SOME NOTES ON EXTENSIONS
OF BASIC UNIVALENCE CRITERIA

ERHAN DENIZ AND HALIT ORHAN

ABSTRACT. The object of the present paper is to obtain a more general condition for univalence of analytic functions in the open unit disk U. The significant relationships and relevance with other results are also given. A number of known univalent conditions would follow upon specializing the parameters involved in our main results.

1. Introduction

We denote by U_r the disk $\{z \in \mathbb{C}: |z| < r\}$, where $0 < r \leq 1$, by $U = U_1$ the open unit disk of the complex plane and by I the interval $[0, \infty)$. Let A denote the class of analytic functions in the open unit disk U which satisfy the usual normalization condition:

$$f(0) = f'(0) - 1 = 0.$$

Three of the most important and known univalence criteria for analytic functions defined in the open unit disk were obtained by Nehari [4], Ozaki-Nunokawa [7] and Becker [1]. Some extensions of these three criteria were given by (see [6, 9, 10, 11, 12, 13] and [14]). During the time, unlike there were obtained a lot of univalence criteria (see also [2], [3] and [5]).

Our univalence conditions contain as special cases, Tudor’s results and other results obtained by some of the authors cited in references.

Theorem 1.1 (see [1]). Let $f \in A$. If for all $z \in U$

$$\frac{1}{(1 - |z|^2)} \left| \frac{zf''(z)}{f'(z)} \right| \leq 1,$$

then the function f is univalent in U.

Theorem 1.2 (see [7]). Let $f \in A$. If for all $z \in U$

$$\left| \frac{z^2f'(z)}{f^2(z)} - 1 \right| < 1,$$
then the function \(f \) is univalent in \(U \).

Theorem 1.3 (see [4]). Let \(f \in A \). If for all \(z \in U \)
\[
|\{f; z\}| \leq \frac{2}{(1 - |z|^2)^2},
\]
where
\[
\{f; z\} = \left(\frac{f''(z)}{f'(z)} \right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)} \right)^2.
\]

Then the function \(f \) is univalent in \(U \).

In the present paper we consider the analyticity and univalence of functions \(f(z) \) belonging to the class \(A \). Our considerations are based on the theory of Loewner chains. A function \(L : U \times I \to \mathbb{C} \) is called a Loewner chain if it is analytic and univalent in \(U \) and \(L(z, s) \) is subordinate to \(L(z, t) \) for all \(0 \leq s \leq t < \infty \). Consider \(f \) and \(g \) analytic functions in \(U \). We say that \(f \) is subordinate to \(g \), written \(f \prec g \), if there exists a function \(w \) analytic in \(U \) which satisfies \(w(0) = 0 \), \(|w(z)| < 1 \) and \(f(z) = g(w(z)) \) for all \(z \in U \).

2. Preliminaries

In proving our results, we will need the following theorem due to Ch. Pommerenke [8].

Theorem 2.1. Let \(L(z, t) = a_1(t)z + a_2(t)z^2 + \cdots, a_1(t) \neq 0 \) be analytic in \(U_r \) for all \(t \in I \), locally absolutely continuous in \(I \), and locally uniform with respect to \(U_r \). For almost all \(t \in I \), suppose that
\[
z \frac{\partial L(z, t)}{\partial z} = p(z, t) \frac{\partial L(z, t)}{\partial t}, \forall z \in U_r,
\]
where \(p(z, t) \) is analytic in \(U \) and satisfies the condition \(\Re\{p(z, t)\} > 0 \) for all \(z \in U, t \in I \). If \(|a_1(t)| \to \infty \) for \(t \to \infty \) and \(\{L(z, t)/a_1(t)\} \) forms a normal family in \(U_r \), then for each \(t \in I \), the function \(L(z, t) \) has an analytic and univalent extension to the whole disk \(U \).

3. Main results

Making use of Theorem 2.1 we can prove now, our main results.

Theorem 3.1. Let \(m \) be a positive real number and let \(\alpha \) be a complex number such that \(\Re(\alpha) > \frac{1}{m+1} \) and \(f \in A \). Let \(g \) and \(h \) be two analytic functions in \(U \), \(g(z) = 1 + b_1z + \cdots, h(z) = c_0 + c_1z + \cdots \). If the following inequalities
\[
\left| \left(\frac{1}{\alpha} \frac{f'(z)}{g(z)} - 1 \right) - \frac{m - 1}{2} \right| < \frac{m + 1}{2}
\]

and
\begin{equation}
\left(\frac{1}{\alpha} \frac{f'(z)}{g(z)} - 1\right) |z|^{2(m+1)} + z^2 \left(1 - |z|^{m+1}\right)^2 \left[\frac{1}{\alpha} \frac{f'(z)h(z)}{f(z)} + \frac{1}{\alpha} \frac{f'(z)h^2(z)}{f(z)} + \frac{g'(z)h(z)}{g(z)} - h'(z)\right] + z |z|^{m+1} \left(1 - |z|^{m+1}\right) \left[\frac{1}{\alpha} \frac{f'(z)}{f(z)} + \frac{2}{\alpha} \frac{f'(z)h(z)}{g(z)} + \frac{g'(z)}{g(z)}\right] - \frac{m-1}{2} |z|^{m+1} \leq \frac{m+1}{2} |z|^{m+1}
\end{equation}
are satisfied for all \(z \in U\), then the function \(f\) is univalent in \(U\) where the principal branch is intended.

\textbf{Proof.} Let \(a\) and \(b\) be two positive real numbers such that \(m = \frac{b}{a}\). We prove that there exists a real number \(r \in (0, 1]\) such that the function \(L : U_r \times I \to \mathbb{C}\), defined formally by
\begin{equation}
L(z, t) = f^{1-\alpha}(e^{-at}z) \left[f(e^{-at}z) + \frac{(e^{bt} - e^{-at})zg(e^{-at}z)}{1 + (e^{bt} - e^{-at})zh(e^{-at}z)}\right]^{\alpha}
\end{equation}
is analytic in \(U_r\) for all \(t \in I\).

Let us consider the function \(\varphi_1(z, t)\) given by
\begin{equation}
\varphi_1(z, t) = 1 + (e^{bt} - e^{-at})zh(e^{-at}z).
\end{equation}
For all \(t \in I\) and \(z \in U\) we have \(e^{-at}z \in U\) and because \(h\) analytic, the function \(\varphi_1(z, t)\) is analytic in \(U\) and \(\varphi_1(0, t) = 1\). Then there exist a disc \(U_{r_1}\), \(0 < r_1 < 1\), in which \(\varphi_1(z, t) \neq 0\) for all \(t \in I\) and \(z \in U_{r_1}\).

For the function
\begin{equation}
\varphi_2(z, t) = \left[f(e^{-at}z) + \frac{(e^{bt} - e^{-at})zg(e^{-at}z)}{\varphi_1(z, t)}\right]^{\alpha},
\end{equation}
\(\varphi_2(z, t) = z^\alpha \varphi_3(z, t)\), it can be easily shown that \(\varphi_3(z, t)\) is analytic in \(U_{r_1}\) and \(\varphi_3(0, t) = e^{bt}\) for all \(t \in I\). From these considerations it follows that the function
\begin{equation}
L(z, t) = f^{1-\alpha}(z, t)\varphi_2(z, t)
\end{equation}
is analytic in \(U_{r_1}\) for all \(t \in I\) and has the following form
\[L(z, t) = a_1(t)z + \cdots .\]
We have
\begin{equation}
a_1(t) = e^{[\alpha(a+b)-a]t}
\end{equation}
Moreover, \(a_l(t) \neq 0 \) for all \(t \in I \).
From the analyticity of \(L(z, t) \) in \(U_{r_1} \), it follows that there exists a number \(r_2, 0 < r_2 < r_1 \), and a constant \(K = K(r_2) \) such that
\[
\left| \frac{L(z, t)}{a_l(t)} \right| < K, \quad \forall z \in U_{r_2}, \quad t \in I.
\]

Then, by Montel’s Theorem, \(\{ L(z, t) \} \) is a normal family in \(U_{r_2} \). From the analyticity of \(\frac{\partial L(z, t)}{\partial t} \), we obtain that for all fixed numbers \(T > 0 \) and \(r_3, 0 < r_3 < r_2 \), there exists a constant \(K_1 > 0 \) (that depends on \(T \) and \(r_3 \)) such that
\[
\left| \frac{\partial L(z, t)}{\partial t} \right| < K_1, \quad \forall z \in U_{r_3}, \quad t \in [0, T].
\]

Therefore, the function \(L(z, t) \) is locally absolutely continuous in \(I \), locally uniform with respect to \(U_{r_3} \).

Let \(p : U_r \times I \to \mathbb{C} \) be the function in \(U_r \), \(0 < r < r_3 \) for all \(t \in I \), defined by
\[
p(z, t) = \frac{z - \partial L(z, t)}{\partial z} - \frac{\partial L(z, t)}{\partial t}.
\]

If the function
\[
w(z, t) = \frac{p(z, t) - 1}{p(z, t) + 1} = \frac{z - \partial L(z, t)}{\partial z} - \frac{\partial L(z, t)}{\partial t} + \frac{\partial L(z, t)}{\partial z}
\]
is analytic in \(U \times I \) and \(|w(z, t)| < 1 \) for all \(z \in U \) and \(t \in I \), then \(p(z, t) \) has an analytic extension with positive real part in \(U \) for all \(t \in I \). From equality (3.8) we have
\[
w(z, t) = \frac{(1 + a)A_\alpha(z, t) + (1 - b)}{(1 - a)A_\alpha(z, t) + (1 + b)},
\]
where
\[
A_\alpha(z, t) = e^{-(a + b)t} \left\{ \frac{f'(e^{-at}z)}{\alpha f(e^{-at}z)} + (e^{at} - e^{-at})z^2 \left[\frac{(1 - \alpha)f'(e^{-at}z)h(e^{-at}z)}{\alpha f(e^{-at}z)} \right. \right.
\[
+ \left. \left. \frac{f''(e^{-at}z)h^2(e^{-at}z)}{\alpha^2 g(e^{-at}z)} + \frac{g'(e^{-at}z)h(e^{-at}z)}{g(e^{-at}z)} - h'(e^{-at}z) \right] \right.
\[
+ \left. (e^{bt} - e^{-at})z \left[\frac{(1 - \alpha)f'(e^{-at}z)h(e^{-at}z)}{\alpha f(e^{-at}z)} + 2 \frac{f'(e^{-at}z)h(e^{-at}z)}{\alpha g(e^{-at}z)} + \frac{g'(e^{-at}z)}{g(e^{-at}z)} \right) \right\} - 1
\]
for \(z \in U \) and \(t \in I \).
The inequality $|w(z, t)| < 1$ for all $z \in U$ and $t \in I$, where $w(z, t)$ is defined by (3.9), is equivalent to

$$
|A_\alpha(z, t) - \frac{b - a}{2a}| < \frac{b + a}{2a}, \quad \forall z \in U, \ t \in I.
$$

Define

$$
B_\alpha(z, t) = A_\alpha(z, t) - \frac{m - 1}{2}, \quad \forall z \in U, \ t \in I.
$$

From (3.1), (3.10) and $\Re(\alpha) > \frac{1}{m+1}$ we have

$$
|B_\alpha(z, t)| = \left| \left(\frac{f'(u)}{\alpha g(u)} - 1 \right) - \frac{m - 1}{2} \right| < \frac{m + 1}{2}
$$

and

$$
|B_\alpha(0, t)| = \left| \left(\frac{1}{\alpha} - 1 \right) - \frac{1}{\alpha} \right| < \frac{m + 1}{2}.
$$

Since $|e^{-at}| \leq |e^{-at}| = e^{-at} < 1$ for all $z \in \hat{U} = \{ z \in \mathbb{C} : |z| \leq 1 \}$ and $t > 0$, we find that $B_\alpha(z, t)$ is an analytic function in \hat{U}. Using the maximum modulus principle it follows that for all $z \in U - \{ 0 \}$ and each $t > 0$ arbitrarily fixed there exists $\theta = \theta(t) \in \mathbb{R}$ such that

$$
|B_\alpha(z, t)| < \max_{|z|=1} |B_\alpha(z, t)| = |B_\alpha(e^{i\theta}, t)|
$$

for all $z \in U$ and $t \in I$.

Denote $u = e^{-at}e^{i\theta}$. Then $|u| = e^{-at}$, $e^{-(a+b)t} = (e^{-at})^{m+1} = |u|^{m+1}$ and from (3.10) we have

$$
|B_\alpha(e^{i\theta}, t)|
$$

$$
= \left| \left(\frac{f'(u)}{\alpha g(u)} - 1 \right) u^{m+1} \right|
$$

$$
+ \frac{u^2 (1 - |u|^{m+1})^2}{|u|^{m+1}} \left[\frac{(1 - \alpha)f'(u)h(u)}{\alpha f(u)} + \frac{f'(u)h^2(u)}{\alpha g(u)} + \frac{g'(u)h(u)}{g(u)} - h'(u) \right]
$$

$$
+ u \left(1 - |u|^{m+1} \right) \left[\frac{(1 - \alpha)f'(u)}{\alpha f(u)} + \frac{f'(u)h(u)}{\alpha g(u)} + \frac{g'(u)}{g(u)} \right] \leq \frac{m + 1}{2}.
$$

Because $u \in U$, the inequality (3.2) implies that

$$
|B_\alpha(e^{i\theta}, t)| \leq \frac{m + 1}{2},
$$

and from (3.13), (3.14) and (3.15), we conclude that

$$
|B_\alpha(z, t)| = \left| A_\alpha(z, t) - \frac{m - 1}{2} \right| \leq \frac{m + 1}{2}.$$
for all $z \in U$ and $t \in I$. Therefore $|w(z,t)| < 1$ for all $z \in U$ and $t \in I$.

Since all the conditions of Theorem 2.1 are satisfied, we obtain that the function $L(z,t)$ has an analytic and univalent extension to the whole unit disk U for all $t \in I$. For $t = 0$ we have $L(z,0) = f(z)$ for $z \in U$ and therefore the function f is analytic and univalent in U.

Remark 3.1. (1) By putting $m = 1$ in Theorem 3.1 we obtain all Tudor’s results in [14].

(2) The univalence criteria which results from Theorem 3.1 when $m = 1$ and $\alpha = 1$ is due to Ovesea-Tudor and Owa in [6].

Corollary 3.1. Let m be a positive real number and let α be a complex number such that $\Re(\alpha) > \frac{1}{m+1}$ and $f \in A$. Suppose that there exists an analytic function h in U, $h(z) = c_0 + c_1 z + \cdots$. If the following inequality

\[| \left(\frac{1}{\alpha} - 1 \right) | z |^{2(m+1)} + z^2 \left(1 - |z|^{m+1} \right)^2 \left[\frac{1}{\alpha} f'(z) h(z) + \frac{h^2(z)}{\alpha} + \frac{f''(z) h(z)}{f'(z)} - h'(z) \right] + z |z|^{m+1} \left(1 - |z|^{m+1} \right) \left[\frac{1}{\alpha} f'(z) + \frac{2h(z)}{\alpha} + \frac{f''(z)}{f'(z)} \right] - \frac{m+1}{2} |z|^{m+1} \]

holds true for all $z \in U$, then the function f is univalent in U where the principal branch is intended.

Proof. It results from Theorem 3.1 with $g = f'$.

If we choose $g = f'$ and $h = -\frac{1}{2} \frac{f''}{f'}$ in Theorem 3.1 we obtain the following univalence criterion.

Corollary 3.2. Let m be a positive real number and let α be a complex number such that $\Re(\alpha) > \frac{1}{m+1}$ and $f \in A$. If the following inequality

\[| \left(\frac{1}{\alpha} - 1 \right) | z |^{2(m+1)} + \left(1 - |z|^{m+1} \right)^2 \left\{ \frac{1}{2} z^2 f; z \right\} + \frac{1}{2} \left(\frac{1}{\alpha} \right) \frac{z^2}{f(z)} \left(\frac{z f''(z)}{f'(z)} \right)^2 - \frac{z^2 f''(z)}{f'(z)} \right\} + |z|^{m+1} \left(1 - |z|^{m+1} \right) \left(1 - \frac{\alpha}{\alpha} \right) \left[\frac{z f'(z)}{f(z)} - \frac{z f''(z)}{f'(z)} \right] - \frac{m-1}{2} |z|^{m+1} \]

\[\leq \frac{m+1}{2} |z|^{m+1} \]
holds true for all \(z \in U \), then the function \(f \) is univalent in \(U \), where the principal branch is intended.

Remark 3.2. (1) If we consider \(m = 1 \) and \(\alpha = 1 \) in Corollary 3.2, the inequality (3.18) becomes (1.3) and then we obtain the univalence criterion due to Nehari [4].

(2) Setting \(m = 1 \) in Corollary 3.2, we obtain the univalence criterion due to Raducanu [9].

Corollary 3.3. Let \(m \) be a positive real number and let \(\alpha \) be a complex number such that \(\Re(\alpha) > \frac{1}{m+1} \) and \(f \in A \). Suppose there exists an analytic function \(h(z) \) in \(U \), \(h(z) = c_0 + c_1 z + \cdots \). If the following inequalities

\[
\frac{z^2 f'(z)}{\alpha f^2(z)} - \frac{m+1}{2} < \frac{m+1}{2}
\]

and

\[
\frac{z^2 f'(z)}{\alpha f^2(z)} \left| z^{m+1} \right| - \frac{m-1}{2} \left| z^{m+1} \right| < \frac{m-1}{2} \left| z^{m+1} \right|
\]

are satisfied for all \(z \in U \), then the function \(f \) is univalent in \(U \) where the principal branch is intended.

Proof. It results from Theorem 3.1 with \(g(z) = \left(\frac{f(z)}{z} \right)^2 \). \(\Box \)

If we choose \(g(z) = \left(\frac{f(z)}{z} \right)^2 \) and \(h(z) = \frac{1}{z} - \frac{f(z)}{z^2} \) in Theorem 3.1 we obtain the following corollary.

Corollary 3.4. Let \(m \) be a positive real number and let \(\alpha \) be a complex number such that \(\Re(\alpha) > \frac{1}{m+1} \) and \(f \in A \). If the following inequalities

\[
\left| \frac{z^2 f'(z)}{\alpha f^2(z)} - 1 \right| - \frac{m-1}{2} \left| z^{m+1} \right| < \frac{m+1}{2}
\]

and

\[
\left| \frac{z^2 f'(z)}{\alpha f^2(z)} - 1 \right| + \left(\frac{\alpha - 1}{\alpha} \right) \left(1 - |z|^{m+1} \right) \left| \frac{zf'(z)}{f(z)} \right| - \frac{m-1}{2} \left| z^{m+1} \right| \leq \frac{m+1}{2} \left| z^{m+1} \right|
\]

are satisfied for all \(z \in U \), then the function \(f \) is univalent in \(U \) where the principal branch is intended.
are satisfied for all \(z \in U \), then the function \(f \) is univalent in \(U \), where the principal branch is intended.

Remark 3.3. (1) If we consider \(\alpha = 1 \) in Corollary 3.4 we obtain the univalence criterion due to Raducanu et al. [13].

(2) Putting \(m = 1 \) in Corollary 3.4 we obtain the univalence criterion due to Raducanu [10].

(3) If we consider \(m = 1 \) and \(\alpha = 1 \) in Corollary 3.4, the inequalities (3.21) and (3.22) becomes (1.2) and then we obtain the univalence criterion due to Ozaki-Nunokawa [7].

Corollary 3.5. Let \(m \) be a positive real number and let \(\alpha \) be a complex number such that \(\Re(\alpha) > \frac{1}{m+1} \) and \(f \in A \). If the following inequality

\[
\left| \left(\frac{1}{\alpha} - 1 \right) - \frac{m-1}{2} \right| < \frac{m+1}{2},
\]

(3.23)

\[
\frac{1-\alpha}{\alpha} \left[1 - (1 - |z|^{m+1}) \right] \frac{zf'(z)}{f(z)} \quad + (1 - |z|^{m+1}) \frac{d}{dz} \left[\log \frac{z^2 f'(z)}{f^2(z)} \right] - \frac{m-1}{2} |z|^{m+1}
\]

is satisfied for all \(z \in U \), then the function \(f \) is univalent in \(U \) where the principal branch is intended.

Proof. It results from Theorem 3.1 with \(g(z) = f'(z) \) and \(h(z) = \frac{1}{z} - \frac{f'(z)}{f(z)} \). □

Remark 3.4. (1) If we consider \(m = 1 \) in Corollary 3.5 we obtain the univalence criterion due to Raducanu [11].

(2) For \(m = 1 \) and \(\alpha = 1 \) in Corollary 3.5 we obtain Goluzin’s criterion for univalence [3].

Corollary 3.6. Let \(m \) be a positive real number and let \(\alpha \) be a complex number such that \(\Re(\alpha) > \frac{1}{m+1} \) and \(f \in A \). If the following inequality

\[
\left| \left(\frac{1}{\alpha} - 1 \right) |z|^{m+1} + z(1 - |z|^{m+1}) \left(\frac{1-\alpha}{\alpha} \frac{f'(z)}{f(z)} + \frac{f''(z)}{f'(z)} \right) - \frac{m-1}{2} \right| \leq \frac{m+1}{2}
\]

(3.24)

is satisfied for all \(z \in U \), then the function \(f \) is univalent in \(U \) where the principal branch is intended.

Proof. It results from Theorem 3.1 with \(g(z) = f'(z) \) and \(h(z) = 0 \). □

Remark 3.5. If we consider \(\alpha = m = 1 \) in Corollary 3.6, the inequality (3.24) becomes (1.1) and then we obtain the univalence criterion due to Becker [1].

Finally, if we take \(\alpha \to \infty \) in Corollary 3.6 (\(z \in U \)) we obtain another univalence criterion as follows.
Corollary 3.7. Let m be a positive real number and $f \in A$. If the following inequality
\begin{equation}
(3.25) \quad \left| z(1 - |z|^{m+1}) \left[\frac{f''(z)}{f'(z)} - \frac{f'(z)}{f(z)} \right] - |z|^{m+1} - \frac{m - 1}{2} \right| \leq \frac{m + 1}{2}
\end{equation}
holds true for all $z \in U$, then the function f is univalent in U where the principal branch is intended.

Remark 3.6. If we consider $\alpha \to \infty$, $z \in U$ in the Corollaries 3.1 and 3.2 we can obtain other new univalence criteria.

Remark 3.7. The famous univalence criteria obtained by Nehari, Ozaki-Nunokawa and Becker contain $|z|^2$ in their expressions. From Theorem 3.1 we obtain new and more general results with $|z|^{m+1}$ ($m > 0$) instead of $|z|^2$.

Example 3.1. The function
\begin{equation}
(3.26) \quad f(z) = \frac{z}{1 - \frac{m}{m+1}} (m \geq 1)
\end{equation}
is analytic and univalent in U.

Proof. From equality (3.26) we have
\begin{equation}
(3.27) \quad \frac{z^2 f'(z)}{f^2(z)} - 1 = \frac{m}{m + 1} z^{m+1}.
\end{equation}
Taking into account (3.27), $\alpha = 1$ and $m \geq 1$, the conditions (3.21) and (3.22) in Corollary 3.4 becomes, respectively,
\begin{align*}
\left| \left(\frac{z^2 f'(z)}{f^2(z)} - 1 \right) - \frac{m - 1}{2} \right| &= \left| \frac{m}{m + 1} z^{m+1} - \frac{m - 1}{2} \right| < \frac{m + 1}{2(m + 1)} < \frac{m + 1}{2}
\end{align*}
and
\begin{align*}
\frac{1}{|z|^{m+1}} \left| \left(\frac{z^2 f'(z)}{f^2(z)} - 1 \right) - \frac{m - 1}{2} |z|^{m+1} \right| &= \frac{1}{|z|^{m+1}} \left(\frac{m}{m + 1} z^{m+1} - \frac{m - 1}{2} |z|^{m+1} \right) < \frac{m^2 + 2m - 1}{2(m + 1)} < \frac{m + 1}{2},
\end{align*}
which are satisfied the conditions (3.21) and (3.22) of Corollary 3.4. It follows that the function f defined by (3.26) is analytic and univalent in U. By using the Mathematica 7.0 program, for $m = 5$, we can obtain the graphic of $f(z) = \frac{z}{1 - \frac{m}{m+1}}$ (see Figure 1). \hfill \square

Acknowledgments. Authors thank the referee so much for valuable suggestions on this work.
References

Erhan Deniz
Department of Mathematics
Faculty of Science
Ataturk University
25240 Erzurum, Turkey
E-mail address: edeniz36@yahoo.com

Halit Orhan
Department of Mathematics
Faculty of Science
Ataturk University
25240 Erzurum, Turkey
E-mail address: horhan@atauni.edu.tr