THETA SERIES BY PRIMITIVE ORDERS

Sungtae Jun

Abstract. With the theory of a certain type of orders in a Quaternion algebra, we construct Brandt matrices and theta series. As an application, we calculate the class number of a certain type of orders in a Quaternion algebra with the trace formula of Brandt matrices.

1. Introduction

It is well known that there is a close connection between the theory of orders in Quaternion algebra and modular forms of $\Gamma_0(N)$ [2], [4]. There are three types of orders in Quaternion algebra (See Definition 2.1 below). Among them, two types of orders, so called, special orders were studied in [4]. The remaining type was studied in [1] and [6], in different ways. As a consequence of [6], in this paper we define theta series associated with a certain type of orders in a rational Quaternion algebra. With the results of [6], we obtain a trace formula for the Brandt matrices, which will play a central role in determining the subspace of cusp forms generated by the theta series (See [7]). For an immediate application of trace formula, we obtain an explicit formula for class number of primitive orders.

2. Primitive orders in Quaternion Algebra

Let Q be the rational number field and Z be the ring of integers in Q. For a prime p of Q, we denote as Q_p the completion of Q at p, and for $p < \infty$, denote as Z_p the ring of integers in Q_p. Let A be a Quaternion algebra over Q_p. A prime p is said to ramify in A if $A_p = A \otimes Q_p$ is

1991 AMS Subject Classification: 11F11, 11Y40.

Key words: orders, Quaternion algebra, Brandt matrices, theta series.

Partially supported by KOSEF 931-0100-016-1.
a division algebra over Q_p (see [8; p154]). Otherwise A_p is isomorphic to Mat(2, Q_p) over Q_p and p is said to split in A (see [18; p184]). A lattice on A is a finitely generated Z submodule of A which contains a basis of A over Q. Since Z is a principal ideal domain, a lattice is a free Z module of rank 4. An order M of A is a lattice on A which is a subring containing the identity. There is a local-global correspondence for lattices which goes as follows [17; chapterIV]: to a lattice L on A, we associate the collection of lattices $L_p = L \otimes_Z Z_p$ of A_p, one for each \(p < \infty \). Conversely, if we have a collection of lattices $\{L(p)|p < \infty\}$ on A_p, one for each $p < \infty$ and if there exists a lattice M on A such that $L(p) = M_p$ for almost all p, i.e. for all but a finite number of p, then there exists a unique lattice L on A such that $L(p) = L_p$ for all $p < \infty$. Replacing the word "lattice" by "order" above, we obtain the local-global correspondence for orders. An order of A(resp. A_p) is said to be maximal if it is not properly contained in any other order of A(resp. A_p) where p is a finite prime.

Definition 2.1. An order M of A is said to be primitive if

1) for all finite ramified primes p of A, M_p contains a subring which is Z_p isomorphic to the ring of integers in some quadratic field extension of Q_p.

2) for all finite split primes p of A, M_p contains a subring which is Z_p isomorphic to the ring of integers in some quadratic field extension of Q_p or isomorphic to $Z_p \oplus Z_p$ in quadratic extension $Q_p \oplus Q_p$ of Q_p.

Remark. For all ramified primes p of A, pritimitive orders M of A were studied by Hijikata, Pizer and Shemanske [4]. Also, for all finite split primes p of A, orders M_p of A_p which contain a subring which is Z_p-isomorphic to $Z_p \oplus Z_p$ were studied by Hijikata [3].

2.1 Now let us restrict to the case that really interests us at present. For the remainder of this paper, A will be a rational Quaternion algebra ramified precisely at one finite prime q and ∞. Thus $A_\infty = A \otimes Q R$ is Hamilton's Quaternion algebra [10; p343].

If R is an order of A_p which contains O_L, the ring of integers in a quadratic field extension L of Q_p for $p \neq q$, then the possibilities for R
are:

\[R = \begin{cases}
R_{2\nu}(L) = \mathcal{O}_L + \xi P_L^{\nu} & \text{if } L \text{ is unramified} \\
R_{\nu}(L) = \mathcal{O}_L + (1 + \xi)P_L^{\nu-1} & \text{if } L \text{ is ramified} \\
\hat{R}_0(L) = \mathcal{O}_L + (1 - \xi)P_L^{-1} & \text{if } L \text{ is ramified}
\end{cases} \]

for some nonnegative integer \(\nu \) where \(A_p = L + \xi L \) and \(P_L \) is the prime ideal of \(\mathcal{O}_L \) (See [6]).

Definition 2.2. Let \(A \) be a rational Quaternion algebra which is ramified precisely at one finite prime \(q \) and \(\infty \). For finite odd primes \(p_1, p_2, \ldots, p_d \neq q \), an order of \(M \) of \(A \) is said to have level \((q; L(p_1), \nu(p_1); L(p_2), \nu(p_2); \ldots, L(p_d), \nu(p_d)) \) if

i) \(M_q \) is the maximal order of \(A_q \).

ii) for a prime \(p \neq q \), there exists a quadratic field extension \(L(p) \) of \(Q_p \) and a nonnegative integer \(\nu(p) \) (which is even if \(L(p) \) is unramified) such that \(M_p = R_{\nu(p)}(L(p)) \)

iii) \(\nu(p_i) > 0 \) for \(i = 1, 2, \ldots, d \) and \(\nu(p) = 0 \) for \(p \neq q, p_1, \ldots, p_d \) (i.e. \(M_p \) is a maximal order of \(A_p \) if \(p \neq p_1, p_2, \ldots, p_d \)).

Remark. For notational convenience, we put \(N' = (q; L(p_1), \nu(p_1); \ldots, L(p_d), \nu(p_d)) \) and \(N = q \prod_{i=1}^{d} p_i^{\nu(p_i)} \) throughout this paper.

Definition 2.3. Let \(M \) be an order of level \(N' \) in \(A \). A left \(M \) ideal \(I \) is a lattice on \(A \) such that \(I_p = M_p a_p \) for some \((a_p \in A_p^\times) \) for all \(p < \infty \). Two left \(M \) ideals \(I \) and \(J \) are said to belong to the same class if \(I = Ja \) for some \(a \in A^\times \). One has the obvious analogous definitions for right \(M \) ideals.

Definition 2.4. The class number of left ideals for any order \(M \) of level \(N' = (q; L(p_1), \nu(p_1); \ldots, L(p_d), \nu(p_d)) \) is the number of distinct classes of such ideals. We denote this class number by \(H(N') \).

Definition 2.5. Let \(I \) be a (left or right) \(M \) ideal for some order \(M \) of level \(N' \) in \(A \). The left order of \(I = \{a \in A | aI \subset I\} \) and the right order of \(I = \{a \in A | Ia \in I\} \).

Definition 2.6. The norm of an ideal, denoted by \(N(I) \), is the positive rational number which generates the fractional ideal of \(Q \) generated
by \(\{N(a)|a \in I\} \). The conjugate of an ideal \(I \), denoted by \(\overline{I} \), is given by \(\overline{I} = \{ \overline{a} | a \in I \} \). The inverse on an ideal, denoted by \(I^{-1} \), is given by \(I^{-1} = \{ a \in A | IaI \subset I \} \).

Remark. Locally, if \(I_p = M_pa_p \) for some \(a_p \in A_p^\times \), then we define \(N(I_p) = N(a_p) \mod Z_p^\times \).

Note: If we have two ideals \(I \) and \(J \) with right order of \(I \) equal to the left order of \(J \), then \(IJ = (\text{all finite sums } \sum_{i_k \in I, j_k \in J} (i_kj_k) \text{ with } i_k \in I \text{ and } j_k \in J) \) is an ideal with left order equal to the left order of \(I \) and right order equal to right order of \(J \) (see [16; p210]).

Proposition 2.7. Let \(M \) be an order of level \(N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d)) \). Let \(I \) be a left \(M \) ideal with right order \(M' \). Then

i) \(\overline{I} \) is a left \(M' \) ideal with right order \(M \) and \(N(\overline{I}) = N(I) \).

ii) \(II^{-1} = M \) and \(I^{-1}I = M' \).

iii) \(I^{-1} \) is a left \(M' \) ideal with right order \(M \) and \(N(I^{-1}) = N(I)^{-1} \).

Proof. i) By Definition 2.5, it is clear that \(\overline{I} \) is a \(Z \) lattice. Furthermore,

\[
(\overline{I})_p = \overline{I} \otimes Z_p = \overline{I}_p = \overline{M_pa_p} \text{ for some } a_p \in A_p \\
= \overline{a_p}M_p = (\overline{a_p}M_p \overline{a_p}^{-1})\overline{a_p} = M'_p \overline{a_p}.
\]

Therefore, \(\overline{I} \) is a left \(M' \) ideal with right order \(M \). \(N(\overline{I}) = N(I) \) follows from \(\{N(\overline{a})|a \in I\} = \{N(a)|a \in I\} \).

ii) The proofs that \(II^{-1} = M \) and \(I^{-1}I = M' \) are given in [16; p192 Theorem 22.7].

iii) \(I^{-1} = \{ a \in A | IaI \subset I \} = \{ x \in A |Ix \subset M \} \) (See [16; p192 (22.6)]). By Definition 2.3, \(I_p = M_pa_p \) for some \(a_p \in A_p \) for each \(p < \infty \). Therefore, \((I_p)^{-1} = \{ x \in A_p | M_pa_px \subset M_p \} = a_p^{-1}M_p \), which implies \(I_p^{-1} = M'_p a_p^{-1} \) for all \(p < \infty \). Thus we have proven that \(I^{-1} \) is a left \(M' \) ideal with right order \(M \).

For the proof of \(N(I^{-1}) = N(I)^{-1} \), see Theorem 2.4.5 [16; p212]. This completes the proof.
Proposition 2.8. [Pizer] Let M be an order of level N' in A. Let $I_1, I_2, ..., I_H$ be a complete set of representatives of all the distinct left M ideal classes. Let M_j be the right order of $I_j, j = 1, 2, ..., H$. Then $I_j^{-1}I_1, ..., I_j^{-1}I_H$ is a complete set of representatives of all distinct left M_j ideal classes (for $i = 1, 2, ..., H$).

Proof. See Proposition 2.13 and Proposition 2.15 [13].

3. Brandt matrices and Theta series

3.1 We now give the connection between modular forms and Quaternion algebras. Let $Q(x)$ be a positive definite integral quadratic form in an even number of $r = 2k$ variables. Integral means that $Q(x) \in \mathbb{Z}$ for all $x \in \mathbb{Z}^r$. Then $Q(x) = \frac{1}{2}x^tTx$ where $x^t = (x_1, x_2, ..., x_r)$ and $T = (a_{ij})$ is a positive definite symmetric matrix with $a_{ij} \in \mathbb{Z}$ and $a_{ii} \equiv 0 \mod 2$. In fact, T is the matrix of the bilinear form $(x, y) = Q(x+y) - Q(x) - Q(y)$. T is called the matrix associated to $Q(x)$.

Definition 3.1. Let $Q(x)$ and T be as above. The level of $Q(x) T$ is the least positive integer n such that nT^{-1} has integer entries with diagonal entries even integers. The discriminant of $Q(x)$ is $(-1)^k \det(T)$.

Proposition 3.2. Let I be a left M ideal for some order M of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ in a positive definite Quaternion algebra \mathbb{A} over Q which is ramified precisely at one finite prime q and ∞. Then the quadratic form $N(x)/N(I)$ for $x \in I$ is a positive definite integral quadratic form with level N and discriminant N^2 where $N = q \prod_{i=1}^{d} p_i^{\nu(p_i)}$.

Remark. What this means is the following. Let $\epsilon_1, \cdots, \epsilon_4$ be any \mathbb{Z} basis for I. Then $Q(x_1, \cdots, x_4) = N(x_1 \epsilon_1 + \cdots + x_4 \epsilon_4)/N(I)$ is a positive definite integral quadratic form with level N and discriminant N^2. Since any other \mathbb{Z}-basis of I is obtained from $\epsilon_1, \cdots, \epsilon_4$ by operating on $(\epsilon_1, \cdots, \epsilon_4)$ by a matrix $U \in GL(4, \mathbb{Z}) = \{ S \in \text{Mat}_{4 \times 4}(\mathbb{Z}) | \det(S) = \pm 1 \}$, the level and the discriminant are independent of which particular basis we chose.
Proof. Let $Q(x) = N(x)/N(I)$. Since $A_\infty = A \otimes R$ is Hamilton's Quaternion, the norm form is positive definite by [11; p343]. Hence $Q(x)$ is a positive definite form. Next, by the Definition 2.6, $N(I)|N(x)$ for all $x \in I$. This implies $Q(x) = N(x)/N(I)$ is integral.

We now need to show that $Q(x)$ has level N and discriminant N^2. Let S be the matrix associated to $Q(x)$. As the level is a positive integer, we determine the level locally at all primes $< \infty$.

We start to consider the case $p \neq q$ first. By Definition 2.3, $I_p = M_p\beta$ for some $\beta \in A_p^\times$. By 2.1, $M_p = R_{\nu(p)}(L(p))$ for some nonnegative integer $\nu(p)$. Suppose e_1, e_2, e_3, e_4 is a basis of R_ν. Then $e_1\beta, e_2\beta, e_3\beta, e_4\beta$ gives a Z_p basis for I_p. Since $N(I_p) = N(\beta)$ (see Remark of Definition 2.6),

the ij-th entry of S is $Q(e_i\beta + e_j\beta) - Q(e_i\beta) - Q(e_j\beta)$

$$= \frac{1}{N(I_p)}(N(\beta)(N(e_i + e_j) - N(e_i) - N(e_j))$$

$$\equiv N(e_i + e_j) - N(e_i) - N(e_j) = Tr(e, e_j) \mod Z_p^\times.$$

First consider the case, $\nu(p) > 0$. Let $\nu = \begin{cases} \frac{\nu(p)}{2} & \text{if } L(p) \text{ is unramified} \\ \nu(p) - 1 & \text{if } L(p) \text{ is ramified,} \end{cases}$, and $L = L(p)$. Then $R_\nu = \mathcal{O}_L + \xi P_\nu^\omega$. Let $\mathcal{O}_L = Z_p + uZ_p$ for some u in L, so that \mathcal{O}_L is the ring of integers in L. Now we take $e_1 = 1, e_2 = e_3 = \xi \pi_L^\nu, e_4 = \xi \pi_L^\nu u$ as a Z_p basis of $M_p = R_\nu(L)$. Since $\xi \pi_L^\nu = -\xi \pi_L^\nu$ and $\xi \pi_L^\nu u = -\xi \pi_L^\nu u$ where π_L is the prime element of \mathcal{O}_L (See [6]),

$$S = \begin{pmatrix} 2 & Tr(u) & 0 & 0 \\ Tr(u) & 2N(u) & 0 & 0 \\ 0 & 0 & 2N(\pi_L^\nu) & -N(\pi_L^\nu)Tr(u) \\ 0 & 0 & -N(\pi_L^\nu)Tr(u) & 2N(\pi_L^\nu u) \end{pmatrix}.$$

Let $\delta = 4N(u) - Tr(u)^2$. Then

$$S^{-1} = \begin{pmatrix} 2N(u)/\delta & -Tr(u)/\delta & 0 & 0 \\ -Tr(u)/\delta & 2/\delta & 0 & 0 \\ 0 & 0 & 2N(\pi_L^\nu)N(u)/\delta N(\pi_L^\nu)^2 & N(\pi_L^\nu)Tr(u)/\delta N(\pi_L^\nu)^2 \\ 0 & 0 & N(\pi_L^\nu)Tr(u)/\delta N(\pi_L^\nu)^2 & 2N(\pi_L^\nu)/\delta N(\pi_L^\nu)^2 \end{pmatrix}.$$
so the level and the discriminant of $Q(x) = \frac{N(x)}{N(I)}$ are $(4N(u) - \text{Tr}(u^2))^2N(\pi_L^x)$ mod Z_p^x and $(4N(u) - \text{Tr}(u^2))^2N(\pi_L^x)^2$ mod Z_p^x, respectively.

If $L(p)$ is an unramified extension field of Q_p, then $\nu = \frac{\nu(p)}{2}$ and $\Delta(u)$ is a quadratic nonresidue mod p in Q_p, whence $\Delta(u) = -(4N(u) - \text{Tr}(u^2))$ is a unit in Z_p. On the other hand, if $L(p)$ is a ramified extension field of Q_p, then $\nu = \nu(p) - 1$ and $u = \pi_L$. Hence $\Delta(\pi_L) = -(4N(\pi_L) - \text{Tr}(\pi_L)^2) \equiv p$ mod Z_p^x.

In both cases, the level of $Q(x)$ mod $Z_p^x = p^{\nu(p)}$. The discriminant of $Q(x) = \frac{N(x)}{N(I)}$ mod units of Z_p is $\text{disc}(M_p) = \det(\text{Tr}(e_i e_j)) = \det(S) = (4N(u) - \text{Tr}(u^2))^2N(\pi_L^x)^2$. That is, the discriminant of $Q(x)$ mod $Z_p^x = p^{2\nu(p)}$. Thus the level and the discriminant of $Q(x)$ mod units of Z_p are $p^{\nu(p)}$ and $p^{2\nu(p)}$ respectively.

If $\nu(p) = 0$, M_p is a maximal order of A_p, in which case the level and discriminant of $\frac{N(x)}{N(I)}$ are both 1 mod units of Z_p (see [14 : Proposition 2.11]).

In the case, $p = q$, the level and discriminant of $\frac{N(x)}{N(I)}$ mod units of Z_p, q and q^2, have been calculated by A. Pizer[14] and [19].

We conclude that the discriminant of $Q(x)$ is $q^2 \prod_{p \mid p_1 p_2 \cdots p_d} p^{2\nu(p)}$ and the level of $Q(x)$ is $q \prod_{p \mid p_1 p_2 \cdots p_d} p^{\nu(p)}$.

This completes the proof.

3.2 Let M be an order of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ in a Quaternion algebra A over Q ramified precisely at one finite prime q and ∞. Let $I_1, I_2, ..., I_H$, $H = H(N')$ be representatives of all distinct left M ideal classes. Let M_j be the right order of I_j and $e_j = |U(M_j)|$. We define

$$b_{ij}(n) = \frac{1}{e_j} \sum_{\alpha \in I_j^{-1}I_i \cap N(\alpha) = nN(I_i)/N(I_j)} 1 \quad \text{and} \quad b_{ij}(0) = \frac{1}{e_j}.$$

Then $b_{ij}(n) = \frac{1}{e_j} \cdot (\text{the number of elements in } I_j^{-1}I_i \text{ whose norms are } nN(I_i)/N(I_j) \text{ for } n > 0)$.

We are now in position to define the Brandt matrices associated with the primitive orders in Quaternion algebra.
Definition 3.3. Let the notation be as above. The Brandt matrices for \(n \geq 0 \) are defined by

\[
B(n : N') = (b_{ij}(n)).
\]

Thus \(B(n : N') \) is an \(H \times H \) matrix with \(b_{ij}(n) \) as the \(ij \)-th entry.

Theorem 3.4. The entries of the Brandt matrix series,

\[
\Theta(\tau : N') = \sum_{n=0}^{\infty} B(n : N')e^{2\pi i n \tau}
\]

are modular forms of weight 2 on \(\Gamma_0(N) \).

Proof. Recall that \(B(n : N') = (b_{ij}(n)) \) where \(b_{ij}(n) \) is just \(\frac{1}{e_j} \) times the number of elements \(\alpha \in I_j^{-1}I_i \) with \(N(\alpha) = nN(I_i)/N(I_j) \) for \(n > 0 \).

Each entry of the Brandt matrix series, \(\Theta(\tau : N') = (\theta_{ij}(\tau)) \), is

\[
\theta_{ij}(\tau) = \sum_{n=0}^{\infty} b_{ij}(n)e^{2\pi i n \tau}
\]

\[
= \frac{1}{e_j} \sum_{x \in I_j^{-1}I_i, N(x) = nN(I_i)/N(I_j)} e^{2\pi i n \tau}
\]

\[
= \frac{1}{e_j} \sum_{x \in I_j^{-1}I_i} e^{2\pi i N(x)N(I_j)/N(I_i)}.
\]

Let \(Q(x) = N(x)N(I_j)/N(I_i) \). Since \(I_j^{-1}I_i \) is a left ideal of \(M_j \), it is a free \(Z \) module of rank 4. So identifying \(I_j^{-1}I_i \) with \(Z^4 \), we have \(\theta_{ij}(\tau) = \frac{1}{e_j} \sum_{x \in Z^4} e^{2\pi i N(x)N(I_j)/N(I_i)} \). By Theorem 20 of [9: VI22] and Proposition 3.2 above, this is a modular form of weight 2 on \(\Gamma_0(N) \). Note that the spherical function with respect to \(Q(x) \) is 1 in the notation of Ogg [9: VI22] and the character associated to \(\theta_{ij}(\tau) \) is 1, since by Proposition 6.12 \(\text{disc}(Q(x)) = N^2 \) and Theorem 20 of [9: VI22] shows that \(\epsilon(d) = \left(\frac{N^2}{d} \right) = 1 \). This completes the proof.

Our final goal is to find the trace formula for the Brandt matrix \(B(n : N') \), which will be the central role in determining the subspace
of modular forms generated by theta series (See [7]). First we need
to determine the mass formula for \(M \) ideals. Let \(M \) be an order of
level \(N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d)) \) on \(A \) and \(I_1, I_2, ..., I_H \) be
representatives of the left \(M \) ideal classes. Recall that the right order of
\(I_i \) is given by \(M_i = \{ a \in A | I_i a \subset I_i \} \).

Definition 3.5. Let the notations be as above. The mass formula
for \(M \) ideals where \(M \) is an order of level \(N' = (q; L(p_1), \nu(p_1); ..., L(p_d),
\nu(p_d)) \) is given by

\[
\text{Mass}(M) = 2 \sum_{i=1}^{H} \frac{1}{|U(M_i)|}.
\]

Theorem 3.6. Let \(M \) be an order of level
\(N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d)) \) on \(A \). Then

\[
\text{Mass}(M) = \frac{1}{12} (q - 1) \prod_{i=1}^{d} \delta(p_i)
\]

where \(\delta(p_i) = \begin{cases}
(p_i^2 - p_i)p_i^{\nu(p_i) - 2} & \text{if } L(p_i) \text{ is unramified} \\
(p_i^2 - 1)p_i^{\nu(p_i) - 2} & \text{if } L(p_i) \text{ is ramified and } \nu(p_i) \geq 2 \\
(p_i + 1) & \text{if } L(p_i) \text{ is ramified and } \nu(p_i) = 1
\end{cases}
\]

Proof. Let \(M^0 \) be an order of level \(q \) in \(A \) which contains \(M \). Then
as in Proposition 24 and Proposition 25 [12; p685],

\[
\text{Mass}(M) = \text{Mass}(M^0)([U(M^0) : U(M)])
\]

By Eichler[2; p95] \(\text{Mass}(M^0) = \frac{1}{12} (q - 1) \). Thus we need to find \([U(M^0) : U(M)]\).

By Corollary1 [18; p88],

\[
[U(M^0) : U(M)] = \prod_p [U(M^0_p) : U(M_p)].
\]

Since \(M^0_p \) is a maximal order, \(M^0_p = R_0(L(p)) \) and \(M_p = R_{\nu(p)}(L(p)) \).

Suppose \(p \neq p_1, \cdots, p_d \). Then \(M^0_p = M_p \), which implies \([M^0_p : M_p] = 1\). Hence we consider \(p = p_i \) for some \(1 \leq i \leq d \). In the following
calculations, \([R_i^x : R_{i+1}^x]\) is given in Proposition 2.4 and Proposition 2.7
[6]. If \(L(p)\) is unramified over \(Q_p\), then
\[
[U(M_p^0 : U(M_p)) = [R_0^x : R_2^x] \cdots [R_{\nu(p)-1}^x : R_{\nu(p)}^x] \\
= (p^2 - p)p^2 \cdots p^2 \\
= (p^2 - p)p^{\nu(p)-2}.
\]
If \(L(p)\) is ramified over \(Q_p\) and \(\nu(p) \geq 2\), then
\[
[U(M_p^0 : U(M_p))] = [R_0^x : R_1^x][R_1^x : R_2^x] \cdots [R_{\nu(p)-1}^x : R_{\nu(p)}^x] \\
= (p + 1)(p - 1)pp \cdots p \\
= (p^2 - 1)p^{\nu(p)-2}.
\]
Finally, if \(L(p)\) is ramified over \(Q_p\) and \(\nu(p) = 1\), then
\[
[U(M_p^0 : U(M_p))] = [R_0^x : R_1^x] = p + 1.
\]
Hence
\[
\text{Mass}(M) = \frac{1}{12}(q - 1) \prod_{i=1}^{d} \delta(p_i).
\]
This completes the proof.

3.3 We need to set some notations. Let \(K\) be an imaginary quadratic number field and \(\mathcal{O}\) an order of \(K\). Let \(A\) be a Quaternion algebra over \(Q\) ramified only at \(q\) and \(\infty\) and \(M\) an order of level \(N'\) of \(A\).

Analogously as in the local case, an optimal embedding \(\mathcal{O}/K\) into \(M/A\) is an \(Q\) injective homomorphism \(\varphi\), such that \(\varphi(K) \cap M = \varphi(\mathcal{O})\). Then we denote by \(A(\mathcal{O}, M)\), the number of mod \(U(M)\) equivalence classes of optimal embeddings of \(\mathcal{O}/K\) into \(M/A\). Note that \(A(\mathcal{O}, M)\) depends only on the isomorphism classes of \(\mathcal{O}\) and \(M\). For a prime \(l\), denote by \(C_l(\mathcal{O})\) the number of mod \(U(M_l)\) equivalence classes of optimal embedding of \(\mathcal{O}_l/K_l\) into \(M_l/A_l\) (See 5.2 and Definition 5.1 in [6]). Note that \(C_l(\mathcal{O})\) depends only on \(\mathcal{O}_l\) and the level of \(M_l\).

Let \(M\) be an order of level \(N' = (q; L(p_1), \nu(p_1)) \cdots (L(p_d), \nu(p_d))\) of \(A\). Let \(I_1, I_2, \ldots, I_H\) be a set of representatives of all the left \(M\) ideal classes and \(M_j\) be the right order of \(I_j\) for \(1 \leq j \leq H\).
Theorem 3.6. [Pizer] Let the notation be as above. Then we have

\[\sum_{i=1}^{H} A(O, M_i) = h(O) \prod_{l|N} C_l(O). \]

where \(h(O) \) is the class number of locally principal \(O \) ideals and the product is over all primes \(l \) dividing \(N \).

Proof. See Theorem 4.8 [15; p192].

Corollary 3.7. [Pizer] In the notation of 3.3, let \(a_i(O) \) denote the number of optimal embeddings of \(O/K \) into \(M_i/A \). Then

\[\sum_{i=1}^{H} \frac{a_i(O)}{\epsilon_i} = \frac{h(O)}{|U(O)|} \prod_{l|N} C_l(O) \]

where \(\epsilon_i = |U(M_i)|. \)

Proof. See Corollary 4.10 [15; p192].

Theorem 3.8. The trace of Brandt matrix \(B(n : N') \) is

\[\text{tr}(B(n : N')) = \sum_{s} \sum_{f} \frac{1}{2} b(s, f) \prod_{l|N} c(s, f, l) + \xi(\sqrt{n}) \text{Mass}(M) \]

where \(\xi(\sqrt{n}) = \begin{cases} 1 & \text{if } n \text{ is a perfect square} \\ 0 & \text{otherwise} \end{cases} . \)

The meaning of \(s, f, b(s, f) \) and \(c(s, f, l) \) are as follows.

Let \(s \) run over all integers such that \(s^2 - 4n \) is negative. Hence with some positive integer \(t \) and square free integer \(m \), we can classify \(s^2 - 4n \) by

\[s^2 - 4n = \begin{cases} t^2m & m \equiv 1 \mod 4 \\ t^24m & m \equiv 2, 3 \mod 4 . \end{cases} \]

For each \(s \), let \(f \) run over all positive divisors of \(t \). Let \(L = Q[x]/(\Phi_s(x)) \) where \(\Phi_s(x) = x^2 - sx + n \) and \(\xi \) is the canonical image of \(x \) in \(L \). Then \(L \)
is an imaginary quadratic number field and ξ generates the order $Z + Z\xi$ of L. For each f, there is a uniquely determined order O_f containing $Z + Z\xi$ as a submodule of index f. Let $\Delta(O_f) = s^2 - 4n/f^2$. Let $h(\Delta(O_f))$ (resp. $\omega(\Delta(O_f))$) denote the number of locally principal O_f ideals (resp. $\frac{1}{2}|U(O_f)|$). Then $b(s, f) = \frac{h(\Delta(O_f))}{\omega(\Delta(O_f))}$.

Let M be an order of level N' of B. Then $c(s, f, l)$ is the number of $M_i^\times = (M \otimes Z_l)^\times$ equivalence classes of optimal embeddings of $O_f \otimes Z_l$ into $M \otimes Z_l$. In other words, let $Z + Z\alpha$ be the maximal order of L, then $O_f \otimes Z_l = Z_l + Z_l^{l^m \alpha}$ and $(s^2 - 4n)/f^2 \equiv l^m \Delta(\alpha) \mod (Z_l^\times)^2$.

Since $c(s, f, l)$ is the number of $M_i^\times = R_{\nu(l)}(L(l))$ (See 3.3) equivalence classes of optimal embeddings of $l^m \alpha$ into $M_l = R_{\nu(l)}(L(l))$, it is easy to find $c(s, f, l)$ in Theorem 5.19, 5.30, 5.31 and Table 5.28 in [6] or [1] if s, n and f are given.

Remark. $h(\Delta(O_f))$ can be expressed in terms of ‘standard’ class number of maximal orders (see Corollary 3.11). It is well known that $w(\Delta(O_f)) = 1$ with two exceptions, $w(-4) = 2$ and $w(-3) = 3$ (see [19; p267]).

Proof. Recall that $B(n : N') = (b_{ij}(n))$ where $b_{ij}(n) = \frac{1}{e_i} \sum_{\alpha \in I_{i,j}^{-1}I_i, N(\alpha) = nN(I_i)/N(I_j)} 1$. Then

$$\text{tr}B(n : N') = \sum_{i=1}^{H} b_{ii}(n)$$

$$= \sum_{i=1}^{H} \frac{1}{e_i} \sum_{\alpha \in I_{i}^{-1}I_i, N(\alpha) = nN(I_i)/N(I_i)} 1$$

$$= \sum_{i=1}^{H} \frac{1}{e_i} \sum_{\alpha \in M_i, N(\alpha) = n} 1.$$

If n is a perfect square, then $n = a^2$ for some $a \in Z$. Since M_i contains Z for each i and $N(\pm a) = a^2 = n$, then $\sum_{\alpha \in M_i, N(\alpha) = n} 1 = 2$ for each $1 \leq i \leq H$. Hence

$$\sum_{i=1}^{H} \frac{1}{e_i} \sum_{\alpha \in M_i, N(\alpha) = n} 1 = 2 \sum_{i=1}^{H} \frac{1}{e_i} = \text{Mass}(M).$$
Now if \(n \) is not a perfect square in \(Q \), then let \(a_i(s, n) \) denote the number of \(\alpha \in M_i \) with \(\text{tr}(\alpha) = s \), \(N(\alpha) = n \), and with \(x^2 - sx + n \) irreducible over \(Q \). Then \(\sum_{\alpha \in M_i, N(\alpha) = n} 1 = \sum_s a_i(s, n) \) where the sum is over all integers, \(s \) such that \(s^2 - 4n < 0 \).

\[
\sum_{i=1}^H \frac{1}{e_i} \sum_s a_i(s, n) = \sum_{i=1}^H \sum_s \frac{a_i(s, n)}{e_i} = \sum_s \sum_{i=1}^H \frac{a_i(s, n)}{e_i}.
\]

Let \(K = Q[x]/(x^2 - sx + n) \) and let \(x' \) be a root of \(x^2 - sx + n \) in \(K \). Then \(a_i(s, n) \) is equal to the number of isomorphisms \(\phi \) of \(K \) into \(A \) with \(\phi(x') \in M_i \). Let \(O_0 = Z + Zx' \) and \(O_1 \) be an order of \(K \) with \(O_0 \subset O_1 \subset K \). If \(\phi \) is an optimal embedding of \(O_1/K \) into \(M_i/A \), then \(\phi(O_1) = M_i \cap \phi(K) \) and \(x \in O_0 \subset O_1 \) imply \(\phi(x') \in M_i \). Thus every optimal embedding of some order \(O_1, O_0 \subset O_1 \subset K \) into \(M_i/A \) is an isomorphism which is counted in \(a_i(s, n) \). Conversely, if \(\phi : K \to A \) is an isomorphism with \(\phi(x') \in M_i \) then \(M_i \cap \phi(K) = O_1' \) is an order of \(\phi(K) \) containing \(\phi(x') \). Hence \(\phi^{-1}(O_1') \) is an order of \(K \) which contains \(O_0 \) and such that \(\phi \) gives an optimal embedding of \(\phi^{-1}(O_1') \) into \(M_i \). Thus \(a_i(s, n) = \sum_{O_1 \supset O_0} a_i(O_1) \), which we sum over all orders \(O_1 \) of \(K \) which contain \(O_0 \), and \(a_i(O_1) \) is as in Corollary 3.7. Hence we have

\[
\sum_{i=1}^H \frac{a_i(s, n)}{e_i} = \sum_{O_1 \supset O_0} \sum_{i=1}^H \frac{a_i(O_1)}{e_i} = \sum_{O_1 \supset O_0} \frac{h(O_1)}{|U(O_1)|} \prod_{l|N} \epsilon_l(O_1).
\]

by Corollary 3.7.

Now \(\Delta(O_0) = s^2 - 4n \) and \(\Delta(O_1) = (s^2 - 4n)/f^2 \) where \((s^2 - 4n)/f^2 \equiv 0 \) or \(1 \) mod 4 and \(f \) is a positive integer. Taking into account the fact that \(K \) must be imaginary quadratic and that an order of \(K \) is uniquely determined by its discriminant, we set \(h(\Delta(O_1)) = h(O_1), \omega(\Delta(O_1)) = \)
\[\frac{1}{2} |U(\mathcal{O}_1)| \text{ and } c(s, f, l) = c_l(\mathcal{O}_1). \text{ Then} \]
\[\sum_{s} \sum_{i=1}^{H} \frac{a_i(s, n)}{e_i} = \sum_{s} \sum_{\mathcal{O}_1 \supset \mathcal{O}_0} \frac{h(\mathcal{O}_1)}{|U(\mathcal{O}_1)|} \prod_{l|N} c_l(\mathcal{O}_1) \]
\[= \sum_{s} \sum_{f} \frac{1}{2} b(s, f) \prod_{l|N} c(s, f, l). \]

Therefore,
\[\text{tr}(B(n : N')) = \sum_{s} \sum_{f} \frac{1}{2} b(s, f) \prod_{l|N} c(s, f, l) \]
\[+ \xi(\sqrt{n}) \text{Mass}(M). \]

Lemma 3.9. Let \(K \) be an imaginary quadratic number field. Let \(\mathcal{O}_K \) be an order of \(K \) of discriminant \(\Delta \) and let \(\mathcal{O}' \) be the suborder of \(\mathcal{O}_K \) of index \(f \). Then
\[\frac{h(\mathcal{O}'_K)}{\omega(\mathcal{O}'_K)} = \frac{h(\mathcal{O}_K)}{\omega(\mathcal{O}_K)} f \prod_{l|f} (1 - \left\{ \frac{\Delta}{l} \right\} \frac{1}{l}) \]
where \(\left\{ \frac{\Delta}{l} \right\} = \begin{cases} 0 & \text{if } l^2 | \Delta \text{ and } l^{-2} \Delta \equiv 0 \text{ or } 1 \text{ mod } 4 \\ \left(\frac{\Delta}{l} \right) & \text{the Kronecker symbol otherwise} \end{cases} \).

Proof. See Lemma 4.16 [15; p197]

Corollary 3.10. Let \(K \) be an imaginary quadratic number field. Let \(\mathcal{O} \) be the maximal order of \(K \) and \(\mathcal{O}' \) a suborder of index \(f \). Then
\[\frac{h(\mathcal{O}'_K)}{\omega(\mathcal{O}'_K)} = \frac{h(\mathcal{O}_K)}{\omega(\mathcal{O}_K)} f \prod_{l|f} (1 - \left\{ \frac{K}{l} \right\} \frac{1}{l}) \]
where
\[\left(\frac{K}{l} \right) = \begin{cases} 1 & \text{if } l \text{ splits in } K \\ 0 & \text{if } l \text{ ramifies in } K \\ -1 & \text{if } l \text{ remains prime in } K \end{cases} \]
is the Kronecker symbol. Note that \(h(\mathcal{O}_K) \) is the standard class number of \(K \).
PROOF. See Corollary 4.17 [15; p.197].

3.4 Let L and L' be two quadratic extensions of \mathbb{Q}_p contained in A_p. By an embedding we mean an injective \mathbb{Q}_p (or \mathbb{Z}_p) homomorphism.

Assume that $L \subset B$ and let \mathcal{O}' be an order of L'. We say that \mathcal{O}' is embeddable in $R_\nu(L)$ if there exists an embedding ϕ of L' into B such that $\phi(\mathcal{O}') \subset R_\nu(L)$.

DEFINITION 3.11. Define $\mu(L, L')$ to be the nonnegative integer or ∞ characterized by the property: $\mathcal{O}_{L'}$ is embeddable in $R_\nu(L)$ if and only if $\nu \leq \mu(L, L')$.

Obviously, $\mu(L, L')$ exists and depends only on discriminants of L and L'. Also if discriminants of L and L' are equal, then $\mu(L, L') = \mu(L', L) = \infty$. For the details, see [6].

THEOREM 3.12. Let A be a rational Quaternion algebra ramified precisely at one finite prime q and ∞ and M be an order of A of level $N' = (q; L(p_1), \nu(p_1); \ldots; L(p_d), \nu(p_d))$ where $2 \mid \prod_{i=1}^d p_i$. Then the class number of an order M is

$$H(N') = \text{Mass}(M) + \frac{1}{4} \left(1 - \left(\frac{-d}{q}\right)\right) \prod_{\nu|N} C(l)$$

$$+ \frac{1}{3} \left(1 - \left(\frac{-3}{q}\right)\right) \prod_{\nu|N} C'(l),$$

where $N = q \prod_{i=1}^d p_i^{\nu(p_i)}$.

$$C(l) = \begin{cases} 2 & \text{if } \mu(Q_l(\sqrt{-1}), L(l)) = 1 \text{ and } \nu(l) = 1 \\ 2 & \text{if } \mu(Q_l(\sqrt{-1}), L(l)) = \infty \\ 0 & \text{otherwise} \end{cases}.$$
\[C'(l) = \begin{cases}
 c(1, 1, l) & \text{if } l \neq 3 \\
 0 & \text{if } l = 3, \quad \mu = 0 \\
 1 & \text{if } l = 3, \quad \mu = 2 \text{ and } \nu(3) = 1 \\
 2 & \text{if } l = 3, \quad \mu = 2 \text{ and } \nu(3) = 2 \\
 0 & \text{if } l = 3, \quad \mu = 2 \text{ and } \nu(3) \geq 3 \\
 1 & \text{if } l = 3, \quad \mu = \infty \text{ and } \nu(3) = 1 \\
 2 & \text{if } l = 3, \quad \mu = \infty \text{ and } \nu(3) = 2 \\
 6 & \text{if } l = 3, \quad \mu = \infty \text{ and } \nu(3) \geq 3
\end{cases} \]

and

\[c(1, 1, l) = \begin{cases}
 2 & \mu(\Omega_l(\sqrt{-3}), L(l)) = 1 \text{ and } \nu(l) = 1 \\
 2 & \mu(\Omega_l(\sqrt{-3}), L(l)) = \infty \\
 0 & \text{otherwise}
\end{cases} \]

Here the product is over all distinct primes \(l \) dividing \(\frac{N}{q} \) and \(\left(\frac{\cdot}{\cdot} \right) \) is the Kronecker symbol. In particular, \(\left(\frac{-3}{3} \right) = \left(\frac{-4}{2} \right) = 0 \) and \(\left(\frac{-3}{2} \right) = -1 \). Also, \(\mu = \mu(L(3), Q_3(\sqrt{-3})) \).

Proof. From the definition of the Brandt matrix, we see that \(H(N') = tr(B(1 : N')) \) (see Remark 2.25 [14]). Let us calculate \(tr(B(1 : N')) \). By Theorem 3.9, if \(M \) is an order of level \(N' \), then

\[tr(B(1 : N')) = \sum_s \sum_f \frac{1}{2} b(s, f) \prod_{l \mid N} c(s, f, l) + \text{Mass}(M). \]

Here, we need to explain \(b(s, f) \) and \(c(s, f, l) \) first. Let \(\eta \) be a canonical image of \(x \) in \(Q[x]/(x^2 + sx + 1) \). Then for each \(f \), there is uniquely determined order \(\mathcal{O}_f \) containing \(Z + Z\eta \) as a submodule of index \(f \). Let \(h(\mathcal{O}_f)(w(\mathcal{O}_f)) \) denote the number of locally principal \(\mathcal{O}_f \) ideals (resp. \(\frac{1}{2|U(\mathcal{O}_f)|} \)). Then \(b(s, f) = \frac{h(\mathcal{O}_f)}{w(\mathcal{O}_f)} \) Also \(c(s, f, l) \) is the number of \(M_l^x = R_{\nu(l)}(L(l)) \) (see Definition 2.1) equivalence classes of optimal embeddings of \(l^m\alpha \) into \(M_l = R_{\nu(l)}(L(l)) \) where \(Z + Z\alpha \) is the maximal order of \(Q[x]/(x^2 + sx + 1) \) and \(\mathcal{O}_f \otimes Z_l = Z_l + Z_l l^m\alpha \).
As \(Q[x]/(x^2+sx+1) \) is a quadratic imaginary number field, \(s^2-4 < 0 \). Hence, there are three choices for \(s \). Namely, \(s = 0 \) or \(1 \) and \(-1\). However, since \(Q[x]/(x^2+x+1) \cong Q[x]/(x^2-x+1) \cong Q(\sqrt{-3}) \), it suffices to consider only the cases, \(s = 0 \) and \(1 \).

i) case \(s = 0 \). (i.e. \(s^2 - 4n = -4 \)).

Let \(K = Q[x]/(x^2+1) \cong Q(\sqrt{-1}) \). Then \(Z + Z\sqrt{-1} \) is the maximal order of \(K \). So \(f = 1 \). Let \(\mathcal{O} = Z + Z\sqrt{-1} \) for convenience.

Now we need to find \(b(0, 1) \) of \(\mathcal{O} \).

By [23; p267], the class number of \(\mathcal{O} \) is 1 and the number of units in \(\mathcal{O} \) is 4. That is, \(h(\mathcal{O}) = 1 \) and \(w(\mathcal{O}) = \frac{1}{2} |U(\mathcal{O})| = 2 \).

Hence \(b(0, 1) = \frac{h(\mathcal{O})}{w(\mathcal{O})} = \frac{1}{2} \).

Next we need to calculate \(c(s, f, l) \) for \(l|N \).

First, if \(l = q \), then \(c(0, 1, q) = (1 - \left(\frac{-4}{q}\right)) \) is given in Proposition 6 [4; p102].

Second, consider \(l|q \). \(\mathcal{O}_1 \otimes Z_l = (Z + Z\sqrt{-1}) \otimes Z_l = Z_l + Z_l\sqrt{-1} \).

\(\Delta(\sqrt{-1}) = -4 \) implies that \(Z_l + Z_l\sqrt{-1} \cong Z_l \oplus Z_l \) or \(Z_l + Z_l\sqrt{-1} \) is the ring of integers in a field \(Q_l(\sqrt{-1}) \).

If \(Z_l + Z_l\sqrt{-1} \cong Z_l \oplus Z_l \), then since \(L(l) \) is a field, by Theorem 3.10 in [6] \(\mu Q_l(\sqrt{-1}), L(l) = 0 \) or 1. By Theorem 5.30 and 5.31 in [6], \(c(0, 1, l) \), the number of \(M \) of \(R_{\nu(l)}(L(l)) \) equivalence classes of optimal embeddings of \(\sqrt{-1} \) into \(M = R_{\nu(l)}(L(l)) \) is 2 if \(L(l) \) is ramified and \(\nu(l) = 1 \), i.e. \(\mu Q_l(\sqrt{-1}), L(l) = 1 \) and \(\nu(l) = 1 \). Otherwise, by Theorem 5.19 and Table 5.28 in [6] \(c(0, 1, l) = 0 \). If, on the other hand, \(Z_l + Z_l\sqrt{-1} \) is the ring of integers in a field \(Q_l(\sqrt{-1}) \), then since \(2 \nmid \frac{N}{q}, l \nmid \Delta(\sqrt{-1}) = -4 \).

So \(Q_l(\sqrt{-1}) \) is unramified. By Theorem 5.19 in [6], \(c(0, 1, l) = 2 \) if \(L(l) \) is unramified, that is \(\mu Q_l(\sqrt{-1}), L(l) = \infty \). Otherwise, by Theorem 5.19 and Table 5.28 in [6] \(c(0, 1, l) = 0 \).

Hence

\[
c(0, 1, l) = \begin{cases}
2 & \text{if } \mu Q_l(\sqrt{-1}), L(l) = 1 \text{ and } \nu(l) = 1 \\
2 & \text{if } \mu Q_l(\sqrt{-1}), L(l) = \infty \\
0 & \text{otherwise}
\end{cases}
\]
ii) case \(s = 1 \). (i.e. \(s^2 - 4n = -3 \)).

Let \(K = Q[x]/(x^2 + x + 1) = Q(\sqrt{-3}) \). Then \(Z + Z\sqrt{-3} \) is the maximal order of \(K \). Hence, \(f = 1 \). Let \(\mathcal{O} = Z + Z\sqrt{-3} \) for convenience.

The class number of \(\mathcal{O} \) is 1 and the number of units in \(\mathcal{O} \) is 6 (see [19; p267]). Hence \(b(1, 1) = \frac{h(\mathcal{O})}{\omega(\mathcal{O})} = \frac{1}{3} \) and we obtain \(c(1, 1, 1) \) as in the theorem by the table 5.28 in [6].

Again, we need to calculate \(c(s, f, l) \) for \(l|N \).

First, if \(l = q \), then \(c(1, 1, q) = (1 - \frac{-3}{q}) \) was calculated by Eichler [2; p102].

Second, if \(l|\frac{N}{q} \) and \(l \neq 3 \), then \(c(1, 1, l) \) is the number of \(M_l^\times = R_{\nu(l)}(L(l)) \) equivalence classes of optimal embeddings of \(\sqrt{-3} \) into \(M_l = R_{\nu(l)}(L(l)) \).

Since \(\Delta(\sqrt{-3}) = -12 \), \(Q_l(\sqrt{-3}) \) is either unramified or isomorphic to \(Q_l \oplus Q_l \).

Analogous to the case i), by Theorem 5.19, 5.30, 5.31 and Table 5.28 in [6], \(c(1, 1, l) \) is calculated as in the theorem.

Finally, if \(l|\frac{N}{q} \) and \(l = 3 \), since \(\Delta(\sqrt{-3}) = -12 = -3 \cdot 4 \), \(Q_l(\sqrt{-3}) \) is ramified. By table 5.28 and Theorem 5.19 in [6],

\[
c(1, 1, 3) = \begin{cases}
0 & \text{if } \mu = 0 \\
1 & \text{if } \mu = 2 \text{ and } \nu(3) = 1 \\
2 & \text{if } \mu = 2 \text{ and } \nu(3) = 2 \\
0 & \text{if } \mu = 2 \text{ and } \nu(3) \geq 3 \\
1 & \text{if } \mu = \infty \text{ and } \nu(3) = 1 \\
2 & \text{if } \mu = \infty \text{ and } \nu(3) = 2 \\
6 & \text{if } \mu = \infty \text{ and } \nu(3) \geq 3
\end{cases}
\]

where \(\mu = \mu(L(3), Q_3(\sqrt{-3})) \) (see Definition 3.3).
Combining i) and ii), we obtain that

\[
\sum_s \frac{1}{2} \sum_f b(s, f) \prod_{l \mid N} c(s, f, l) = \frac{1}{2} b(0, 1) \prod_{l \mid N} c(0, 1, l) \\
+ \frac{1}{2} b(1, 1) \prod_{l \mid N} c(1, 1, l) + \frac{1}{2} b(-1, 1) \prod_{l \mid N} c(-1, 1, l) \\
= \frac{1}{4} (1 - (-\frac{4}{q})) \prod_{l \mid \frac{N}{q}} C(l) + \frac{1}{3} (1 - (-\frac{3}{q})) \prod_{l \mid \frac{N}{q}} C'(l).
\]

References

Department of Applied Math.
Konkuk Univ. 322
Choongju 380-701, Korea