$[r, s, t; f]$-COLORING OF GRAPHS

YONG YU AND GUIZHEN LIU

Abstract. Let f be a function which assigns a positive integer $f(v)$ to each vertex $v \in V(G)$, let r, s and t be non-negative integers. An f-coloring of G is an edge-coloring of G such that each vertex $v \in V(G)$ has at most $f(v)$ incident edges colored with the same color. The minimum number of colors needed to f-color G is called the f-chromatic index of G and denoted by $\chi'_f(G)$. An $[r, s, t; f]$-coloring of a graph G is a mapping c from $V(G) \cup E(G)$ to the color set $C = \{0, 1, \ldots, k - 1\}$ such that $|c(v_i) - c(v_j)| \geq r$ for every two adjacent vertices v_i and v_j, $|c(e_i) - c(e_j)| \geq s$ and $a(v_i) \leq f(v_i)$ for all $v_i \in V(G)$, $a \in C$ where $a(v_i)$ denotes the number of a-edges incident with the vertex v_i and e_i, e_j are edges which are incident with v_i but colored with different colors, $|c(e_i) - c(e_j)| \geq t$ for all pairs of incident vertices and edges. The minimum k such that G has an $[r, s, t; f]$-coloring with k colors is defined as the $[r, s, t; f]$-chromatic number and denoted by $\chi_{r,s,t,f}(G)$. In this paper, we present some general bounds for $[r, s, t; f]$-coloring firstly. After that, we obtain some important properties under the restriction $\min\{r, s, t\} = 0$ or $\min\{r, s, t\} = 1$. Finally, we present some problems for further research.

1. Introduction

In this paper, the term graph is used to denote a simple connected graph G with a finite vertex set $V(G)$ and a finite edge set $E(G)$. If multiple edges are allowed, G is called a multigraph. The degree of a vertex v in G is the number of edges incident with v and denoted by $d(v)$. We write $\delta(G) = \min\{d(v) : v \in V(G)\}$ and $\Delta(G) = \max\{d(v) : v \in V(G)\}$ to denote the minimum degree and maximum degree of G, respectively. Let f be a function which assigns a positive integer $f(v)$ to each vertex $v \in V(G)$. We define $\Delta_f(G) = \max_{v \in V(G)}\{d(v)/f(v)\}$. Let C denote the set of colors $\{0, 1, \ldots, k - 1\}$. A vertex (res. edge) coloring of a graph G is a mapping c from $V(G)$ (res. $E(G)$) to the color set C. A proper vertex (res. edge) coloring of
Then we focus on the case of values of will write let be a function which assigns a positive integer minimum and edges, respectively. The mapping non-negative integers defined as the two adjacent edges from got many interesting results. Let defined as above. An coloring of G is an edge-coloring of G such that each vertex v ∈ V(G) has at most f(v) edges colored with the same color. The minimum number of colors needed to f-color G is called the f-chromatic index of G and denoted by χ_f(G). Zhang and Liu [7, 8, 9] studied the f-coloring of graphs and got many interesting results.

Kemnitz and Marangio [6] studied the [r, s, t]-coloring of a graph G. Given non-negative integers r, s and t, an [r, s, t]-coloring of a graph G is a mapping c from V(G) ∪ E(G) to the color set C = {0, 1, . . . , k − 1} such that |c(v_i) − c(v_j)| ≥ r for every two adjacent vertices v_i and v_j, |c(e_i) − c(e_j)| ≥ s for every two adjacent edges e_i, e_j, and |c(e_i) − c(v_j)| ≥ t for all pairs of incident vertices and edges, respectively. The [r, s, t]-chromatic number χ_{r,s,t}(G) of G is the minimum k such that G has an [r, s, t]-coloring. Dekar, et al. [3] gave exact values of χ_{r,s,t}(G) of stars except one case.

Here we present a new coloring which is defined as [r, s, t; f]-coloring. Let f be a function which assigns a positive integer f(v) to each vertex v ∈ V(G), let r, s and t be non-negative integers. An [r, s, t; f]-coloring of a graph G is a mapping c from V(G) ∪ E(G) to the color set C = {0, 1, . . . , k − 1} such that |c(v_i) − c(v_j)| ≥ r for every two adjacent vertices v_i and v_j, |c(e_i) − c(e_j)| ≥ s and α(v_i) ≤ f(v_i) for all v_i ∈ V(G), α ∈ C where α(v_i) denotes the number of α-edges incident with the vertex v_i and e_i, e_j are edges which are incident with v_i but colored with different colors, |c(e_i) − c(v_j)| ≥ t for all pairs of incident vertices and edges. The minimum k such that G has an [r, s, t; f]-coloring is defined as the [r, s, t; f]-chromatic number and denoted by χ_{r,s,t;f}(G). Clearly, if s = 1, r = t = 0, then c is an f-coloring; if f(v) = 1 for all v ∈ V(G) (we will write f ≡ 1 for short in the following), then c is an [r, s, t]-coloring; if f ≡ 1 and r = 1, s = t = 0, then c is a proper vertex coloring; if f ≡ 1 and s = 1, r = t = 0, then c is a proper edge coloring; if f ≡ 1 and r = s = t = 1, then c is a total coloring. Similarly, let r = s = t = 1, we get another new coloring which we define as f-total coloring.

In this paper, we at first discuss some interesting results for this new coloring. Then we focus on the case r = s = 1 which are not considered in the [r, s, t]-coloring.
2. Basic results

Lemma 2.1. If $H \subseteq G$, then $\chi_{r,s,t,f}(H) \leq \chi_{r,s,t,f}(G)$.

Proof. It is obvious that the restriction of an $[r, s, t; f]$-coloring of G to the element of $H \subseteq G$ is still an $[r, s, t; f]$-coloring of H. □

Lemma 2.2. Let f and f' be two functions defined as in the definition of $[r, s, t; f]$-coloring. If $f'(v) \geq f(v)$ for all $v \in V(G)$, and $r' \leq r$, $s' \leq s$, $t' \leq t$, then $\chi_{r',s',t',f'}(G) \leq \chi_{r,s,t,f}(G)$.

Proof. The proof is trivial. We leave it to the readers. □

These two lemmas are obvious but useful to determine bounds and exact values of the $[r, s, t; f]$-chromatic number of graphs.

Theorem 2.3. If $a \geq 0$ is an integer, then $\chi_{ar,as,at,f}(G) = a(\chi_{r,s,t,f}(G) - 1) + 1$.

Proof. If $a = 0$ or 1, then the assertion is obvious. Suppose $a \geq 2$ and c is an $[r, s, t; f]$-coloring of G with $\chi_{r,s,t,f}(G)$ colors. Then $|c(v_i) - c(v_j)| \geq r$ for every two adjacent vertices v_i and v_j, $|c(e_i) - c(e_j)| \geq s$, $\alpha(v_i) \leq f(v_i)$ for all $v_i \in V(G)$, $\alpha \in C$ where $\alpha(v_i)$ denotes the number of α-edges incident with the vertex v_i. Let e_i, e_j are edges which are incident with v_i but colored with different colors, $|c(e_i) - c(e_j)| \geq t$ for all pairs of incident vertices and edges. Let $d'(x) = a \cdot c(x)$ for all $x \in V(G) \cup E(G)$, and we use α', C' denote the new color and the new color set, respectively. Then we have

$$|c'(v_i) - c'(v_j)| = a \cdot |c(v_i) - c(v_j)| \geq ar,$$
$$|c'(e_i) - c'(e_j)| = a \cdot |c(e_i) - c(e_j)| \geq as,$$
$$|c'(e_i) - c'(v_j)| = a \cdot |c(e_i) - c(v_j)| \geq at.$$

For $\alpha' \in C'$, if $\alpha'(v_i) \neq 0$, then there is color $\alpha \in C$ such that $\alpha' = ao$ and $\alpha'(v_i) = \alpha(v_i) \leq f(v_i)$; if $\alpha'(v_i) = 0$, obviously we have $\alpha'(v_i) \leq f(v_i)$. Anyway, $\alpha'(v_i) \leq f(v_i)$ for all $v_i \in V(G)$, $\alpha' \in C'$.

Therefore, c' is an $[ar, as, at; f]$-coloring of G with colors $\{0, 1, \ldots, a(\chi_{r,s,t,f}(G) - 1)\}$.

On the other hand, assume that G has an $[ar, as, at; f]$-coloring c with color set $\{0, 1, \ldots, a(\chi_{r,s,t,f}(G) - 1)\}$, $a \geq 2$. Then we have $|c(v_i) - c(v_j)| \geq ar$ for every two adjacent vertices v_i and v_j, $|c(e_i) - c(e_j)| \geq as$, $\alpha(v_i) \leq f(v_i)$ for all $v_i \in V(G)$, $\alpha \in C$ where $\alpha(\alpha(v_i))$ denotes the number of α-edges incident with the vertex v_i and e_i, e_j are edges which are incident with v_i but colored with different colors, $|c(e_i) - c(v_j)| \geq at$ for all pairs of incident vertices and edges. We define a coloring c' by $c'(x) = \lfloor c(x)/a \rfloor$ for all $x \in V(G) \cup E(G)$, in which
Let \(\lfloor c(x)/a \rfloor \) be the largest integer not larger than \(c(x)/a \). Let \(\alpha' = \lfloor \alpha/a \rfloor \in C', C' \) denote the color set of \(c' \). Clearly, \(|x| \geq \|x\|\) for any real number \(x \). So we have
\[
|c'(v_i) - c'(v_j)| \geq \|\frac{c(v_i) - c(v_j)}{a}\| \geq r,
\]
\[
|c'(e_i) - c'(e_j)| \geq \|\frac{c(e_i) - c(e_j)}{a}\| \geq s,
\]
\[
|c'(e_i) - c'(v_j)| \geq \|\frac{c(e_i) - c(v_j)}{a}\| \geq t.
\]

Let \(e_i, e_j \) are two edges incident with \(v_i \), if they are both \(\alpha \)-edges, then \(c'(e_i) = c'(e_j) = \alpha' \); if \(c(e_i) = \alpha \) and \(c(e_j) \neq \alpha \), then \(|c(e_i) - c(e_j)| \geq as \) for \(a \) is an \([ar, as, at; f]\)-coloring of \(G \). This implies \(|c'(e_i) - c'(e_j)| \geq \|\frac{c(e_i) - c(e_j)}{a}\| \geq s \geq 1. \)

Therefore, \(\alpha'(v_i) = \alpha(v_i) \leq f(v_i) \). So
\[
\alpha'(v_i) \leq f(v_i) \quad \text{for all} \quad v_i \in V(G), \alpha' \in C'.
\]

That is, \(c' \) is an \([r, s, t; f]\)-coloring of \(G \) with colors
\[
\{0, 1, \ldots, \left\lfloor \frac{a(xr, s, t, f(G) - 1) - 1}{a}\right\rfloor\},
\]
where \(\left\lfloor \frac{a(xr, s, t, f(G) - 1) - 1}{a}\right\rfloor \leq \chi_{r, s, t, f}(G) - 2 \). We get an \([r, s, t; f]\)-coloring of \(G \) with no more than \(\chi_{r, s, t, f}(G) - 1 \) colors, a contradiction. \(\square \)

Corollary 2.4. If \(r = s = t \) and \(f(v) \equiv 1 \), then
\[
\chi_{r, s, t, f}(G) = r(\chi''(G) - 1) + 1,
\]
where \(\chi''(G) \) is the total chromatic number of graph \(G \).

Corollary 2.5. Let \(G \) be a graph and let \(r, s, t, f \) be defined as in the definition of \([r, s, t; f]\)-coloring. Then
\[
\chi_{r, 0, 0, f}(G) = r(\chi(G) - 1) + 1,
\]
\[
\chi_{0, s, 0, f}(G) = s(\chi'(G) - 1) + 1,
\]
\[
\chi_{0, 0, t, f}(G) = t + 1.
\]

Lemma 2.6 ([4]). Let \(G \) be a graph. Then
\[
\Delta_f(G) \leq \chi'_{f}(G) \leq \max_{v \in V(G)} \left\{ \left\lfloor (1 + d(v))/f(v) \right\rfloor \right\} \leq \Delta_f(G) + 1.
\]

Theorem 2.7. Let \(G \) be a graph and let \(r, s, t, f \) be defined as in the definition of \([r, s, t; f]\)-coloring. Then
\[
\max\{r(\chi(G) - 1) + 1, s(\chi'(G) - 1) + 1, t + 1\}
\leq \chi_{r, s, t, f}(G) \leq r(\chi(G) - 1) + s(\chi'(G) - 1) + t + 1.
\]
Proof. (a) If \(f(v) = d(v) \) for all \(v \in V(G) \), then
\[
\Delta_f(G) = \max_{v \in V(G)} \{[d(v)/f(v)]\} = 1,
\]
and we can use one color to \(f \)-color \(G \). Therefore, \(\chi_f'(G) = \Delta_f(G) = 1 \). Let \(c \) be an \([r,0,0,f]\)-coloring of \(G \) with \(r(\chi(G)-1)+1 \) colors. Then we assign color \(r(\chi(G)-1)+t \) to all the edges of \(G \), we get an \([r, s, t, f]\)-coloring with \(r(\chi(G)-1)+t+1 \) colors. This is the upper bound, and the lower bound is obvious by Lemma 2.2 and Corollary 2.5.

(b) If there is a vertex \(u \in V(G) \) such that \(f(u) < d(u) \), then \(\chi_f'(G) \geq 2 \). In this case, consider \(c \) mentioned in part (a). We use colors \(r(\chi(G)-1)+t, r(\chi(G)-1)+t+s, \ldots, r(\chi(G)-1)+t+s(\chi_f'(G)-1) \) to color the edges. Then we get an \([r, s, t, f]\)-coloring with \(r(\chi(G)-1)+s(\chi_f'(G)-1)+t+1 \) colors. The lower bound can be got by Lemma 2.2 and Corollary 2.5. \(\square \)

Lemma 2.8. Let \(G \) be a graph and let \(r, s, t, f \) be defined as in the definition of \([r, s, t, f]\)-coloring. If \(t > r(\chi(G)-1)+s(\chi_f'(G)-1) \), then
\[
\chi_{r,s,t,f}(G) \geq r(\chi(G)-1)+s(\delta_f(G)-1)+t+1,
\]
where \(\delta_f(G) = \min_{v \in V(G)} \{[d(v)/f(v)]\} \).

Proof. Let \(c \) be an \([r, s, t, f]\)-coloring of \(G \) with \(\chi_{r,s,t,f}(G) \) colors. By Theorem 2.7 and the assumption on \(t \) we obtain \(2t+1 > r(\chi(G)-1)+s(\chi_f'(G)-1)+t+1 \geq \chi_{r,s,t,f}(G) \). So \(\chi_{r,s,t,f}(G) \leq 2t \). If there is a vertex \(v \) and incident edges \(e_1, e_2 \) such that \(c(e_1) < c(v) < c(e_2) \) or an edge \(e = v_1v_2 \) such that \(c(v_1) < c(e) < c(v_2) \), then at least \(2t+1 \) colors are needed which contradicts with the conclusion \(\chi_{r,s,t,f}(G) \leq 2t \). Therefore, if \(x \) is an arbitrary element of \(G \), then \(c(x) < c(y) \) for all elements \(y \) that are incident to \(x \) or \(c(x) > c(y) \) for all \(y \). By induction, we obtain either \(c(v) < c(e) \) for all vertices \(v \) and all edges \(e \) incident to \(v \) or always \(c(v) > c(e) \). Without loss of generality, we assume \(c(v) < c(e) \).

Consider the vertex \(u \) which obtains the greatest color \(c(u) \). In order to proper coloring the vertex set of graph \(G \), at least \(\chi_{r,0,0,f}(G) \) colors are needed. By Corollary 2.5 we have \(\chi_{r,0,0,f}(G) = r(\chi(G)-1)+1 \). Therefore, \(c(u) \geq r(\chi(G)-1) \). In the \(f \)-coloring, denote by \(r(u) \) the color numbers appeared on the edges which are incident with \(u \). Obviously, we have \(r(u)f(u) \geq d(u) \), which implies \(r(u) \geq \min_{v \in V(G)} \{[d(v)/f(v)]\} = \delta_f(G) \). That is to say, there are at least \(\delta_f(G) \) different colors which are greater than \(c(u) \) by our assumption appeared on \(u \). Then we get \(\chi_{r,s,t,f}(G) \geq c(u)+t+s(\delta_f(G)-1) \geq r(\chi(G)-1)+s(\delta_f(G)-1)+t+1 \). \(\square \)

By Lemma 2.6, all graphs are partitioned into two classes. One is graphs with \(\chi_f'(G) = \Delta_f(G) \), called \(C_f \), 1, or \(f \)-class 1, and the other with \(\chi_f'(G) = \Delta_f(G)+1 \), called \(C_f \) 2, or \(f \)-class 2.
Just as the case we discussed in Theorem 2.7, $\chi_f'(G) = \Delta_f(G) = 1$ when $f(v) = d(v)$ for all $v \in V(G)$. This also implies that $\delta_f(G) = 1$. So by Theorem 2.7 and Lemma 2.8 we have the following result.

Corollary 2.9. Suppose that $t > r(\chi(G) - 1) + s(\chi_f'(G) - 1)$.

1. If $f(v) = d(v)$ for all $v \in V(G)$, then
 $$\chi_{r,s,t,f}(G) = r(\chi(G) - 1) + t + 1;$$

2. If (1) is not satisfied, but G is a C_f 1 graph with $\Delta_f(G) = \delta_f(G)$, then
 $$\chi_{r,s,t,f}(G) = r(\chi(G) - 1) + s(\chi_f'(G) - 1) + t + 1.$$

Corollary 2.9 provides a subclass of graphs that can reach the upper bound of Theorem 2.7.

In Section 3 and Section 4, we will give some restriction to the parameters r, s, t, f in order to obtain some new results.

3. $\min\{r, s, t\} = 0$

We consider the case only one of r, s, t equals 0. The case where two of r, s, t equal 0 is discussed in Corollary 2.5.

Theorem 3.1. Let G be a graph. Then

$$\chi_{r,s,0,t,f}(G) = \max\{r(\chi(G) - 1) + 1, s(\chi_f'(G) - 1) + 1\}.$$

Proof. This equation can be obtained by Theorem 2.7 and the fact that vertices and edges can be colored independently. □

Lemma 3.2 ([6]). Let G be a graph. Then

1. If $\chi(G) = 2$, then
 $$\chi_{r,0,t}(G) = \begin{cases}
 r + 1 & \text{if } r \geq 2t; \\
 2t + 1 & \text{if } t \leq r < 2t; \\
 r + t + 1 & \text{if } r < t.
 \end{cases}$$

2. If $\chi(G) \geq 3$ and $r \geq t$, then
 $$\chi_{r,0,t}(G) = r(\chi(G) - 1) + 1;$$

3. If $\chi(G) \geq 3$ and $r < t$, then
 $$\max\{r(\chi(G) - 1) + 1, t + 1\} \leq \chi_{r,0,t}(G) \leq r(\chi(G) - 3) + t + 1 + \min\{t, 2r\}.$$

Theorem 3.3. Let G be a graph. If $f(v) = d(v)$ for all $v \in V(G)$, then

$$\chi_{r,0,t,f}(G) = \chi_{r,0,t}(G),$$

where $\chi_{r,0,t}(G)$ is the same as that in Lemma 3.2.

Proof. If $f(v) = d(v)$ for all $v \in V(G)$, then $\chi_f'(G) = \Delta_f(G) = 1$. That is, we can color all the edges of G with one color and the condition $\alpha(v) \leq f(v)$ for all $v \in V(G), \alpha \in C$ in the definition of $[r, s, t; f]$-coloring has no influence. Therefore, we have $\chi_{r,0,t,f}(G) = \chi_{r,0,t}(G)$. □
Note that if there is a vertex \(u \in V(G) \) such that \(f(u) < d(u) \), then at least 2 colors are needed for the edges of \(G \). Therefore, \(s = 0 \) is impossible in this case.

Lemma 3.4 ([6]). Let \(G \) be a graph. Then

(1) If \(\Delta(G) \geq 2 \) and \(G \) is of class 1, then

\[
\chi_{0,s,t}(G) = \begin{cases}
 s(\Delta(G) - 1) + 1 & \text{if } s \geq 2t; \\
 s(\Delta(G) - 1) + 2t - s + 1 & \text{if } t \leq s < 2t; \\
 s(\Delta(G) - 1) + t + 1 & \text{if } s < t.
\end{cases}
\]

(2) If \(\Delta(G) \geq 2 \), \(G \) is of class 2 and \(s \geq t \), then

\[
\chi_{0,s,t}(G) = s(\chi'(G) - 1) + 1;
\]

(3) If \(\Delta(G) \geq 2 \), \(G \) is of class 2 and \(s < t \), then

\[
s(\Delta(G) - 1) + t + 1 \leq \chi_{0,s,t}(G) \leq \min\{s\Delta(G) + t + 1, t\Delta(G) + 1\}.
\]

Theorem 3.5. Let \(G \) be a graph. Then

(a) if \(f(v) = d(v) \) for all \(v \in V(G) \), then \(\chi_{0,s,t,f}(G) = t + 1 \);

(b) otherwise,

(1) \(\Delta_f(G) \geq 2 \) and \(G \) is of \(C_f \) 1, then

\[
\chi_{0,s,t,f}(G) = \begin{cases}
 s(\Delta_f(G) - 1) + 1 & \text{if } s \geq 2t; \\
 s(\Delta_f(G) - 1) + 2t - s + 1 & \text{if } t \leq s < 2t; \\
 s(\Delta_f(G) - 1) + t + 1 & \text{if } s < t.
\end{cases}
\]

(2) \(\Delta_f(G) \geq 2 \), \(G \) is of \(C_f \) 2 and \(s \geq t \), then

\[
\chi_{0,s,t,f}(G) = s(\chi'_f(G) - 1) + 1;
\]

(3) \(\Delta_f(G) \geq 2 \), \(G \) is of \(C_f \) 2 and \(s < t \), then

\[
s(\Delta_f(G) - 1) + t + 1 \leq \chi_{0,s,t,f}(G) \leq \min\{s\Delta_f(G) + t + 1, t\Delta_f(G) + 1\}.
\]

Proof. (a) If \(f(v) = d(v) \) for all \(v \in V(G) \), then we can color all the vertices with color 0 and all the edges with color \(t \). Then we obtain an \([0, s, t; f]\)-coloring of \(G \) with \(t + 1 \) colors. On the other hand, by Theorem 2.7 we get \(\chi_{0,s,t,f}(G) \geq t + 1 \). Therefore, \(\chi_{0,s,t,f}(G) = t + 1 \).

(b) If there is a vertex \(u \in V(G) \) such that \(f(u) < d(u) \), then the proof is similar to the proof in [4] (see A. Kemnitz, M. Marangio [4] Lemmas 7, 8, 9) just using \(\Delta_f(G) \) instead of \(\Delta(G) \). We don’t mention it here. \(\square \)

4. \(\min\{r, s, t\} = 1 \)

In this section we will consider the three parameters \(\chi_{r,1,1,f}(G) \), \(\chi_{1,s,1,f}(G) \), \(\chi_{1,1,t,f}(G) \), especially the last one.

Theorem 4.1. If \(r \geq \frac{\chi'_f(G)}{\chi(G) - 1} + 1 \), then \(\chi_{r,1,1,f}(G) = r(\chi(G) - 1) + 1 \).
Lemma 4.3. Let \(G \) be a graph and let \(t \) and \(f \) be defined as in the definition of \([r, s, t; f]\)-coloring. Then we have

\[
\Delta_f(G) + t \leq \chi_{1,1,t,f}(G) \leq \chi(G) + \chi_f(G) + t - 1.
\]

Proof. The upper bound can be obtained by Theorem 2.7. On the other hand, by Lemma 2.2 we get \(\chi_{1,1,t,f}(G) \geq \chi_{0,1,t,f}(G) \). Then by Theorem 3.5 we obtain the lower bound. \(\square \)

When we investigate the \([r, s, t; f]\)-chromatic number under the special case \(r = s = 1 \), we can improve the result in Lemma 4.3 as Theorem 4.6.

Lemma 4.4 ([7]). Let \(G \) be a complete graph \(K_n \). If \(k \) and \(n \) are odd integers, \(f(v) = k \) and \(k|d(v)| \) for all \(v \in V(G) \), then \(G \) is of \(C_f \) 2. Otherwise, \(G \) is of \(C_f \) 1.

Lemma 4.5 ([2], Brook’s Theorem). \(\chi(G) \leq \Delta(G) + 1 \) holds for every graph \(G \). Moreover, \(\chi(G) = \Delta(G) + 1 \) if and only if either \(\Delta(G) \neq 2 \) and \(G \) has a complete graph \(K_{\Delta(G)+1} \) as a connected component, or \(\Delta(G) = 2 \) and \(G \) has an odd cycle as a connected component.

Theorem 4.6. Let \(G \) be a graph and let \(t \), \(f \) be defined as in the definition of \([r, s, t; f]\)-coloring. Then we have

\[
\chi_{1,1,t,f}(G) \leq \Delta(G) + \Delta_f(G) + t.
\]
Proof. We now consider three cases depending on G.

Case 1. If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$ by Lemma 4.5 and $\chi'_f(G) \leq \Delta_f(G) + 1$ by Lemma 2.6. Hence, the inequality is true.

Case 2. G is the complete graph K_n on n vertices. By Lemma 4.4 we know that K_n is of C_f 1 except one case. Then we have $\chi'_f(G) = \Delta_f(G)$. By Lemma 4.3, we have $\chi_{1,1,t;f}(G) \leq (\Delta(G) + 1) + \Delta_f(G) + t - 1 = \Delta(G) + \Delta_f(G) + t$. Now we assume that k and n are odd integers, $f(v) = k$ and $k|d(v)$ for all $v \in V(G)$. Then Lemma 4.4 implies that G is of C_f 2.

Case 2.1. If $f(v) = d(v)$, then we have $\chi'_f(G) = \Delta_f(G) = 1$. We can assign all the edges with one color $n + t - 1$ and assign the vertices differently with colors $0, 1, \ldots, n - 1$. Therefore, we obtain an $[1,1,t;f]$-coloring of K_n with $n + t = \Delta(K_n) + \Delta_f(K_n) + t$ colors.

Case 2.2. If $f(v) \equiv 1$, then it becomes an $[1,1,t]$-coloring of K_n. Let c be a proper edge coloring of K_n with n colors and M_i $(1 \leq i \leq n)$ be the matchings corresponding to the color classes. Further more, each M_i contains all vertices but one v_i (We know that it is true for K_n when n is odd, because $\chi'(K_n) = n = \Delta + 1, |M_i| \leq \frac{n-1}{2}, 1 \leq i \leq n$, and if there is an integer j such that $|M_j| < \frac{n-1}{2}$, then $\chi'(K_n) > \Theta(K_n) = \frac{n(n-1)}{2}$, a contradiction). For $1 \leq i \leq n$, color the vertex v_i with color $n - i$ and the edges in M_i with $n + t - 3 + i$. Since v_i is not incident to M_i, then we obtain an $[1,1,t;1]$-coloring of K_n with $2n + t - 3 = \Delta(K_n) + \Delta_1(K_n) + t$ colors.

Case 2.3. If $1 < f(v) < d(v)$, then $f(v) = k \geq 3$ and

$$\Delta_f(G) = \max_{v \in V(G)} \{[d(v)/f(v)]\} = \frac{n-1}{k} \overset{\text{def}}{=} 2\alpha.$$

Let M_i be defined as in Case 2.2 and let $M'_i = M_i$, $M''_i = \bigcup_{j=2}^{k+1} M_{i-2k+j}$, $2 \leq i \leq 2\alpha + 1$. Color the vertex v_i with color $n - i$ and the edges in M'_i with color $n + t - 3 + i$, $2 \leq i \leq 2\alpha + 1$. We obtain an $[1,1,t;f]$-coloring of K_n with $n + t - 3 + (2\alpha + 1) + 1 = \Delta(K_n) + \Delta_f(K_n) + t$ colors.

Case 3. G is an odd cycle. Then $\Delta = 2, \Delta_f(G) = \max_{v \in V(G)} \{[d(v)/f(v)]\} \leq 2$.

Case 3.1. If $f(v) = d(v)$ for all $v \in V(G)$, then $\chi'_f(G) = \Delta_f(G) = 1$. We assign colors 0 and 1 to the vertices along the odd cycle alternately and assign color 2 to the final vertex. Then we color all the edges of G with color $\Delta(G) + \Delta_f(G) + t - 1 = t + 2$. We obtain an $[1,1,t;f]$-coloring of G with $\Delta(G) + \Delta_f(G) + t$ colors.

Case 3.2. If there is a vertex $u \in V(G)$ such that $f(u) < d(u) = 2$, which implies $f(u) = 1$, $\Delta_f(G) = 2$. We color u with color 2 and the other vertices with 0 and 1 alternately. Denoted by e_1, e_2 the edges incident with u. Next, we color edge e_1 with color $t + 2$, color the edge adjacent with e_1 but not e_2
with color \(t + 1 \). In this order, we color the edges along the cycle with colors \(t + 2, t + 1 \) alternately except for coloring \(c_2 \) with color \(t + 3 \). Then we obtain an \([1, 1, t; f]\)-coloring of \(G \) with \(t + 4 = \Delta(G) + \Delta_f(G) + t \) colors.

In any case, we all prove that \(\chi_{1,1,t;f}(G) \leq \Delta(G) + \Delta_f(G) + t \).

\[\Box \]

Lemma 4.7. Let \(t \geq 2 \) be an integer. Then

1. If \(\delta_f(G) = \Delta_f(G) \), then \(\chi_{1,1,t;f}(G) \geq \Delta_f(G) + t + 1 \);
2. If \(t \geq \Delta_f(G) \), then \(\chi_{1,1,t;f}(G) \geq \Delta_f(G) + t + 1 \).

Proof. Assume that we have an \([1, 1, t; f]\)-coloring of \(G \) with colors \(\{0, 1, \ldots, \Delta_f(G) + t - 1 \} \). We at first prove that the vertex \(u \) with \([d(u)/f(u)] = \Delta_f(G) \) must be assigned color 0 or \(\Delta_f(G) + t - 1 \). Consider \(u \) and all the edges which are incident to it. We denote the subgraph by \(H \). Then at least \(\Delta_f(G) \) colors are needed for \([1, 1, t; f]\)-coloring the edges of \(H \). Without loss of generality, we denote the colors by \(C_1 < C_2 < \cdots < C_{\Delta_f} \). If there is an integer \(i \), such that \(C_i < c(u) < C_{i+1} \), then \(C_{\Delta_f} \geq 2t + \Delta_f(G) - 2 > \Delta_f(G) + t - 1 \), a contradiction. If \(c(u) < C_1 \), then \(C_1 \geq t \) which implies that \(c(u) = 0 \) and \(C_1 = t + 1, C_2 = t + 2, \ldots, C_{\Delta_f} = \Delta_f(G) + t - 1 \); If \(c(u) > C_{\Delta_f} \), then we can get \(c(u) = \Delta_f(G) + t - 1 \) and \(C_1 = t + 1, C_2 = t + 2, \ldots, C_{\Delta_f} = \Delta_f(G) + t - 1 \) by the same way. Without loss of generality, we assume that \(c(u) = 0 \).

1. If \(\delta_f(G) = \Delta_f(G) \), then every vertex must be assigned color 0 or \(\Delta_f(G) + t - 1 \). Let \(uv \) be an edge colored with color \(\Delta_f(G) + t - 1 \). We see that \(v \) can be labeled by neither 0 nor \(\Delta_f(G) + t - 1 \), a contradiction.
2. If \(t \geq \Delta_f(G) \), let \(uv \) be an edge colored with color \(t \), then \(c(v) \geq 2t \geq \Delta_f(G) + t \) by the assumption \(t \geq \Delta_f(G) \), a contradiction.

\[\Box \]

Lemma 4.8 ([7]). Let \(G(V, E) \) be a bipartite graph and \(\Delta_f(G) = \max_{v \in V(G)} \{[d(v)/f(v)]\} \).

Then \(\chi'_f(G) = \Delta_f(G) \).

Theorem 4.9. Let \(G(V, E) \) be a bipartite graph. Then

1. \(\Delta_f(G) + t \leq \chi_{1,1,t;f}(G) \leq \Delta_f(G) + t + 1 \);
2. If \(t \geq \Delta_f(G) \) or \(\delta_f(G) = \Delta_f(G) \), then \(\chi_{1,1,t;f}(G) = \Delta_f(G) + t + 1 \).

Proof. If \(G \) is a bipartite graph, then \(\chi(G) = 2 \) and \(\chi'_f(G) = \Delta_f(G) \) by Lemma 4.8. Together with Lemma 4.3 we obtain (1).

(2) can be obtained by Lemma 4.7 and (1) of Theorem 4.9.

Note that for a bipartite graph \(G \), \(\chi(G) = 2 \) and \(\chi'_f(G) = \Delta_f(G) \). If \(t \geq \Delta_f(G) \), by (2) of Theorem 4.9 we get \(\chi_{1,1,t;f}(G) = \Delta_f(G) + t + 1 \); If \(t = 0 \), by Theorem 3.1 we get \(\chi_{1,1,t;f}(G) = \max\{2, \Delta_f(G)\} \); If \(1 \leq t < \Delta_f(G) \), by (1) of Theorem 4.9 we have \(\chi_{1,1,t;f}(G) = \Delta_f(G) + t + 1 \) or \(\Delta_f(G) + t \). We may ask what conditions are needed for a bipartite graph \(G \) with \(1 \leq t < \Delta_f(G) \) to satisfy \(\chi_{1,1,t;f}(G) = \Delta_f(G) + t + 1 \)?
5. Problems for further research

In this paper, we present a new coloring of a graph G for the first time. We named it an $[r, s, t; f]$-coloring of G and investigate some interesting properties on the $[r, s, t; f]$-chromatic number. Some are the generalization of the results about the $[r, s, t]$-coloring and the other are new. However, all the results in our paper are correct for $[r, s, t]-$coloring just let $f(v) = 1$ for all $v \in V(G)$.

Finally, we present the following problems for further research.

Problem 1. Find the properties of the f-total coloring as we defined in Section 1. Is there a conjecture like the TCC for it?

Problem 2. Find the other results on the chromatic number $\chi_{1,1,t,f}(G)$.

Problem 3. Find the exact values of $\chi_{r,s,t,f}(G)$ for some special graphs.

Acknowledgements. We would like to thank the referees for various comments whose suggestions greatly improved the present paper.

References

YONG YU
School OF MATHEMATICS
Shandong University Jinan
Shandong, 250100, P. R. China
E-mail address: yuyong6834@yahoo.com.cn

GUIZHEN LIU
School OF MATHEMATICS
Shandong University Jinan
Shandong, 250100, P. R. China
E-mail address: gzliu@sdu.edu.cn