsilon(c_{M,f,v}) = f(v),
\]

where \(\{v_i\} \) and \(\{f_i\} \) are dual bases for \(M \) and \(M^* \) (see [1, I.7]). Moreover if \(A \) is a Hopf algebra and \(\mathcal{C} \) is closed under duals, then \(A^\mathcal{C} \) is a Hopf algebra with antipode \(S \) defined by

\[
S(c_{M,f,v}) = c_{M,f,v}^*, \quad M \in \mathcal{C}, \ f \in M^*, \ v \in M.
\]

Observe that \(A^\mathcal{C} \) has a left and right \(A \)-action induced by (7):

\[
a \cdot c_{M,f,v} = c_{M,f,av}, \quad c_{M,f,v} \cdot a = c_{M,f,va}, \quad a \in A.
\]

2.2. Let \((\mathfrak{g}, \psi)\) be a Lie bialgebra and let \(\Delta \) be the comultiplication of \(U(\mathfrak{g}) \). The cobracket \(\psi \) is extended uniquely to a \(\Delta \)-derivation \(\overline{\psi} \) from \(U(\mathfrak{g}) \) into \(U(\mathfrak{g}) \otimes U(\mathfrak{g}) \). That is,

\[
\overline{\psi}: U(\mathfrak{g}) \rightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})
\]

is a \(k \)-linear map such that \(\overline{\psi}_\mathfrak{g} = \psi \) and \(\overline{\psi}(xy) = \overline{\psi}(x)\Delta(y) + \Delta(x)\overline{\psi}(y) \) for all \(x, y \in U(\mathfrak{g}) \).

Let \((\mathfrak{g}, \psi)\) be a coboundary Lie bialgebra such that the cobracket \(\psi \) determined by a classical \(r \)-matrix \(r = \sum_i a_i \otimes b_i \). That is, \(r \) satisfies the modified classical Yang-Baxter equation and \(\psi \) is defined by

\[
\psi(x) = x \cdot r = \sum_i [x, a_i] \otimes b_i + a_i \otimes [x, b_i] = [\Delta(x), r]_{U(\mathfrak{g}) \otimes U(\mathfrak{g})}
\]
for all \(x \in \mathfrak{g}\) (refer to [2, 2.1] and [9, §4.1] for the definition of a coboundary Lie bialgebra). Then the extension map \(\bar{\psi}\) of \(\psi\) to \(U(\mathfrak{g})\) is given by \(\bar{\psi}(x) = [\Delta(x), \tau]|_{U(\mathfrak{g})} \otimes U(\mathfrak{g})\) for all \(x \in U(\mathfrak{g})\).

Theorem. Let \((\mathfrak{g}, \psi)\) be a coboundary Lie bialgebra such that the cobracket \(\psi\) is determined by a classical \(r\)-matrix \(r\). Fix a class \(\mathcal{C}\) of finite dimensional left \(U(\mathfrak{g})\)-modules which is closed under finite direct sums and finite tensor products. Denote by \(A(\mathcal{C})\) the vector space spanned by all coordinate functions \(c_{f,v}^M, M \in \mathcal{C}, f \in M^*, v \in M\). Then \(A(\mathcal{C})\) is a Poisson bialgebra with Poisson bracket

\[
\{c_{f,v}^M, c_{g,w}^N\}(x) = (\bar{\psi}(x), c_{f,v}^M \otimes c_{g,w}^N)
\]

for all \(x \in U(\mathfrak{g})\).

Remark. Observe that, in the above theorem, \(A(\mathcal{C})\) is a sub-Poisson bialgebra of the restricted dual \(U(\mathfrak{g})^\circ\) and we obtain a Lie bialgebra \((\mathfrak{m}/\mathfrak{m}^2)^*, \mathfrak{m}/\mathfrak{m}^2)\) by applying 1.5 to \(A(\mathcal{C})\), where \(\mathfrak{m}\) is the kernel of the counit in \(A(\mathcal{C})\).

Proof of Theorem. We have already known that \(A(\mathcal{C})\) is a sub-bialgebra of the restricted dual \(U(\mathfrak{g})^\circ\) with structure (8) by 2.1.

Denote \(r = \sum_i a_i \otimes b_i\). Then

\[
\bar{\psi}(x) = [\Delta(x), \tau]|_{U(\mathfrak{g})} \otimes U(\mathfrak{g}) = \sum (x^a a_i \otimes x^b b_i - a_i x^a \otimes b_i x^b)
\]

for all \(x \in U(\mathfrak{g})\), thus

\[
\{c_{f,v}^M, c_{g,w}^N\}(x) = \sum_i \sum (c_{i,v}^M(x^a a_i) c_{g,w}^N(x^b b_i) - c_{i,v}^M(a_i x^a) c_{g,w}^N(b_i x^b))
\]

\[
= \sum_i (c_{i,v}^M c_{g,w}^N(a_i b_i) - c_{i,v}^M c_{g,w}^N b_i a_i)(x).
\]

Hence

\[
\{c_{f,v}^M, c_{g,w}^N\} = \sum_i (c_{i,v}^M c_{g,w}^N a_i b_i) - \sum_i (c_{i,v}^M c_{g,w}^N b_i a_i) \in A(\mathcal{C}),
\]

that is, the Poisson bracket (10) is well-defined.

Let \(\tau: U(\mathfrak{g}) \otimes U(\mathfrak{g}) \longrightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})\) be the flip. Since \(U(\mathfrak{g})\) is cocommutative and \(\tau(r) = -r\), we have that \(\tau \bar{\psi}(x) = -\bar{\psi}(x)\) for all \(x \in U(\mathfrak{g})\), thus we have immediately that \(\{c_{f,v}^M, c_{g,w}^N\} = -\{c_{g,w}^N, c_{f,v}^M\}\) for all \(c_{f,v}^M, c_{g,w}^N \in A(\mathcal{C})\) by (10).

For distinct numbers \(s, t = 1, 2, 3\), denote by \(r_{st} \in \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}\) the element with \(a_i\) for \(s\)-component, \(b_i\) for \(t\)-component and 1 for the other component. For instance, \(r_{12} = \sum a_i \otimes b_i \otimes 1\) and \(r_{31} = \sum b_i \otimes 1 \otimes a_i\). Note that \(r_{st} = -r_{ts}\) for all distinct numbers \(s, t = 1, 2, 3\), by the skew symmetry of \(r\). Since \(\Delta(a) =\)
$$a \otimes 1 + 1 \otimes a$$ for all $a \in g$, we have

$$\{\{c_{f,v}^M, c_{g,w}^N\}, c_{h,u}^L\}(x) = (\Delta^2(x)(r_{13} + r_{23})r_{12}, c_{f,v}^M \otimes c_{g,w}^N \otimes c_{h,u}^L)$$

$$- (r_{12}\Delta^2(x)(r_{13} + r_{23}), c_{f,v}^M \otimes c_{g,w}^N \otimes c_{h,u}^L)$$

$$- (r_{12}(r_{13} + r_{23})\Delta^2(x) r_{12}, c_{f,v}^M \otimes c_{g,w}^N \otimes c_{h,u}^L)$$

$$+ (r_{12}(r_{13} + r_{23})\Delta^2(x), c_{f,v}^M \otimes c_{g,w}^N \otimes c_{h,u}^L)$$

for $x \in U(g)$, where $\Delta^2 = (\Delta \otimes 1) \circ \Delta = (1 \otimes \Delta) \circ \Delta$, by (10). Hence, by $r_{st} = -r_{ts}$ for all $s, t = 1, 2, 3$ and the coassociativity of Δ, we have that

$$\{(\{c_{f,v}^M, c_{g,w}^N\}, c_{h,u}^L) + \{(c_{f,v}^M, c_{g,w}^N) + \{c_{f,v}^M, c_{g,w}^N\}\}(x)$$

$$= (\Delta^2(x)(r_{13} + r_{23})r_{12}, c_{f,v}^M \otimes c_{g,w}^N \otimes c_{h,u}^L)$$

$$- (r_{12}\Delta^2(x)(r_{13} + r_{23}), c_{f,v}^M \otimes c_{g,w}^N \otimes c_{h,u}^L)$$

$$- (r_{12}(r_{13} + r_{23})\Delta^2(x) r_{12}, c_{f,v}^M \otimes c_{g,w}^N \otimes c_{h,u}^L)$$

$$+ (r_{12}(r_{13} + r_{23})\Delta^2(x), c_{f,v}^M \otimes c_{g,w}^N \otimes c_{h,u}^L)$$

$$= 0$$

for any $c_{f,v}^M, c_{g,w}^N, c_{h,u}^L \in A(C)$ and $x \in U(g)$ since

$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}]$$

$$= (r_{12}r_{13} - r_{13}r_{12}) + (r_{12}r_{23} - r_{23}r_{12}) + (r_{13}r_{23} - r_{23}r_{13})$$

$$= \sum_{i,j} [a_i, a_j] \otimes b_i \otimes b_j + \sum_{i,j} a_i \otimes [b_i, a_j] \otimes b_j + \sum_{i,j} a_i \otimes a_j \otimes [b_i, b_j]$$

is g-invariant. Hence the Poisson bracket (10) satisfies the Jacobi identity.
By (11), we have
\[\{\ell^M_{f,v}, \ell^N_{g,w}\} = \sum c_{f,a,v}^M(c_{g,b,y}^N\ell^L_{b,u} + c_{g,b,u}^N\ell^L_{b,v}) - \sum c_{f,a,v}^M(c_{g,b,u}^N\ell^L_{b,v} + c_{g,b,v}^N\ell^L_{b,u}) = \{\ell^M_{f,v}, \ell^N_{g,w}\} \ell^L_{h,u} + c_{g,w}^N\{\ell^M_{f,v}, \ell^L_{h,u}\}. \]

It follows that the Poisson bracket (10) satisfies the Leibniz rule.

Let us prove that \(\Delta(\{\ell^M_{f,v}, \ell^N_{g,w}\}) = \{\Delta(\ell^M_{f,v}), \Delta(\ell^N_{g,w})\} \) for all elements \(\ell^M_{f,v}, \ell^N_{g,w} \in A(C) \). Note that \(\Delta(\ell^M_{f,v}) = \sum_{j,k} \ell^M_{f,v_j} \otimes \ell^N_{g,wh_k} \Delta(\ell^M_{f,v}) = \sum_k \ell^N_{g,wh_k} \otimes \ell^N_{g,w} \), where \(\{v_j\}, \{f_j\} \) are dual bases for \(M \) and \(M^* \) and \(\{w_k\}, \{g_k\} \) are dual bases for \(N \) and \(N^* \). Now, for any \(x, y \in U(g) \),
\[
\Delta(\{\ell^M_{f,v}, \ell^N_{g,w}\})(x \otimes y) = \langle \psi(x), \ell^M_{f,v} \otimes \ell^N_{g,w} \rangle
\]
\[
= \langle \psi(x)\Delta(y), \ell^M_{f,v} \otimes \ell^N_{g,w} \rangle + \langle \Delta(x)\psi(y), \ell^M_{f,v} \otimes \ell^N_{g,w} \rangle
\]
\[
= \sum_{j,k} \langle \psi(x), \ell^M_{f,v_j} \otimes \ell^N_{g,wh_k} \rangle \langle \Delta(y), \ell^M_{f,v} \otimes \ell^N_{g,w} \rangle
\]
\[
+ \sum_{j,k} \langle \Delta(x), \ell^M_{f,v_j} \otimes \ell^N_{g,wh_k} \rangle \langle \psi(y), \ell^M_{f,v} \otimes \ell^N_{g,w} \rangle
\]
\[
= \sum_{j,k} \{\ell^M_{f,v_j}, \ell^N_{g,wh_k}\} \otimes \{\ell^M_{f,v}, \ell^N_{g,w}\}(x \otimes y)
\]
\[
+ \sum_{j,k} \{\ell^M_{f,v_j}, \ell^N_{g,wh_k}\} \otimes \{\ell^M_{f,v}, \ell^N_{g,w}\}(x \otimes y)
\]
\[
= \{\Delta(\ell^M_{f,v}), \Delta(\ell^N_{g,w})\}(x \otimes y).
\]
Hence we have \(\Delta(\{\ell^M_{f,v}, \ell^N_{g,w}\}) = \{\Delta(\ell^M_{f,v}), \Delta(\ell^N_{g,w})\} \) for all elements \(\ell^M_{f,v}, \ell^N_{g,w} \in A(C) \). This completes the proof. \(\square \)

Proposition 2.3. Let \((g, \psi)\) be a coboundary Lie bialgebra such that \(g \) is connected and simply connected and let \(C \) be the set of all finite dimensional left \(U(g) \)-modules. Then \(A(C) \) is the restricted dual \(U(g)^\circ \). Moreover the given Lie bialgebra \((g, \psi)\) is isomorphic to \((m/m^2)^*, m/m^2\), where \(m \) is the kernel of the counit \(\epsilon \) of \(A(C) \).

Proof. Note that the set of all finite dimensional left \(U(g) \)-modules is closed under finite direct sums and finite tensor products. Since every element of the restricted dual \(U(g)^\circ \) is represented by a coordinate function \(c_{f,a,v}^M \) for some finite dimensional left \(U(g) \)-module \(M \), we have immediately that \(A(C) \) is the restricted dual \(U(g)^\circ \). Moreover \((m/m^2)^*, m/m^2\) is a Lie bialgebra by 2.2 and 1.5, and \(g = (m/m^2)^* \) by [7, 7.11]. Thus \(g^* \) is equal to \(m/m^2 \) as a Lie algebra by (3) and (10). It follows that the Lie bialgebra \((m/m^2)^*, m/m^2\) is equal to \((g, \psi) = (g, g^*)\). \(\square \)
Example 2.4. In the symplectic Lie algebra \mathfrak{sp}_4, set

\[
\begin{align*}
 h_1 &= E_{11} - E_{22} - E_{33} + E_{44}, \\
 e_1 &= E_{12} - E_{13}, \\
 f_1 &= E_{21} - E_{34}, \\
 e_2 &= E_{24}, \\
 f_2 &= E_{42}, \\
 e_3 &= E_{14} + E_{23}, \\
 f_3 &= E_{41} + E_{32}, \\
 e_4 &= E_{13}, \\
 f_4 &= E_{31}
\end{align*}
\]

(see [5, 8.3] for \mathfrak{sp}_4). Let H be the subspace of \mathfrak{sp}_4 spanned by h_1, h_2 and let $\alpha_1, \alpha_2 \in H^*$ be defined by

\[
\begin{align*}
 \alpha_1(h_1) &= 2, & \alpha_2(h_1) &= -2, \\
 \alpha_1(h_2) &= -1, & \alpha_2(h_2) &= 2.
\end{align*}
\]

Then $e_1, e_2, e_3, e_4, f_1, f_2, f_3, f_4$ are weight vectors with weights

\[
\begin{align*}
 \text{wt}(e_1) &= \alpha_1, & \text{wt}(e_2) &= \alpha_2, & \text{wt}(e_3) &= \alpha_1 + \alpha_2, & \text{wt}(e_4) &= 2\alpha_1 + \alpha_2, \\
 \text{wt}(f_1) &= -\alpha_1, & \text{wt}(f_2) &= -\alpha_2, & \text{wt}(f_3) &= -(\alpha_1 + \alpha_2), & \text{wt}(f_4) &= -(2\alpha_1 + \alpha_2).
\end{align*}
\]

Hence α_1, α_2 are positive simple roots. It is well-known that

\[
\psi(e_i) = 0, \quad \psi(f_i) = 0, \quad \psi(e_i) = e_i \wedge h_1, \quad \psi(e_i) = 2e_i \wedge h_2, \\
\psi(e_i) = e_i \wedge h_1 + 2e_3 \wedge h_2 - 4e_1 \wedge e_2, \quad \psi(e_i) = 2e_4 \wedge h_1 + 2e_4 \wedge h_2 - 2e_1 \wedge e_3, \\
\psi(f_i) = f_i \wedge h_1, \quad \psi(f_i) = 2f_i \wedge h_2, \\
\psi(f_i) = f_i \wedge h_1 + 2f_3 \wedge h_2 - 4f_1 \wedge f_2, \quad \psi(f_i) = 2f_4 \wedge h_1 + 2f_4 \wedge h_2 - 2f_1 \wedge f_3
\]

(see [9, Exercise 4.1.11]).

The weight lattice \mathbf{P} in \mathfrak{sp}_4 is a free abelian group with basis consisting of the fundamental dominant integral weights λ_1, λ_2, where $\lambda_i(h_j) = \delta_{ij}$ for $i, j = 1, 2$. Hence

\[
\alpha_1 = 2\lambda_1 - \lambda_2, \quad \alpha_2 = -2\lambda_1 + 2\lambda_2.
\]

The natural \mathfrak{sp}_4-module $V = \mathbf{k}^4$ is an irreducible highest weight module with highest weight λ_1. In fact, set

\[
\begin{align*}
 v_1 &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \\
 v_2 &= \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \\
 v_3 &= \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \\
 v_4 &= \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}
\end{align*}
\]

Then v_1 is a highest weight vector with highest weight λ_1 and

\[
v_1 \in V_{\lambda_1}, v_2 = f_1 v_1 \in V_{-\lambda_1 + \lambda_2}, v_3 = f_2 v_2 \in V_{\lambda_1 - \lambda_2}, v_4 = f_1 v_3 \in V_{-\lambda_1}.
\]

Here we simply write $e_{f,v}$ for $e^V_{f,v}, v \in V, f \in V^*$. Observe that
where $\psi(x_2) = x_2 \wedge h_1 + 2x_2 \wedge h_2$,
\[\psi(y_1) = y_1 \wedge h_1, \quad \psi(y_2) = y_2 \wedge h_1 + 2y_2 \wedge h_2. \]

References

Sei-Qwon Oh
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail address: sqoh@cnu.ac.kr

Eun-Hee Cho
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail address: ehcho@cnu.ac.kr