THE GROUP OF GRAPH AUTOMORPHISMS
OVER A MATRIX RING

SANGWON PARK AND JUNCHEOL HAN

Abstract. Let \(R = \text{Mat}_2(F) \) be the ring of all 2 by 2 matrices over a
finite field \(F \), \(X \) the set of all nonzero, nonunits of \(R \) and \(G \) the group
of all units of \(R \). After investigating some properties of orbits under
the left (and right) regular action on \(X \) by \(G \), we show that the graph
automorphisms group of \(\Gamma(R) \) (the zero-divisor graph of \(R \)) is isomorphic
to the symmetric group \(S_{|F|^2+1} \) of degree \(|F| + 1 \).

1. Introduction

The zero-divisor graph of a commutative ring has been studied extensitively
by Akbari, Anderson, Frazier, Lauve, Livinston and Mohammadian in \([1, 2, 3]\)
since its concept had been introduced by Beck in \([4]\). Recently, the zero-divisor
graph of a noncommutative ring (resp. a semigroup) has also been studied by
Redmond and Wu (resp. F. DeMeyer and L. DeMeyer) in \([10, 11, 12]\) (resp.
\([5]\)). The zero-divisor graph has been used to study the algebraic structures
of rings via their zero-divisors. In this paper, the group of the zero-divisor
graph automorphisms over a matrix ring over a finite field is investigated by
considering some group actions.

For a ring \(R \) with identity, let \(Z(R) \) be the set of all left or right zero-
divisors of \(R \), \(\Gamma(R) \) be the zero-divisor graph of \(R \) consisting of all vertices in
\(Z(R)^* = Z(R) \setminus \{0\} \), the set of all nonzero left or right zero-divisors of \(R \), and
edges \(x \rightarrow y \), which means that \(xy = 0 \) for \(x, y \in Z(R)^* \).

For a ring \(R \) with identity, let \(X(R) \) (simply, denoted by \(X \)) be the set of all
nonzero, nonunits of \(R \), \(G(R) \) (simply, denoted by \(G \)) be the group of all units
of \(R \). In this paper, we will consider some group actions on \(X \) by \(G \) given by
\((g, x) \rightarrow gx \) (resp. \((g, x) \rightarrow xg^{-1} \)) from \(G \times X \) to \(X \), called the left (resp.
right) regular action. If \(\phi : G \times X \rightarrow X \) is the left (resp. right) regular action,
then for each \(x \in X \), we define the orbit of \(x \) by \(o_\ell(x) = \{ \phi(g, x) = gx : g \in G \} \) (resp. \(o_r(x) = \{ \phi(g, x) = xg^{-1} : g \in G \} \)).

In Section 2, we will show that if \(R = \operatorname{Mat}_2(F) \) with \(F \) a finite field, then (1) the number of orbits under the left (resp. right) regular action on \(X \) by \(G \) is \(|F|^2 + 1\); (2) if \(N \) is the set of all nonzero nilpotents in \(R \), then \(|N| = |F|^2 - 1\) and \(o_\ell(x) \cap o_r(x) = o_\ell(x) \cap N = o_r(x) \cap N \) for all \(x \in N \); (3) \(|o_\ell(x) \cap o_r(y)| = |F| - 1\) for all \(x, y \in X \).

We recall that for all \(x \in X \) the set \(\operatorname{ann}_\ell(x) = \{ y \in X : xy = 0 \} \) (resp. \(\operatorname{ann}_r(x) = \{ z \in X : xz = 0 \} \) is called a left (resp. right) annihilator of \(x \). Let \(\operatorname{ann}_\ell^*(x) = \operatorname{ann}_\ell(x) \setminus \{ 0 \} \) (resp. \(\operatorname{ann}_r^*(x) = \operatorname{ann}_r(x) \setminus \{ 0 \} \)).

A graph automorphism \(f \) of a graph \(\Gamma(R) \) (where \(R \) denotes a ring) is defined to be a bijection \(f : \Gamma(R) \to \Gamma(R) \) which preserves adjacency. Note that the set \(\operatorname{Aut}(\Gamma(R)) \) of all graph automorphisms of \(\Gamma(R) \) forms a group under the usual composition of functions. In [3], Anderson and Livingston have shown that \(\operatorname{Aut}(\Gamma(\mathbb{Z}_n)) \) of all graph automorphisms of \(\Gamma(R) \) forms a group under \(\Gamma(R) \) a nonprime integer. For the case of noncommutative rings, it was shown by [8] that when \(R = \operatorname{Mat}_2(\mathbb{Z}_p) \) \((p \text{ is a prime}), \operatorname{Aut}(\Gamma(R)) \simeq S_{p+1}, \text{the symmetric group of degree } p+1. \text{ In Section 3, for the continuation of these investigation, we prove that } \operatorname{Aut}(\Gamma(R)) \simeq S_{|F|+1} \text{ when } R = \operatorname{Mat}_2(F) \text{ with } F \text{ a finite field.}

2. Orbits under the regular action in \(\operatorname{Mat}_2(F) \)

Recall that \(G \) is transitive on \(X \) (or \(G \) acts transitively on \(X \)) under the left (resp. right) regular action on \(X \) by \(G \) if there is an \(x \in X \) with \(o_\ell(x) = X \) (resp. \(o_r(x) = X \)) and the left (resp. right) regular action of \(G \) on \(X \) is said to be half-transitive if \(G \) is transitive on \(X \) or if \(o_\ell(x) \) (resp. \(o_r(x) \)) is a finite set with \(|o_\ell(x)| > 1\) (resp. \(|o_r(x)| > 1\)) and \(|o_\ell(x)| = |o_\ell(y)| \) (resp. \(|o_r(x)| = |o_r(y)|\)) for all \(x \) and \(y \in X \). In [7, Theorem 2.4 and Lemma 2.7], it was shown that if \(R = \operatorname{Mat}_2(F) \) with \(F \) a finite field, then \(G \) is half-transitive on \(X \) by the left (resp. right) regular action and \(|o_\ell(x)| = |F|^2 - 1\) (resp. \(|o_r(x)| = |F|^2 - 1\)) for all \(x \in X \).

Lemma 2.1. Let \(R = \operatorname{Mat}_2(F) \) with \(F \) a finite field. Then the number of orbits under the left (resp. right) regular action on \(X \) by \(G \) is \(|F|^2 + 1\).

Proof. Let \(\mu \) be the number of orbits under the left (resp. right) regular action on \(X \) by \(G \). Note that \(|G| = (|F|^2 - 1)(|F|^2 + 1)|. Thus \(|X| = |R| - |G| - 1 = |F|^4 - |F|^2 - 1 = (|F|^2 - 1) |F|^2 - 1 = (|F| + 1)(|F|^2 - 1)|. Since the cardinality of any orbit under the left (resp. right) regular action on \(X \) by \(G \) is \(|F|^2 - 1\) by [7, Lemma 2.7], \(\mu = \frac{|X|}{(|F|^2 - 1)} = |F| + 1 \). \(\square \)

The following theorem was shown in [6].

Theorem 2.2. The probability that \(n \) by \(n \) matrix over \(GF(p^n) \) be nilpotent is \(p^{n^2} \).

Proof. Refer [6, Theorem 1]. \(\square \)
By Theorem 2.2, we note that the number of all 2×2 nonzero nilpotent matrices over a finite field F is equal to $|F|^2 - 1$.

Theorem 2.3. Let $R = \text{Mat}_2(F)$ with F a finite field and N be the set of all nonzero nilpotents in R. Then under the left (resp. right) regular action on X by G, we have the following.

(i) $|\alpha r(x) \cap N| = |F| - 1$;

(ii) $\alpha r(x) \cap N = \alpha r(x) \cap N = \alpha x \cap \alpha r(x)$ for each $x \in N$.

Proof. (i) Consider the set $S_x = \{(\alpha I)x|\alpha \in F \setminus \{0\}\}$ for each $x \in N$ where I is the identity matrix in R. Since $(\alpha I)x = x(\alpha I)$ for all $(\alpha I)x \in S$, $S_x \subseteq \alpha r(x) \cap N \cap \alpha r(x) \cap N$. Note that for all $\alpha, \beta \in F \setminus \{0\}(\alpha \neq \beta)$, $(\alpha I)x \neq (\beta I)x$, and so $|S_x| = |F| - 1$. Next, we will show that $\alpha x \cap N \subseteq S_x$. Let $y \in \alpha x \cap N$ be arbitrary. Let

$$x = \begin{bmatrix} -ab & b \\ -a^2b & ab \end{bmatrix} \in N \text{ for some } b(\neq 0), \alpha \in F.$$

Since $y \in \alpha x$, $y = gx$ for some $g \in G$. Let $g = [\ell \; \ell'] \in G$. Then

$$y = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} -ab & b \\ -a^2b & ab \end{bmatrix} = \begin{bmatrix} -(p + qa)ab & (p + qa)b \\ -(r + sa)ab & (r + sa)b \end{bmatrix} \in \alpha x.$$

Since $y \in N$, we have $(p + qa)\alpha = (r + sa)(\neq 0)$ by the proof of Lemma 2.2, and so

$$y = \begin{bmatrix} p + qa & 0 \\ 0 & p + qa \end{bmatrix} \begin{bmatrix} -ab & b \\ -a^2b & ab \end{bmatrix} = ((p + qa)I)x \in S_x.$$

Therefore, $\alpha x \cap N \subseteq S_x$, and consequently we have $S_x = \alpha x \cap N$. By the similar argument, we have also $S_x = \alpha r(x) \cap N$. Hence $\alpha x \cap N = \alpha r(x) \cap N$ and $|\alpha x \cap N| = |\alpha r(x) \cap N| = |S_x| = |F| - 1$ for each $x \in N$.

(ii) By the proof of (i), we have that $\alpha x \cap N = \alpha r(x) \cap N$ for each $x \in N$. Note that $S_x = \alpha x \cap N = \alpha r(x) \cap N \subseteq \alpha x \cap \alpha r(x)$ for each $x \in N$ where S_x is the set considered in the proof of (i). Let $y \in \alpha x \cap \alpha r(x)$ be arbitrary and let

$$x = \begin{bmatrix} -\alpha \beta & \beta \\ -\alpha^2 \beta & \alpha \beta \end{bmatrix} \in N \text{ (\forall} \alpha \in F, \forall \beta \in F \setminus \{0\})$$

be arbitrary. Then there exist $g = [a \; b]$, $h = [p \; q] \in G$ such that $y = gx = xh$.

Thus

$$\begin{align*}
(1) & \quad gx = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} -\alpha \beta & \beta \\ -\alpha^2 \beta & \alpha \beta \end{bmatrix} = \begin{bmatrix} -\alpha (a + ba) & \beta (a + ba) \\ -\alpha (c + da) & \beta (c + da) \end{bmatrix}, \\
(2) & \quad xh = \begin{bmatrix} -\alpha \beta & \beta \\ -\alpha^2 \beta & \alpha \beta \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} -\beta (ap - r) & -\beta (aq - s) \\ -\alpha \beta (ap - r) & -\alpha \beta (aq - s) \end{bmatrix}.
\end{align*}$$
Let $\gamma = -\beta (a_q - s) \ (\equiv (1,2) - \text{entry of } y = xh)$. From (1) and (2), we have that

$$y = \begin{bmatrix} -\alpha \gamma & \gamma \\ -\alpha^2 \gamma & \alpha \gamma \end{bmatrix} \in N,$$

and so $o_\ell (x) \cap o_\ell (x) \subseteq o_\ell (x) \cap N$ for each $x \in N$. Hence $o_\ell (x) \cap o_\ell (x) = o_\ell (x) \cap N$ for each $x \in N$. Similarly, we have $o_\ell (x) \cap o_\ell (x) = o_\ell (x) \cap N$ for each $x \in N$. \hfill \Box

Remark 1. Let $R = \text{Mat}_2(R)$ with F a finite field and N be the set of all nonzero nilpotents in R. Choose $x_1 \in N$ so that $S_{x_1} = \{(\alpha I)x_1 | \alpha \in F \setminus \{0\} \} \subset N$. By Theorem 2.3, $o_\ell (x_1) \cap N = S_{x_1}$. Since $|N| = |F|^2 - 1$ by Theorem 2.2 and $|S_{x_1}| = |F| - 1$ by Theorem 2.3, we can choose $x_2 \in N \setminus S_{x_1}$. Then $S_{x_2} = o_\ell (x_1) \cap N$ and $S_{x_2} = o_\ell (x_2) \cap N$ are disjoint. Continuing in this way, we can choose $x_1, x_2, \ldots, x_{|F| + 1} \in N$ so that $x_{i+1} \in N(R) \setminus (S_{x_1} \cup S_{x_2} \cup \cdots \cup S_{x_i})$ for all $i = 1, \ldots, |F|$. Then we have

$$N = S_{x_1} \cup S_{x_2} \cup \cdots \cup S_{x_{|F| + 1}},$$

which is a disjoint union of N. Observe that $o_\ell (x_1), o_\ell (x_2), \ldots, o_\ell (x_{|F| + 1})$ are disjoint (equivalently, they are all distinct). Indeed, assume that there exist $o_\ell (x_i)$ and $o_\ell (x_j)$ for some $i, j (i < j, i \neq j)$ such that $o_\ell (x_i) = o_\ell (x_j)$. Then $x_j \in o_\ell (x_i) \cap N = S_{x_i}$, and so $S_{x_j} \subseteq S_{x_i}$, which is a contradiction. Since the number of orbits under the left regular action on X by G is $|F| + 1$ by Lemma 2.1, $X = o_\ell (x_1) \cup o_\ell (x_2) \cup \cdots \cup o_\ell (x_{|F| + 1})$. By the similar argument, we have $X = o_\ell (x_1) \cup o_\ell (x_2) \cup \cdots \cup o_\ell (x_{|F| + 1})$.

Lemma 2.4. Let $R = \text{Mat}_2(R)$ with F a finite field and N be the set of all nonzero nilpotents in R. Then for all $x, y \in N$, $y = gxg^{-1}$ for some $g \in G$.

Proof. Consider a group action on X by G given by $(g, x) \rightarrow gxg^{-1}$ from $G \times X$ to X, called conjugation.

Take $a = [\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}] \in N$. Let $o_\ell (a) = \{gag^{-1} | g \in G\}$ be the orbit of a under conjugation, and $\text{stab}_G(a) = \{g \in G | ga = ag\}$ be the stabilizer of a under conjugation. Then we have

$$\text{stab}_G(a) = \left\{ \begin{bmatrix} s & t \\ 0 & s \end{bmatrix} \in G | s \neq 0, t \in F \right\},$$

by easy computation, and so $|\text{stab}_G(a)| = |G|/[s \neq 0, t \in F]$. Hence

$$|o_\ell (a)| = \frac{|G|}{|\text{stab}_G(a)|} = \frac{|(F)^2 - |F||(|F|^2 - 1)}{|(F) - 1||F|} = |F|^2 - 1 = |N|,$$

Since $o_\ell (a) \subseteq N$, $o_\ell (a) = N$. Therefore we have the result. \hfill \Box

Theorem 2.5. Let $R = \text{Mat}_2(R)$ with F a finite field and N be the set of all nonzero nilpotents in R. Then under the left (resp. right) regular action on X by G, $|o_\ell (x) \cap o_\ell (y)| = |F| - 1$ for each $x, y \in X$.

Proof. First, we will show that \(\alpha_t(x) \cap \alpha_t(y) \neq \emptyset\) for each \(x, y \in X\). By Remark 1, we can choose \(x_1, \ldots, x_{|F|+1}\) (resp. \(y_1, \ldots, y_{|F|+1}\)) in \(N\) so that \(X = \alpha_t(x_1) \cup \cdots \cup \alpha_t(x_{|F|+1})\) (resp. \(X = \alpha_t(y_1) \cup \cdots \cup \alpha_t(y_{|F|+1})\)). Thus \(\alpha_t(x) = \alpha_t(x_i)\) and \(\alpha_t(y) = \alpha_t(y_j)\) for some \(x_i, y_j \in N\). Observe that \(\alpha_t(x_i) \cap \alpha_t(y_j) \neq \emptyset\). Indeed, since \(x_i\) and \(y_j\) are nonzero nilpotents in \(R\), \(y_j = gx_i g^{-1}\) for some \(g \in G\) by Lemma 2.4. Hence \(\alpha_t(x_i) \cap \alpha_t(y_j) = \alpha_t(x_i) \cap \alpha_t(gx_i g^{-1}) = \alpha_t(gx_i) \cap \alpha_t(gx_i)\) contains an element \(gx_i \in X\), and so \(\alpha_t(x) \cap \alpha_t(y) = \alpha_t(x_i) \cap \alpha_t(y_j) \neq \emptyset\).

Next, we will show that \(|\alpha_t(x) \cap \alpha_t(y)| = |F| - 1\) for each \(x, y \in X\). Since \(\alpha_t(x) \cap \alpha_t(y) \neq \emptyset\) for each \(x, y \in X\), we choose \(z \in \alpha_t(x) \cap \alpha_t(y)\), and then \(\alpha_t(z) = \alpha_t(x) \cap \alpha_t(y)\). Consider a set \(S_z = \{\alpha I \mid \alpha \in F \setminus \{0\}\}\) where \(I\) is the identity matrix in \(R\). Since \((\alpha I)z = z(\alpha I)\) for all \((\alpha I)z \in S_z\), \(S_z \subseteq \alpha_t(x) \cap \alpha_t(y)\). Note that for all \(\alpha, \beta \in F \setminus \{0\}\) (\(\alpha \neq \beta\)), \((\alpha I)z \neq (\beta I)z\), and so \(|S_z| = |F| - 1\). Thus \(|\alpha_t(x) \cap \alpha_t(y)| = |\alpha_t(z) \cap \alpha_t(z)| \geq |S_z| = |F| - 1\). Since \(X = \alpha_t(x_1) \cup \cdots \cup \alpha_t(x_{|F|+1})\), we have \(\alpha_t(y) = X \cap \alpha_t(y) = \alpha_t(x_1) \cap \alpha_t(y) \cup \cdots \cup \alpha_t(x_{|F|+1}) \cap \alpha_t(y)\). Clearly, \(\alpha_t(x_1) \cap \alpha_t(y), \ldots, \alpha_t(x_{|F|+1}) \cap \alpha_t(y)\) are disjoint, and thus \(|\alpha_t(y)| = |F|^2 - 1 = |\alpha_t(x_1) \cap \alpha_t(y)| + \cdots + |\alpha_t(x_{|F|+1}) \cap \alpha_t(y)| \geq (|F| - 1)(|F| + 1) = |F|^2 - 1\), which implies that \(|\alpha_t(x_1) \cap \alpha_t(y)| = \cdots = |\alpha_t(x_{|F|+1}) \cap \alpha_t(y)| = |F| + 1\). Since \(\alpha_t(x) = \alpha_t(x_i)\) for some \(x_i \in N\), we have that \(|\alpha_t(x) \cap \alpha_t(y)| = |\alpha_t(x) \cap \alpha_t(y)| = |F| - 1\) for each \(x, y \in X\). \(\square\)

The following example illustrates Theorem 2.3 and Theorem 2.5 for a certain finite field.

Example 1. Consider \(F = \mathbb{Z}_2[x]/(1 + x + x^2)\), a field of order 4 where \(\mathbb{Z}_2\) is the Galois field of order 2. To simplify notation, we denote \(f(x) + (1 + x + x^2) \in F\) by \(f(x)\) for all \(f(x) \in \mathbb{Z}_2[x]\). Thus \(F = \{0, 1, x, 1 + x\}\). Let \(R = \text{Mat}_2(F)\) and let \(N\) be the set of all nonzero nilpotents of \(R\). Then \(|X| = (|F| + 1)(|F|^2 - 1) = 75\) and \(|N| = |F|^2 - 1 = 15\). Note that under the left (resp. right) regular action on \(X\) by \(G\), there are \(z_1, z_2, z_3, z_4, z_5 \in N\) such that \(X = \alpha_t(z_1) \cup \alpha_t(z_2) \cup \alpha_t(z_3) \cup \alpha_t(z_4) \cup \alpha_t(z_5)\) (resp. \(X = \alpha_t(z_1) \cup \alpha_t(z_2) \cup \alpha_t(z_3) \cup \alpha_t(z_4) \cup \alpha_t(z_5)\)), where \(z_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\), \(z_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\), \(z_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\), \(z_4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\), and \(z_5 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\).

We compute the followings by a computer programming (using Mathematica Ver. 6):

\[
\begin{align*}
\alpha_t(z_1) \cap N &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\
\alpha_t(z_2) \cap N &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\
\alpha_t(z_3) \cap N &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \\
\alpha_t(z_4) \cap N &= \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\
\alpha_t(z_5) \cap N &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
\end{align*}
\]
with \(o_t(z_i) \cap N = o_r(z_i) \cap N \) for all \(i = 1, \ldots , 5 \).

Also we compute the followings by a computer programming (using Mathematica Ver. 6):

\[
\begin{align*}
o_t(z_1) \cap o_r(z_1) &= \left\{ \begin{array}{ccc} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}, \\
o_t(z_1) \cap o_r(z_2) &= \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & 0 \end{array} \right\}, \\
o_t(z_1) \cap o_r(z_3) &= \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\}, \\
o_t(z_1) \cap o_r(z_4) &= \left\{ \begin{array}{ccc} 1 + x & 1 + x & 1 + x \\ 1 + x & 1 + x & 1 + x \\ 1 + x & 1 + x & 1 + x \end{array} \right\}, \\
o_t(z_1) \cap o_r(z_5) &= \left\{ \begin{array}{ccc} 1 + x & 1 + x & 1 + x \\ 1 + x & 1 + x & 1 + x \\ 1 + x & 1 + x & 1 + x \end{array} \right\}.
\end{align*}
\]

3. Automorphism of graph over \(\text{Mat}_2(F) \)

Lemma 3.1. Let \(R \) be a ring with identity and \(f : \Gamma(R) \to \Gamma(R) \) be a graph automorphism of \(\Gamma(R) \). Then for all \(x \in X \), \(f(\text{ann}_x^r(x)) = \text{ann}_x^r(f(x)) \) (and \(f(\text{ann}_x^l(x)) = \text{ann}_x^l(f(x)) \)).

Proof. Let \(y \in f(\text{ann}_x^r(x)) \) be arbitrary. Then \(y = f(z) \) for some \(z \in \text{ann}_x^r(x) \). Since \(xx = 0 \) and \(f \) preserves adjacency, \(0 = f(z)f(x) = yf(x) \) and so \(y \in \text{ann}_x^r(f(x)) \). Hence \(f(\text{ann}_x^r(x)) \subseteq \text{ann}_x^r(f(x)) \). Let \(z \in \text{ann}_x^r(f(x)) \) be arbitrary. Then \(zf(x) = 0 \). Since \(f \) is one-to-one, there exists \(z_1 \in X \) such that \(f(z_1) = z \). Then \(0 = zf(x) = f(z_1)f(x) \). Since \(f \) preserves adjacency, \(z_1x = 0 \). Since \(z_1 \in \text{ann}_x^r(x) \) and \(z = f(z_1) \in f(\text{ann}_x^r(x)) \), \(\text{ann}_x^r(f(x)) \subseteq f(\text{ann}_x^r(x)) \).

By the similar argument, we have \(f(\text{ann}_x^l(x)) = \text{ann}_x^l(f(x)) \). \(\square \)

Lemma 3.2. Let \(R \) be a ring with identity. If \(\text{ann}_x^r(x) \neq \emptyset \) (resp. \(\text{ann}_x^l(x) \neq \emptyset \)) for some \(x \in X \), then \(\text{ann}_x^r(x) \) (resp. \(\text{ann}_x^l(x) \)) is a union of orbits under the left (resp. right) regular action on \(X \) by \(G \).

Proof. Let \(y \in \text{ann}_x^r(x) \) be arbitrary. Then we have \(o_t(y) \subseteq \text{ann}_x^r(x) \), and so \(\bigcup_{y \in \text{ann}_x^r(x)} o_t(y) \subseteq \text{ann}_x^r(x) \). Since \(\text{ann}_x^r(x) \) is not empty, it is clear that \(\text{ann}_x^r(x) \subseteq \bigcup_{y \in \text{ann}_x^r(x)} o_t(y) \). Hence \(\text{ann}_x^r(x) = \bigcup_{y \in \text{ann}_x^r(x)} o_t(y) \), i.e., \(\text{ann}_x^r(x) \) is a union of orbits under the left regular action on \(X \) by \(G \). By the similar argument, \(\text{ann}_x^l(x) \) is a union of orbits under the right regular action on \(X \) by \(G \). \(\square \)

Corollary 3.3. Let \(R \) be a finite ring with identity. Then for all \(x \in X \), \(\text{ann}_x^r(x) \) (resp. \(\text{ann}_x^l(x) \)) is a union of finite number of orbits under the left (resp. right) regular action on \(X \) by \(G \).

Proof. By [8, Proposition 1.2], all \(x \in X \) are zero-divisors, and so \(\text{ann}_x^r(x) \neq \emptyset \) (resp. \(\text{ann}_x^l(x) \neq \emptyset \)) for all \(x \in X \). Hence for all \(x \in X \text{ann}_x^r(x) \) (resp. \(\text{ann}_x^l(x) \))
is a union of finite number of orbits under the left (resp. right) regular action on X by G by Lemma 3.2. □

The following lemma is well-known in [9].

Lemma 3.4. Let p be a prime number and α, β be positive integers. Then $p^{\alpha} - 1$ is a divisor of $p^{\beta} - 1$ if and only if α is a divisor of β.

Proof. Refer [9, Lemma 3.3, p 32]. □

By using the preceding lemma, we describe $ann_\ast(x)$ (and $ann_\ast(x)$) for all $x \in X$ effectively as follows:

Theorem 3.5. Let $R = \text{Mat}_2(F)$ with F a finite field. Then $ann_\ast(x) = \alpha(x)$ for all $x \in ann_\ast(x)$ (and $ann_\ast(x) = \alpha(x)$ for all $z \in ann_\ast(x)$).

Proof. By [7, Lemma 2.7], we have $|\alpha(x)| = |F|^2 - 1$ for all $x \in X$. Hence we observe that

1. since $ann_\ast(x)$ is a union of a finite number of orbits under the left regular action of G on X by Corollary 3.3 and the left regular action of G on X is half-transitive by [7, Theorem 2.4], $|\alpha(x)|$ is a divisor of $|ann_\ast(x)|$ for all $y \in ann_\ast(x)$;
2. $|\alpha(x)|$ is a divisor of $|F|$ since $ann_\ast(x)$ is an additive subgroup of F for all $x \in X$.

Let $|F| = p^k$ for some prime p and some positive integer α. Then $|\alpha(x)| = p^{2\alpha} - 1$ and $|F| = p^{2\alpha}$. Since $ann_\ast(x) \neq R$, we have $|\alpha(x)| = p^k$ for some positive integer k $(2\alpha \leq k < 4\alpha)$ by (2). By (1) and Lemma 3.4, $|ann_\ast(x)| = p^{2\alpha} - 1$, and so $|ann_\ast(x)| = |\alpha(x)|$. Since $\alpha(x) \subseteq ann_\ast(x), ann_\ast(x) = \alpha(x)$ for all $y \in ann_\ast(x)$. Similarly, we can show that $ann_\ast(x) = \alpha(x)$ for all $z \in ann_\ast(x)$. □

Theorem 3.6. Let $R = \text{Mat}_2(F)$ with F a finite field. Then $\text{Aut}(\Gamma(R)) \neq \{1\}$.

Proof. If $|F| = 2$, then F is isomorphic to Z_2, and so $\text{Aut}(\Gamma(R)) \neq \{1\}$ by [8, Theorem 3.5]. Suppose that $|F| \geq 3$ and let $N(R)$ be the set of all nonzero nilpotents in R. By Theorem 2.3, $|\alpha(x) \cap N(R)| = |F| - 1 \geq 2$ for each $x \in X$. Take $x_1, x_2 \in \alpha(x) \cap N(R)$ so that $x_1 \neq x_2$. Since x_1 and x_2 are nilpotents, we have $ann_\ast(x_1) = \alpha(x_1) = \alpha(x_2) = ann_\ast(x_2)$ by Theorem 3.5. Observe that $ann_\ast(x_1) = ann_\ast(x_2)$. Indeed, if $a \in ann_\ast(x_1)$, then $0 = x_1a = gx_1a = 0$ for some $g \in G$ since $x_2 \in \alpha(x_1)$, which implies that $a \in ann_\ast(x_2)$, and so $ann_\ast(x_1) \subseteq ann_\ast(x_2)$. Similarly, we have $ann_\ast(x_2) \subseteq ann_\ast(x_1)$.

By a similar argument, we have $ann_\ast(x_1) = \alpha(x_1) = \alpha(x_2) = ann_\ast(x_2)$ by Theorem 3.5. Since $\alpha(x_1) = \alpha(x_2), x_2 = gx_1$ for some $g \in G$. Let $f = (x_1, x_2)$ be a transposition in S_X, the symmetric group on X. Since $x_1 \neq x_2, f \neq 1$. We will show that $f \in \text{Aut}(\Gamma(R))$. Let $yz = 0$ for some $y, z \in X$. Then we consider the following cases.

Case 1. $y = z = x_1$.

Then \(f(y)f(z) = x_2x_2 = 0 \) since \(x_2 \in N(R) \).

Case 2. \(y = z = x_2 \).

Then \(f(y)f(z) = x_1x_1 = 0 \) since \(x_1 \in N(R) \).

Case 3. \(y = x_1, z = x_2 \).

Then \(f(y)f(z) = x_2x_1 = gx_1x_1 = 0 \) since \(x_1 \in N(R) \).

Case 4. \(y = x_2, z = x_1 \).

Then \(f(y)f(z) = x_1x_2 = g^{-1}x_2x_2 = 0 \) since \(x_2 \in N(R) \).

Case 5. \(y, z \neq x_1, x_2 \).

Then \(f(y)f(z) = yz = 0 \).

Consequently, if \(yz = 0 \) for some \(y, z \in X \), then \(f(y)f(z) = 0 \), which implies that \(f \in \text{Aut}(\Gamma(R)) \), and so \(\text{Aut}(\Gamma(R)) \neq \{1\} \).

Corollary 3.7. Let \(R = \text{Mat}_2(F) \) with \(F \) a finite field and \(N(R) \) be the set of all nonzero nilpotents in \(R \). Consider \(X = o_\ell(a_1) \cup \cdots \cup o_\ell(a_{|F|+1}) \) as mentioned in Remark 1. For all \(j = 1, \ldots, |F|+1 \), let \(s_j = (1, j) \) be a transposition in \(S_{|F|+1} \), the symmetric group of degree \(|F|+1 \). If \(f_{s_j} = (x_1, x_j) \) is a transposition in \(S_X \), the symmetric group on \(X \), then \(f_{s_j} \) is a graph automorphism in \(\Gamma(R) \).

Proof. By Lemma 3.1 and Theorem 3.5, \(f_{s_j}(o_\ell(x_1)) = o_\ell(f_{s_j}(x_1)) = o_\ell(x_j) \). Then \(f_{s_j} \) is a graph automorphism in \(\Gamma(R) \) by the similar argument as given in the proof in Theorem 3.6. \(\square \)

Theorem 3.8. Let \(R = \text{Mat}_2(F) \) with \(F \) a finite field. Then \(\text{Aut}(\Gamma(R)) \simeq S_{|F|+1} \).

Proof. Let \(N(R) \) be the set of all nonzero nilpotents in \(R \). We choose \(x_1, \ldots, x_{|F|+1} \in N(R) \) so that \(X = o_\ell(x_1) \cup \cdots \cup o_\ell(x_{|F|+1}) \) by Remark 1. Let \(f \in \text{Aut}(\Gamma(R)) \) be arbitrary. By Lemma 3.1 and Theorem 3.5, for each \(j = 1, \ldots, |F|+1 \), \(f(o_\ell(x_j)) = o_\ell(f(x_j)) = o_\ell(x_{i_j}) \) for some \(i_j \) \((1 \leq i_j \leq |F|+1) \). Thus \(f \) is determined by the permutation

\[
\begin{pmatrix}
\ell & \cdots & |F|+1 \\
i_1 & \cdots & i_{|F|+1}
\end{pmatrix} \in S_{|F|+1}.
\]

Since \(S_{|F|+1} \) is generated by the transpositions \(s_2 = (1, 2), \ldots, s_{|F|+1} = (1, |F|+1) \), and each \(f_{s_j} = (x_1, x_j) \), a transposition in \(S_X \), is a graph automorphism in \(\Gamma(R) \) by Corollary 3.7, \(f \) is generated by \(f_{s_1}, \ldots, f_{s_{|F|+1}} \). Hence the map \(\sigma : \text{Aut}(\Gamma(R)) \rightarrow S_{|F|+1} \) by \(\sigma(f) = f_\ell \) is bijective. Also \(\sigma \) is a group homomorphism by observing that for all \(s_i, s_j \in S_{|F|+1} (i, j = 2, \ldots, |F|+1) \), \((f_{s_i} \circ f_{s_j}) = f_{s_is_j} \). Therefore, \(\text{Aut}(\Gamma(R)) \simeq S_{|F|+1} \). \(\square \)

Acknowledgements. The authors thank Prof. J. Park at Pusan National University for reading this paper and kind suggestions. The authors would like to thank the referee for a careful checking of the details and helpful comments about some references for making the paper more readable.
References

Sangwon Park
Department of Mathematics
Dong-A University
Pusan 609-714, Korea
E-mail address: swpark@donga.ac.kr

Juncheol Han
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail address: jchan@pusan.ac.kr