A NOTE ON WEAKLY PATH-CONNECTED ORTHOMODULAR LATTICES

EUNSOON PARK

ABSTRACT. We show that each orthomodular lattice containing only atomic nonpath-connected blocks is a full subalgebra of an irreducible path-connected orthomodular lattice and there is a path-connected orthomodular lattice L containing a weakly path-connected full subalgebra $C(x)$ for some element x in L.

1. Preliminaries

It is known that there exists a weakly path-connected orthomodular lattice with finite sites which is not path-connected and there exists a path-connected orthomodular lattices which contains a nonpath-connected full subalgebra [6].

We will prove that every orthomodular lattice L containing only atomic nonpath-connected blocks is a full subalgebra of an irreducible path-connected orthomodular lattice and there exists a path-connected orthomodular lattice L containing a nonpath-connected full subalgebra $C(x)$ for some $x \in L$.

An orthomodular lattice (abbreviated by OML) L is an ortholattice L which satisfies the orthomodular law: if $x \leq y$, then $y = x \lor (x' \land y)$ $\forall x, y \in L$ [5]. A Boolean algebra B is an ortholattice satisfying the distributive law: $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $\forall x, y, z \in B$.

A subalgebra of an OML L is a nonempty subset M of L which is closed under the operations \lor, \land and $'$. We write $M \leq L$ if M is a subalgebra of L. If $M \leq L$ and $a, b \in M$ with $a \leq b$, then the relative interval sublattice $M[a, b] = \{x \in M \mid a \leq x \leq b\}$ is an OML with the

|Received October 20, 1996. Revised April 10, 1997.
1991 Mathematics Subject Classification: 06C15.
Key words and phrases: Orthomodular lattices, path-connected, weakly path-connected.|
relative orthocomplementation on \(M[a, b] \) given by \(c'' = (a \lor c') \land b = a \lor (c' \land b) \quad \forall c \in M[a, b] \). In particular, \(L[a, b] \) will be denoted by \([a, b]\) if there is no ambiguity.

The commutator of \(a \) and \(b \) of an OML \(L \) is denoted by \(a \ast b \), and is defined by \(a \ast b = (a \lor b) \land (a \lor b') \land (a' \lor b) \land (a' \lor b') \). For any two elements \(a, b \) of an OML, we say \(a \) commutes with \(b \), in symbols \(a \mathbf{C} b \), if \(a \ast b = 0 \). If \(M \) is a subset of an OML \(L \), the set \(C(M) = \{ x \in L \mid x \mathbf{C} m \quad \forall m \in M \} \) is called the commutant of \(M \) in \(L \) and the set \(\text{Cen}(M) = C(M) \cap M \) is called the center of \(M \). The set \(C(L) \) is called the center of \(L \) and then \(C(L) = \bigcap \{ C(a) \mid a \in L \} \). An OML \(L \) is called irreducible if \(C(L) = \{ 0, 1 \} \), and \(L \) is called reducible if it is not irreducible.

A block of an OML \(L \) is a maximal Boolean subalgebra of \(L \). The set of all blocks of \(L \) is denoted by \(\mathfrak{A}_L \). Note that \(\bigcup \mathfrak{A}_L = L \) and \(\bigcap \mathfrak{A}_L = C(L) \).

For any \(e \) in an OML \(L \), the subalgebra \(S_e = [0, e'] \cup [e, 1] \) is called the (principal) section generated by \(e \). Note that for \(A, B \in \mathfrak{A}_L \), if \(e \in (A \cap B) \) and \(A \cap B = S_e \cap (A \cup B) \), then \(A \cap B = S_e \cap A = S_e \cap B \).

Definition 1.1. For blocks \(A, B \) of an OML \(L \) define \(A \updownarrow^w B \) if and only if \(A \cap B = S_e \cap (A \cup B) \) for some \(e \in A \cap B \); \(A \sim B \) if and only if \(A \neq B \) and \(A \cup B \leq L \); \(A \cong B \) if and only if \(A \sim B \) and \(A \cap B \neq C(L) \).

A (weak) path in \(L \) is a finite sequence \(B_0, B_1, ..., B_n \) \((n \geq 0)\) in \(\mathfrak{A}_L \) satisfying \(B_i \sim B_{i+1} \) \((B_i \updownarrow^w B_{i+1})\) whenever \(0 \leq i < n \). The path is said to join the blocks \(B_0 \) and \(B_n \). A path is said to be proper if and only if \(n = 1 \) or \(B_i \cong B_{i+1} \) holds whenever \(0 \leq i < n \). A path is called to be strictly proper if and only if \(B_i \cong B_{i+1} \) holds whenever \(0 \leq i < n \) [1].

Let \(A, B \) be two blocks of an OML \(L \). If \(A \sim B \) holds, then there exists a unique element \(e \in A \cap B \) satisfying \(A \cap B = (A \cup B) \cap S_e \) [1]. Using this element \(e \), we say that \(A \) and \(B \) are linked at \(e \) (strongly linked at \(e \)) if \(A \sim B \) \((A \cong B)\), and use the notation \(A \sim_e B \) \((A \cong_e B)\). This element \(e \) is called a vertex of \(L \) and it is the commutator of any \(x \in A \setminus B \) and \(y \in B \setminus A \) [1].

Note that \(A \cong B \) implies \(A \sim B \), and \(A \sim B \) implies \(A \updownarrow^w B \). Some authors, for example Greechie, use the phrase "\(A \) and \(B \) meet in the
section S_e" to describe $A \overset{wk}{\sim} B$ [3].

Definition 1.2. Let L be an OML, and $A, B \in \mathcal{A}_L$. We will say that A and B are weakly path-connected, path-connected, strictly path-connected in L if A and B are joined by a weak path, a proper path, a strictly proper path, respectively. We will say A and B are nonpath-connected if there is no proper path joining A and B, and L is called nonpath-connected if there exist two blocks which are nonpath-connected. An OML L is called weakly path-connected, path-connected, strictly path-connected in L if any two blocks in L are joined by a weak path, a proper path, a strictly proper path, respectively. An OML L is called relatively path-connected if each $[0, x]$ is path-connected for all $x \in L$.

Let L be an OML, and $A, B, C \in \mathcal{A}_L$. If A and B are joined with a strictly proper path $A = B_0 \approx B_1 \approx \ldots \approx B_{m-1} \approx B_m = B$ and if B and C are joined with a strictly proper path $B = C_0 \approx C_1 \approx \ldots \approx C_{n-1} \approx C_n = C$ then A and C are strictly path-connected by the concatenated path $A = B_0 \approx B_1 \approx \ldots \approx B_{m-1} \approx B \approx C_1 \approx \ldots \approx C_{n-1} \approx C_n = C$.

The following propositions are well known.

Proposition 1.3. Every finite direct product of path-connected OMLs is path-connected [7].

Proposition 1.4. Every infinite direct product of path-connected OMLs containing infinitely many non-Boolean factors is nonpath-connected [6, 8].

2. Weakly Path-connected Orthomodular Lattices

A sublattice M of an OML L is said to be a suborthomodular lattice of L in case the restriction of the orthocomplementation on L makes M an OML. A suborthomodular lattice M of an OML L is called subcomplete in case $N \subseteq M$ and $\forall N$ exists as computed in L implies $\forall N$ is in M.

In what follows we assume that $(L_1, \leq_1, ^\#)$ and $(L_2, \leq_2, ^+)$ are two disjoint OMLs, that S^i is a proper suborthomodular lattice of L_i ($i = 1, 2$), and that there exists an orthoisomorphism $\theta : S^1 \to S^2$.
Definition 2.1.

1. Let \(L_0 = L_1 \cup L_2 \).
2. Let \(P_1 = \{(x, y) \in L_0 \times L_0 : y = x \theta \} \).
3. Let \(\Delta = \{(x, x) : x \in L_0 \} \).
4. Let \(P \) be the equivalence relation defined by \(P = \Delta \cup P_1 \cup P_1^{-1} \) where \(P_1^{-1} = \{(y, x) : (x, y) \in P_1 \} \).
5. Let \(L = L_0 / P \).
6. For \(i = 1, 2 \), let \(R_i = \{([x], [y]) \in L \times L : \) there exist \(x_i \in [x] \) and \(y_i \in [y] \) such that \(x_i \leq_i y_i \} \).
7. Let \(\leq \) be the relation \((R_1 \cup R_2)^2\).
8. Define \([0]\) to be \([0_1]\) and \([1]\) to be \([1_1]\) where \(0_1 \) and \(1_1 \) are the zero and unit elements of \(L_1 \).
9. Define \(\cdot : L \rightarrow L\) by the following prescription: for \([x] \in L\),
 \[
 [x]' = \begin{cases}
 [x_1], & \text{if there exists } x_1 \in L_1 \text{ such that } x_1 \in [x], \\
 [x_2^+], & \text{if there exists } x_2 \in L_2 \text{ such that } x_2 \in [x].
 \end{cases}
 \]
10. Two sections \(S^1 \) and \(S^2 \) are said to be corresponding sections of \(L_1 \) and \(L_2 \) in case there exists \(M_i \subset S^i \subset L_i \) (\(i = 1, 2 \)) such that \(M_1 \theta = M_2 \) and \(S^1 = \bigcup \{S_{m^2} : m \in M_1\} \) and \(S^2 = \bigcup \{S_{m^+} : m \in M_2\} \).

Theorem 2.2. Let \(S^1 \) and \(S^2 \) be corresponding sections of \(L_1 \) and \(L_2 \). Let \(L_i \) be complete and let \(S^i \) be subcomplete (\(i = 1, 2 \)). Then \(L \) is a complete OML [3].

Definition 2.3. An OML \(L \) is said to be obtained by pasting two OMLs \(L_1 \) and \(L_2 \) along the sections \(S^1 \) and \(S^2 \) if all the conditions of 2.2 are satisfied, and we write \(L = P(L_1, L_2; S^1, S^2; \theta) \).

Let \(X = \{a_1, a_2, a_3, \ldots\} \), and let \(\wp(X) \) be the power set of \(X \). Then the Boolean algebra \(B \) consists of all finite and cofinite elements of the power set \(\wp(X) \) of \(X \) is denoted by \(B = \langle a_1, a_2, a_3, \ldots \rangle \). The pasting of two disjoint OMLs \(L_1 \) and \(L_2 \) along the principal sections \(S_{c_1} \leq L_1 \) and \(S_{c_2} \leq L_2 \) generated by \(c_1, c_2 \) respectively is denoted by \(L = P(L_1, L_2; S_{c_1}, S_{c_2}; \theta) \) (see definition 2.3). We may omit the isomorphism \(\theta \) if there is no difficulty.

Let \(L \) be an OML. A subalgebra \(S \) of \(L \) is said to be a full subalgebra if every block of \(S \) is a block of \(L \). Note that each \(C(x) \) is a full subalgebra of \(L \) for all \(x \in L \) since \(\mathcal{A}_{C(x)} = \{B \in \mathcal{A}_L | x \in B\} \).
Theorem 2.4. If \(L \) is an OML such that each pair of nonpath-connected blocks \(A, B \) of \(L \) have atoms \(a \in A \) and \(b \in B \), then \(L \) is a full subalgebra of an irreducible path-connected OML.

Proof. Let \(S \) be the set of all nonpath-connected pairs of blocks of the given OML \(L \), and let \(\{A, B\} \in S \). Then, for all \(\{A, B\} \in S \), \(A \neq B \) and there exist two atoms \(a, b \) such that \(a \in A \) and \(b \in B \) by the given hypothesis (it may be that \(a = b \)). Let \(C = \langle a, c, d \rangle \) with \(c \neq d \) and \(c, d \not\in L \). Let \(L_1 = P(L, C; S_a^L, S_c^C) \). Then \(L_1 \) is an OML by theorem 2.2. Let \(D = \langle d, e, f \rangle \) with \(e \neq f \) and \(e, f \not\in L_1 \). Let \(L_2 = P(L_1, D; S_d^{L_1}, S_d^D) \). Then \(L_2 \) is an OML by theorem 2.2. Let \(E = \langle b, g, h \rangle \) with \(g \neq h \) and \(g, h \not\in L_2 \). Let \(L_3 = P(L_2, E; S_b^{L_2}, S_b^E) \). Then \(L_3 \) is an OML by theorem 2.2. Let \(F = \langle h, m, n \rangle \) with \(m \neq n \) and \(m, n \not\in L_3 \). Let \(L_4 = P(L_3, F; S_h^{L_3}, S_h^F) \). Then \(L_4 \) is an OML by theorem 2.2. Let \(G = \langle f, p, n \rangle \) with \(p \neq f \), \(p \neq n \) and \(p \not\in L_4 \). Let \(L_5 = L_4 \cup G \) where the operations and ordering are the union of those in \(L_5 \) and \(G \). Then \(L_5 \) is an OML since \(x \vee y = 1 \) where \(x \in G \), \(y \in \bigcup (A_{L_4} \setminus \{C, D, E, F\}) \) and \(x \vee z \) and \(z \vee \) where \(z \in L_5 \forall z \in C \cup D \cup E \cup F \).

Moreover, \(A \approx_{a'} C \approx_{d'} D \approx_{f'} G \approx_{n'} F \approx_{h'} E \approx_{p'} B \) since \(C(L_5) = D \cap F = \{0, 1\}, a \in A \cap C, d \in D \cap E \), \(f \in D \cap G \), \(n \in G \cap F \), \(h \in F \cap E \), \(p \in E \cap B \).

We add pairwise disjoint paths \(C_\alpha \approx_{d_\alpha} D_\alpha \approx_{f_\alpha} G_\alpha \approx_{n_\alpha} F_\alpha \approx_{h_\alpha} E_\alpha \) with \(A_\alpha \approx_{a_\alpha} C_\alpha \) and \(E_\alpha \approx_{p_\alpha} B_\alpha \) to \(L \) for each nonpath-connected pair of blocks \(\{A_\alpha, B_\alpha\} \in S \) by the similar process which is given in the first part of this proof, where \(d_\alpha, f_\alpha, n_\alpha, h_\alpha \) are distinct atoms not in \(L \) and that \(d_\alpha \neq d_\beta \), \(f_\alpha \neq f_\beta \), \(n_\alpha \neq n_\beta \) and \(h_\alpha \neq h_\beta \) for all two distinct pairs of blocks \(\{A_\alpha, B_\alpha\}, \{A_\beta, B_\beta\} \) of \(S \). Then the resulting OML \(\Gamma \) contains at least one path between each \(\{A_\alpha, B_\alpha\} \in S \) and \(L \) is a subalgebra of \(\Gamma \). Also, \(\forall \alpha \neq \beta \) any distinct blocks \(U, V \) in \(\Gamma \) with \(U \in \{C_\alpha, D_\alpha, G_\alpha, F_\alpha, E_\alpha\} \) and \(V \in \{C_\beta, D_\beta, G_\beta, F_\beta, E_\beta\} \) are path-connected by a concatenated path since each pair of blocks \(\{U, A_\alpha\}, \{A_\alpha, B_\alpha\}, \{B_\beta, V\} \) are joined with strictly proper paths. Thus \(\Gamma \) is path-connected. Furthermore, \(\Gamma \) is irreducible and \(L \) is a full subalgebra of \(\Gamma \). This completes the proof.

The following corollary follows.
COROLLARY 2.5. Every OML L containing only atomic nonpath-connected blocks is a full subalgebra of an irreducible path-connected OML.

An OML L is called the horizontal sum of a family $(L_i)_{i \in I}$ (denoted by $\circ(L_i)_{i \in I}$) of at least two subalgebras, if $\bigcup L_i = L$, and $L_i \cap L_j = \{0, 1\}$ whenever $i \neq j$, and one of the following equivalent conditions is satisfied:

1. if $x \in L_i \setminus L_j$ and $y \in L_j \setminus L_i$, then $x \lor y = 1$;
2. every block of L belongs to some L_i;
3. if S_i is a subalgebra of L_i, then $\bigcup S_i$ is a subalgebra of L [2].

THEOREM 2.6. There exists a path-connected orthomodular lattice L containing a nonpath-connected full subalgebra $C(x)$ for some $x \in L$.

PROOF. Let $MO2$ be the horizontal sum of two Boolean algebras 2^2 and 2^2 with four elements. Let $L = \prod_{n \geq 1} L_n$ where $L_n = MO2 \quad \forall n \geq 1$. Let A_n, B_n be the two distinct blocks in L_n, $A = \prod_{n \geq 1} A_n$ and $B = \prod_{n \geq 1} B_n$. Then A and B are nonpath-connected by proposition 1.4 and L does not contain a nonatomic block since each block of L is an infinite direct product of 2^2. Let Γ be the path-connected extention of L which is constructed by the same method in theorem 2.4. Then L is a full subalgebra of Γ. Choose $x = (y, 0, 0, ... \in L \subseteq \Gamma$ where $y \in A_1$ and $y \notin \{0, 1\}$, and $0 \in A_n$, $\forall n \geq 2$. Then $C(x) = \{A_1 \times (\prod_{n \geq 2} L_n)\} \cup \{B \mid x \in B \in (A_\Gamma \setminus A_L)\}$ is a full subalgebra of Γ, but $C(x)$ is not path-connected since two blocks A and $C = A_1 \times (\prod_{n \geq 2} B_n)$ are nonpath-connected in Γ by proposition 1.4. \hfill \square

The following corollary follows by the given OML $L = \prod_{n \geq 1} L_n$ in theorem 2.6 which is nonpath-connected by proposition 1.4 and weakly path-connected by our constructive method. Hence $C(x)$ satisfies the following conclusion.

COROLLARY 2.7. There is a path-connected OML with a weakly path-connected full subalgebra $C(x)$ for some $x \in L$.

References

Department of Mathematics
Soongsil University
Seoul 156-743, Korea