ON A SEMI-ININVARIANT SUBMANIFOLD OF CODIMENSION 3 WITH CONSTANT MEAN CURVATURE IN A COMPLEX PROJECTIVE SPACE

SEONG-BAEK LEE

ABSTRACT. Let M be a semi-invariant submanifold of codimension 3 with lift-flat normal connection in a complex projective space. Further, if the mean curvature of M is constant, then we prove that M is a real hypersurface of a complex projective space of codimension 2 in the ambient space.

0. Introduction

A submanifold M is called a $\textit{CR submanifold}$ of a Kaehlerian manifold with complex structure J if it is endowed with a pair of mutually orthogonal and complementary differentiable distribution (Δ, Δ^\perp) such that for any point $p \in M$ we have $J\Delta_p = M_p$, $J\Delta^\perp_p \subset M^\perp_p$, where M^\perp_p denotes the normal space of M at p ([1]). In particular, M is said to be a semi-invariant submanifold of a Kaehlerian manifold if $\dim \Delta^\perp = 1$ ([2], [12]). In this case, M admits an almost contact metric structure. Furthermore new examples of nontrivial semi-invariant submanifolds in a complex projective space \mathbb{CP}^n are constructed in [7] and [11]. Therefore we may expect to generalize some results which are valid in a real hypersurface to a semi-invariant submanifold. From this point of view, a semi-invariant submanifold of codimension 3 in a complex projective space are studied in [4], [5], [6], [7], [13] and so on by using properties of the third fundamental forms of the submanifold and those of the induced almost contact metric structure. One of them Ki, Li and Lee ([6]) assert that the following:

Received November 16, 2001.
2000 Mathematics Subject Classification: 53C25, 53C40, 53C42.
Key words and phrases: semi-invariant submanifold, lift-flat normal connection, mean curvature, real hypersurface.
This study was supported by research funds from chosun university 2000.
THEOREM K-L ([6]). Let M be a semi-invariant submanifold of codimension 3 with lift-flat normal connection in a complex projective space $\mathbb{C}P^{n+1}$. If the scalar curvature of M is constant, then M is a real hypersurface in $\mathbb{C}P^{n}$.

The main purpose of the present paper is to prove that a semi-invariant submanifold M of codimension 3 in a complex projective space is a real hypersurface provided that the mean curvature of M is constant.

All manifolds in this paper are assumed to be connected and of class C^∞ and the dimension of the submanifold is greater than 2.

1. Preliminaries

At first we review fundamental properties on a semi-invariant submanifold of codimension 3 in a Kaehlerian manifold.

Let \tilde{M} be a real $2(n + 1)$-dimensional Kaehlerian manifold equipped with parallel almost complex structure J and a Riemannian metric tensor G, and covered by a system of coordinate neighborhoods $\{\tilde{V}; y^A\}$.

Let M be a real $(2n-1)$-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V; x^h\}$ and immersed isometrically in \tilde{M} by the immersion $i : M \rightarrow \tilde{M}$. We represent the immersion i locally by $y^A = y^A(x^h)$ and $B_j = (B_j^A)$ are $(2n - 1)$-linearly independent local tangent vectors of M, where $B_j^A = \partial_j y^A$ and $\partial_j = \partial/\partial x^j$.

Let A, B, C, D and E run over $1, 2, \cdots, 2n + 2$ and let h, i, j, k, r and s run from $1, 2, \cdots, 2n - 1$. The summation convention will be used with respect to those system of indices. Three mutually orthogonal unit normals C, D and E may be chosen. Since the immersion i is isometric, the induced Riemannian metric tensor g with components on M is given by $g_{ji} = G(B_j, B_i)$.

Denoting by ∇_j the operator of van der Wareden-Bortolotti covariant differentiation with respect to g, equations of the Gauss for M of \tilde{M} is obtained:

\begin{equation}
\nabla_j B_i = A_{ji}C + K_{ji}D + L_{ji}E,
\end{equation}

where A_{ji}, K_{ji} and L_{ji} are components of the second fundamental forms in the direction C, D and E respectively. Equations of Weingarten are
also given by

\[\nabla_j C = -A_j^h B_h + l_j D + m_j E, \]
\[\nabla_j D = -K_j^h B_h - l_j C + n_j E, \]
\[\nabla_j E = -L_j^h B_h - m_j C - n_j D, \]

where \(A = (A_j^h) \), \(A_{(2)} = (K_j^h) \) and \(A_{(3)} = (L_j^h) \), which are related by \(A_{ji} = A_j^r g_{ir} \), \(K_{ji} = K_j^r g_{ir} \) and \(L_{ji} = L_j^r g_{ir} \) respectively, and \(l_j, m_j \) and \(n_j \) being components of the third fundamental forms.

As is well-known, a submanifold of a Kaehlerian manifold \(\bar{M} \) is said to be a CR submanifold ([1], [14]) if it is endowed with a pair of mutually orthogonal complementary differentiable distribution \((\Delta, \Delta^{\perp})\) such that for any \(p \in \bar{M} \) we have \(J \Delta_p = M_p \), \(J \Delta_p^{\perp} \subset M_p^{\perp} \), where \(M_p^{\perp} \) denotes the normal space of \(M \) at \(p \). In particular, \(M \) is said to be a semi-invariant submanifold if \(\dim \Delta^{\perp} = 1 \), and the unit normal vector in \(J \Delta^{\perp} \) is called a distinguished normal to the submanifold and denoted this by \(C \) ([2], [12]). Then we can write

\[J B_i = \phi_i^h B_h + \xi_i C, \quad J C = -\xi^h B_h, \quad J D = -E, \quad J E = D, \]

where we have put \(\phi_{ji} = G(J B_j, B_i) \), \(\xi_j = G(J B_j, C) \), \(\xi^h \) being associate components of \(\xi_h \) ([7]). A tensor field of type (1,1) with components \(\phi_j^h \) will be denoted by \(\phi \). By properties of the almost complex structure \(J \), it is, using (1.3), seen that

\[\phi_i^r \phi_r^h = -\delta_i^h + \xi_i \xi^h, \quad \xi_i \phi_i^r = 0, \quad \xi^r \phi_r^h = 0, \]
\[\xi_i \xi^r = 1, \quad g_{ir} \phi_j^r \phi_i^s = g_{ji} - \xi_j \xi_i. \]

In the sequel, we denote the normal components of \(\nabla^{\perp} C \) by \(\nabla_j C \). The distinguished normal is said to be parallel in the normal bundle if we have \(\nabla^{\perp} C = 0 \), that is, \(l_j \) and \(m_j \) vanish identically.

Since \(J \) is parallel, differentiating (1.3) covariantly along \(M \) and making use of (1.1), (1.2) and (1.3) itself, we find ([13])

\[\nabla_j \phi_i^h = -A_{ji} \xi^h + A_j^h \xi_i, \]
\[\nabla_j \xi_i = -A_{jr} \phi_i^r, \]
\[K_{ji} = -L_{jr} \phi_i^r - m_j \xi_i, \]
\[L_{ji} = K_{jr} \phi_i^r + l_j \xi_i. \]
REMARK 1. To write our formulas in a convention form, in what follows we denote by \(\alpha = A_{rs} \xi^r \xi^s \), \(\beta = A_{rs} \xi^r \xi^s h \), \(h = T_r A \), \(k = T_r A_{(2)} \), \(h_{(2)} = T_r A^2 \), \(K_{(2)} = T_r A_{(2)}^2 \), \(L_{(2)} = T_r A_{(3)}^2 \), and for a function \(f \) we denote by \(\nabla f \) the gradient vector field of \(f \).

We notice here that we may assume \(T_r A_{(3)} = 0 \) (see [7]). Thus, it is, using (1.6) and (1.7), verified that

\[
(1.8) \quad K_{jr} \xi^r = -m_j, \quad L_{jr} \xi^r = l_j,
\]

\[
(1.9) \quad m_r \xi^r = -k, \quad l_r \xi^r = 0.
\]

Further, we obtain

\[
(1.10) \quad \phi_{jr} m^r = -l_j, \quad \phi_{jr} l^r = m_j + k \xi_j,
\]

\[
(1.11) \quad K_{jr} L_i^r + K_{ir} L_j^r + l_j m_i + l_i m_j = 0.
\]

2. Auxiliary results

In order to prove our results we present in this section some notation, terminology and auxiliary results.

In the rest of this paper we shall suppose that \(\hat{M} \) is a Kaehlerian manifold of constant holomorphic sectional curvature \(c \), which is called a complex space form and denoted by \(M_{n+1}(c) \). Then equations of Gauss and Codazzi are given by

\[
R_{kjih} = \frac{c}{4} (g_{kh} g_{ji} - g_{jh} g_{ki} + \phi_{kh} \phi_{ji} - \phi_{jh} \phi_{ki} - 2 \phi_{kj} \phi_{ih})
\]

\[
+ A_{kh} A_{ji} - A_{jh} A_{ki} + K_{kh} K_{ji} - K_{jh} K_{ki}
\]

\[
+ L_{kh} L_{ji} - L_{jh} L_{ki},
\]

\[
\nabla_k A_{ji} - \nabla_j A_{ki} - l_k K_{ji} + l_j K_{ki} - m_k L_{ji} + m_j L_{ki}
\]

\[
= \frac{c}{4} (\xi_k \phi_{ji} - \xi_j \phi_{ki} - 2 \xi_i \phi_{kj}),
\]
(2.3) \[\nabla_k K_{ji} - \nabla_j K_{ki} + l_k A_{ji} - l_j A_{ki} - n_k L_{ji} + n_j L_{ki} = 0, \]
(2.4) \[\nabla_k L_{ji} - \nabla_j L_{ki} + m_k A_{ji} - m_j A_{ki} + n_k K_{ji} - n_j K_{ki} = 0, \]
where \(R_{kjih} \) are covariant components of the Riemann-Christoffel curvature tensor of \(M \), and those of the Ricci by

(2.5) \[\nabla_k l_j - \nabla_j l_k + A_{kr} K_{jr}^r - A_{jr} K_{kr}^r + m_k n_j - m_j n_k = 0, \]
(2.6) \[\nabla_k m_j - \nabla_j m_k + A_{kr} L_{jr}^r - A_{jr} L_{kr}^r + n_k l_j - n_j l_k = 0, \]
(2.7) \[\nabla_k n_j - \nabla_j n_k + K_{kr} L_{jr}^r - K_{jr} L_{kr}^r + l_k m_j - l_j m_k = \frac{c}{2} \phi_{kj}. \]

Now, we put \(U_j = \xi^r \nabla_r \xi_j \). Then \(U \) is orthogonal to the structure vector \(\xi \). Because of (1.5) and properties of the almost contact metric structure, it follows that

(2.8) \[\phi_{jr} U^r = A_{jr} \xi^r - \alpha \xi_j, \]
(2.9) \[U^r \nabla_j \xi_r = A_{jr} \xi^r - \alpha A_{jr} \xi^r. \]

From (2.8) we get \(g(U, U) = \beta - \alpha^2 \). Therefore we easily see that \(A \xi = \alpha \xi \) if and only if \(\beta - \alpha^2 = 0 \). Differentiating (2.8) covariantly and taking account of (1.4) and (1.5), we find

(2.10) \[\xi_j (A_{kr} U^r + \alpha_k) + \phi_{jr} \nabla_k U^r = \xi^r \nabla_k A_{jr} - A_{jr} A_{ks} \phi^s + \alpha A_{kr} \phi_j^r, \]
where we put \(\alpha_k = \nabla_k \alpha \), which shows that

(\(\nabla_k A_{rs} \)) \(\xi^r \xi^s = 2 A_{kr} U^r + \alpha_k, \)

which together with (1.8), (1.9) and (2.2) implies that

(2.11) \[(\nabla_r A_{js}) \xi^r \xi^s = 2 A_{jr} U^r + \alpha_j + 2 k l_j. \]

By means of (1.4), (1.5) and (2.11) it is verified that

(2.12) \[\xi^r \nabla_r U_i = -3 U^r A_{rs} \phi_i^s + \alpha A_{rs} \xi^r - \beta \xi_i - \phi_{ir} \alpha^r - 2 k \phi_i l^r. \]

The normal connection of a semi-invariant submanifold of codimension 3 in a complex space form is said to be lift-flat if it satisfies \(dn = \frac{c}{2} \omega \), that is,

(2.13) \[\nabla_j n_i - \nabla_i n_j = \frac{c}{2} \phi_{ji}, \]
where \(\omega(X, Y) = g(\phi X, Y) \) for any vectors \(X \) and \(Y \) on \(M \) (see [9]).
LEMMA 2.1. Let M be a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c)$. Then the normal connection of M is lift-flat if and only if $A_{(2)}A_{(3)} = A_{(3)}A_{(2)}$.

PROOF. Suppose that (2.13) is valid on M. Then we have by (2.7)

$$K_{jr}L_i^r - K_{ir}L_j^r + l_jm_i - l_i m_j = 0$$

or using (1.11)

$$K_{jr}L_i^r + l_j m_i = 0.$$

From this, (1.8) and (1.9), it is seen that $L_{ir}m^r = 0$ and hence $(m_{ir}m^r)l_j = 0$. Thus it follows that $l_j = 0$ because of (1.10). Therefore (2.14) is reduced to $A_{(2)}A_{(3)} = A_{(2)}A_{(3)}$.

Conversely, if $A_{(2)}$ and $A_{(3)}$ mutually commutes, then (1.11) turns out to be

$$2K_{jr}L_i^r + l_j m_i + l_i m_j = 0,$$

which together with (1.8), (1.9) and (1.10) gives

$$2K_{jr}r^r = kl_j, \quad 2L_{ir}m^r = -kl_i.$$

From the last three equations, we see that

$$l_j\{2m_{ir}m^r - k^2\} = 0,$$

which connected with the first equation of (1.9) implies that

$$\{\|m_i\|^2 + \|m_i + k\xi_i\|^2\}l_j = 0.$$

If we take account of (1.10) and the last equation, then we verify that $l_j = 0$. Thus (2.16) becomes $K_{jr}L_i^r = 0$, which together with (1.6) yields $K_{ji}^2 - k\xi_j\xi_i = 0$ and hence $K_{(2)} = k^2$ and $K_{jr}\xi^r = k\xi_j$. From these relationships, it is clear that

$$K_{ji} = k\xi_j\xi_i.$$

Thus (2.7) is reduced to $\nabla_j n_i - \nabla_i n_j = \frac{s}{2}\phi_{ji}$ since we have $l_j = 0$. This completes the proof. \square
3. Semi-invariant submanifolds satisfying $A_{(2)}A_{(3)} = A_{(3)}A_{(2)}$

In the rest of this paper we shall suppose that M is a real $(2n - 1)$-dimensional semi-invariant submanifold of codimension 3 in a complex projective space $\mathbb{C}P^n$ and that $A_{(2)}A_{(3)} = A_{(3)}A_{(2)}$ is satisfied on M. Then we have $l_i = 0$ and

$$(3.1) \quad K_{ji} = n\xi_j \xi_i.$$

Further, we have

$$(3.2) \quad m_j = -n\xi_j,$$

$$(3.3) \quad L_{ji} = 0$$

because of (1.7) and (1.10). Thus (2.4) and (2.6) are reduced respectively to

$$(3.4) \quad k\{\xi_j A_{ki} - \xi_k A_{ji} + (n_k \xi_j - n_j \xi_k) \xi_i\} = 0,$$

$$(3.5) \quad \nabla_j m_i - \nabla_i m_j = 0.$$

Multiplying $\xi_j \xi_i$ to (3.4) and summing for j and i, we find

$$(3.6) \quad k\{n_k - (n_i \xi^i) \xi_k + A_{kr} \xi^r - \alpha \xi_k\} = 0.$$

Now, let Ω be a set of points such that $k \neq 0$ on M and suppose that Ω be nonavoid. Then (3.4) and (3.6) imply

$$(3.7) \quad A_{ji} = \xi_j A_{ir} \xi^r + \xi_i A_{jr} \xi^r - \alpha \xi_j \xi_i$$

on Ω. From now on, we discuss our arguments on the open set Ω on M. Since the vector U is orthogonal to ξ, it is seen that

$$(3.8) \quad A U = 0.$$

Transforming (3.7) by ϕ_k^i and making use of (1.5), we get

$$(3.9) \quad \nabla_k \xi_j = \xi_k U_j.$$

If we transform this by ϕ^k_j and use (1.5), then

$$(3.10) \quad h - \alpha = 0.$$

Multiplying (3.7) with A^{ji} and summing for j and i, we also find

$$(3.11) \quad h_{(2)} = 2\beta - \alpha^2.$$
Remark 2. We notice here that $\beta - \alpha^2$ does not vanish on Ω. In fact, if not, then we have $A \xi = \alpha \xi$ and hence $A_{ji} = \alpha \xi_j \xi_i$ because of (3.7). From this fact and (3.9) we obtain $\nabla_k A_{ji} = \alpha_k \xi_j \xi_i$, which together with (2.2) and (3.3) gives

$$(\alpha_k \xi_j - \alpha_j \xi_k) \xi_i = \frac{c}{4} (\xi_k \phi_{ji} - \xi_j \phi_{ki} - 2 \xi_i \phi_{kj}),$$

a contradiction.

Now, put $A \xi = \alpha \xi + \mu W$, where μ is a function on M which is not vanish on Ω and W is a unit vector field orthogonal to the structure vector field ξ. Then we have

$$(3.12) \quad \phi_{jr} U^r = \mu W_j$$

and $\mu^2 = \beta - \alpha^2$ because of (2.8). Thus W is also orthogonal to U. Thus (3.7) turns out to be

$$(3.13) \quad A_{ji} = \mu (\xi_j W_i + \xi_i W_j) + \alpha \xi_j \xi_i.$$

We notice here that it is, using (3.9), verified that

$$(3.14) \quad \xi^r \nabla_k W_r = 0$$

because ξ is orthogonal to W.

Differentiating (3.13) covariantly along Ω and making use of (3.9), we find

$$\nabla_k A_{ji} = \mu_k (\xi_j W_i + \xi_i W_j) + \mu \{(U_j W_i + U_i W_j) \xi_k + \xi_j \nabla_k W_i + \xi_i \nabla_k W_j\}$$

$$+ \alpha_k \xi_j \xi_i + \alpha (U_j \xi_i + U_i \xi_j) \xi_k,$$

from which, taking the skew-symmetric part with respect to indices k and j, and using (2.2) with $l_j = 0$ and (3.3),

$$\frac{c}{4} (\xi_k \phi_{ji} - \xi_j \phi_{ki} - 2 \xi_i \phi_{kj})$$

$$= \mu_k (\xi_j W_i + \xi_i W_j) - \mu_j (\xi_k W_i + \xi_i W_k)$$

$$+ \mu \{(U_j W_i + U_i W_j - \nabla_j W_i) \xi_k - (U_k W_i + U_i W_k - \nabla_k W_i) \xi_j\}$$

$$+ \mu (\nabla_k W_j - \nabla_j W_k) \xi_i + (\alpha_k \xi_j - \alpha_j \xi_k) \xi_i + \alpha (U_j \xi_k - U_k \xi_j) \xi_i.$$
Applying ξ^i to this and taking account of (3.14), we find
\begin{equation}
\mu_k W_j - \mu_j W_k + \mu(\nabla_k W_j - \nabla_j W_k) + \alpha_k \xi_j - \alpha_j \xi_k
\end{equation}
\begin{equation}
+ \alpha(U_j \xi_k - U_k \xi_j) + \frac{c}{2} \phi_{kj} = 0.
\end{equation}

From the last two equations it follows that
\begin{equation}
\frac{c}{4} (\xi_k \phi_{ji} - \xi_j \phi_{ki}) + (\mu_j \xi_k - \mu_k \xi_j) W_i
\end{equation}
\begin{equation}
= \mu\{(U_j W_i + U_i W_j - \nabla_j W_i) \xi_k - (U_k W_i + U_i W_k - \nabla_k W_i) \xi_j\},
\end{equation}
which together with (3.14) implies that
\begin{equation}
\frac{c}{4} \phi_{ji} + (\mu_j - (\mu \xi^i) \xi_j) W_i
\end{equation}
\begin{equation}
= \mu\{(U_j W_i + U_i W_j - \nabla_j W_i + (\xi^i \nabla_i W_i) \xi_j\}.
\end{equation}

If we apply this by W^i and use (3.12), then we obtain
\begin{equation}
\mu \mu_j = \mu(\mu \xi^i) \xi_j + (\mu^2 + \frac{c}{4}) U_j.
\end{equation}

Multiplying (3.16) with $\xi^k W^j$ and summing for k and j, and making use of (3.14) and (3.18), we have
\begin{equation}
\mu \xi^i = \alpha^i W^i.
\end{equation}

Lemma 3.1. Let M be a semi-invariant submanifold of codimension 3 with lift-flat normal connection in a complex projective space $\mathbb{C}P^{m+1}$. If the mean curvature of M is constant, then $\nabla_j U_i - \nabla_i U_j = 0$ on Ω.

Proof. Differentiating (3.2) covariantly along Ω, and using (3.9), we find
\[-\nabla_k m_j = \xi_j (\nabla_k k) + k \xi_k U_j,
\]
which together with (3.5) yields
\[\xi_j (\nabla_k k) - \xi_k (\nabla_j k) + k(\xi_k U_j - \xi_j U_k) = 0.
\]
Thus, it is seen that
\begin{equation}
\nabla_j k = (\xi^i \nabla_i k) \xi_j + k U_j.
\end{equation}
Since the mean curvature of M is assumed to be constant, it is, taking account of $T_r A_{(3)} = 0$ and (3.10), seen that $k^2 + \alpha^2 = \text{const.}$, which unable us to obtain
\begin{equation}
k\nabla_j k + \alpha \alpha_j = 0.
\end{equation}
Because of the fact that W is orthogonal to U and ξ, we have from (3.20) and (3.21) $\alpha W^t = 0$. Thus (3.18) turns out to be
\begin{equation*}
\frac{1}{2} \nabla_j \mu^2 = (\mu^2 + \frac{c}{4}) U_j,
\end{equation*}
where we have used (3.19). From this, we obtain
\begin{equation*}
\frac{1}{2} \nabla_k \nabla_j \mu^2 = 2(\mu^2 + \frac{c}{4}) U_j U_k + (\mu^2 + \frac{c}{4}) \nabla_k U_j,
\end{equation*}
which implies $(\mu^2 + \frac{c}{4})(\nabla_j U_i - \nabla_i U_j) = 0$. This completes the proof because we have $\mu^2 + \frac{c}{4} > 0$.

Finally, we are proved. \qed

Theorem 3.2. Let M be a real $(2n - 1)$-dimensional semi-invariant submanifold of codimension 3 with lift-flat normal connection in a complex projective space $\mathbb{C}P^{n+1}$. If the mean curvature of M is constant, then M is a real hypersurface in a complex projective space $\mathbb{C}P^n$.

Proof. Since the normal connection of M is lift-flat, we have $l_j = 0$, (3.8) and (3.13) are valid. Thus (2.12) is reduced to
\begin{equation}
\xi^r \nabla_r U_i = \mu(\alpha W_i - \mu \xi_i) - \phi_{ir} \alpha^r.
\end{equation}
On the other hand, we have $U^r \nabla_j \xi_r + \xi^r \nabla_r U_j = 0$ by Lemma 3.1. Thus, it is, using (3.9) and (3.22), verified that $\phi_{ir} \alpha^r = \alpha \mu W_j$. So we have
\begin{equation*}
\alpha_j = (\alpha \xi^r) \xi_j + \alpha U_j,
\end{equation*}
where we have used (3.12). From (3.20), (3.21) and the last equation, we obtain
\begin{equation*}
\{ k(\xi^r \nabla_r k) + \alpha(\alpha \xi^r) \} \xi_j + (k^2 + \alpha^2) U_j = 0,
\end{equation*}
which shows that $\mu(k^2 + \alpha^2) = 0$ and hence $k = 0$, a contradiction. Hence Ω is empty. Thus, by (3.1) \sim (3.3) it follows that $A_{(2)} = A_{(3)} = 0$ and $\nabla^\perp C = 0$ on M.

Let $N_0(p) = \{ \eta \in M_{\nu} | A_{\eta} = 0 \}$ and $H_0(p)$ the maximal J-invariant subspace of $N_0(p)$. Then, the orthogonal complement of $H_0(p)$ is invariant under parallel translation with respect to the normal connection because we have $\nabla^\perp C = 0$. Therefore, by the reduction theorem in [3] or [10], we see that M is a real hypersurface of $\mathbb{C}P^n$ in $\mathbb{C}P^{n+1}$. Hence we arrive at conclusion. \qed
References

Department of Mathematics
Chosun University
Kwangju 502-759, Korea
E-mail: sblee@chosun.ac.kr