TROTTER-KATO TYPE APPROXIMATIONS OF CONVOLUTED SOLUTION OPERATOR FAMILIES

MIHI KIM

Abstract. Trotter-Kato type approximations of the convoluted solution operator families for the Volterra integral equations (VEₙ):

\[v(t) = Aₙ \int_0^t v(t-s)dμₙ(s) + fₙ(t), \quad t \geq 0 \]

and the convergence of the solutions to the equations (VEₙ) are studied.

1. Introduction

Approximations of \(C₀ \)- and integrated- semigroups for the abstract Cauchy problems

\[(ACPₙ) \quad u'(t) = Aₙu(t), \quad t \geq 0 ; \quad u(0) = xₙ \]

and those of the cosine families for the second order Cauchy problems

\[(CPₙ) \quad u''(t) - Bₙu'(t) - Aₙu(t) = 0, \quad t \geq 0 ; \quad u(0) = xₙ, \quad u'(0) = yₙ \]

for \(n \in \mathbb{N} \) and their applications have been studied in the papers [1], [3], [6], [7], and etc.. Integrated and convoluted solution operator families which are general notion of the integrated and convoluted semigroups are suitable for studying the generalized well-posedness of the Volterra equation (VE) that follows (see [5]). The approximations of the integrated or convoluted solution operator families for the Volterra integral equations

\[(VEₙ) \quad v(t) = Aₙ \int_0^t v(t-s)dμₙ(s) + fₙ(t), \quad t \geq 0 \]

Received August 1, 2003.

2000 Mathematics Subject Classification: 45D05, 45N05.

Key words and phrases: convoluted solution operator family, integrated solution operator family, Laplace transform, Trotter-Kato type approximation, Volterra equation.
for \(n \in \mathbb{N} \) to an integrated or a convoluted solution operator family for the equation

\[
(VE) \quad v(t) = A \int_0^t v(t - s) d\mu(s) + f(t), \quad t \geq 0,
\]

also have been studied in [4] and [5], where it is assumed that \(A \) and \(A_n \), \(n \in \mathbb{N} \) are closed linear operators on a Banach space \(X \), that \(\mu \) and \(\mu_n \), \(n \in \mathbb{N} \) are scalar valued functions of local bounded variation on \([0, \infty)\) which are normalized, i.e., vanish at 0, and that \(f \) and \(f_n \), \(n \in \mathbb{N} \) are \(X \) valued Laplace transformable functions defined on \([0, \infty)\).

The objective of this paper is to improve a Trotter-Kato type approximation result of convoluted solution operator families (Theorem 4.2 in [5]) by showing that the result holds under weaker conditions on the scalar functions \(\mu \) and \(\mu_n \) and additionally, to formulate the approximation results (Theorems 4.1 and 4.2 in [5]) to the case that the spaces where the operators \(A_n \) are defined vary depending on \(n \in \mathbb{N} \). In practical examples however, only the norms might vary on a fixed set depending on \(n \). Since the former result with weaker conditions is immediately deduced from the latter ones with operators on varying spaces, we will prove the latter first. A convergence of the solutions of the equations \((VE_n) \) to a solution of the equation \((VE) \) is deduced from a convergence theorem of the functions in \(Lip_{\omega}([0, \infty); X) \) in terms of their Laplace-Stieltjes transforms and a solution characterization for \((VE) \). Another convergence of the solutions of \((VE_n) \) to a solution of \((VE) \) is deduced from an integrated solution operator family result in [4] and the approximation result of convoluted solution operator families. For examples, those in [2] can be referred to.

2. Approximations of convoluted solution operator families and the convergence of the solutions of \((VE_n)\)

We set assumptions on the operator \(A \) and the function \(\mu \) for the equation \((VE) \) in this section:

(A) Let \(A \) be a closed linear operator with domain \(D(A) \) and range in a Banach space \(X \) and for some constant \(\epsilon \geq 0 \), \(\mu \in BV_{\epsilon}([0, \infty); \mathbb{C}) \), i.e., \(\mu \) is a \(\mathbb{C} \)-valued, normalized function of local bounded variation on \([0, \infty)\) whose variation on \([0, t]\) does not exceed \(M e^{\epsilon t} \) for some constant \(M \geq 0 \) and for every \(t \geq 0 \).
Theorem 1 through Theorem 5 are preliminaries for the new results. See [1], [3], [4] or [5] for Theorems 1 and 2, Definition 3, Theorem 5, notation, and details. By \(\text{Lip}_\omega([0,\infty);X) \) for \(\omega \in \mathbb{R} \) we denote the space consisting of those functions \(F : [0,\infty) \to X \) with \(F(0) = 0 \) and for which \(\|F\|_{\text{Lip}_\omega} \) defined as

\[
\inf\{M \mid \|F(t+h) - F(t)\| \leq M \int_t^{t+h} e^{\omega r} dr \text{ for } t, h \geq 0\}
\]

is finite. It is clear that if \(F \in \text{Lip}_\omega([0,\infty);X) \) for some \(\omega \geq 0 \), the exponential bound \(\omega(F) \) of \(F \) is less than or equal to \(\omega \). If \(f \in L_{1,\text{loc}}^1([0,\infty);X) \) with \(\omega(f) < \infty \), \(f^{[1]} \in \text{Lip}_\omega([0,\infty);X) \) for any number \(\omega > \omega(f) \). By \(C^\infty_\omega((\omega,\infty);X) \) we denote the Widder space consisting of all those functions \(r \in C^\infty((\omega,\infty);X) \) for which

\[
\|r\|_{W,\omega} := \sup_{k \in \mathbb{N}_0, \lambda > \omega} \|(\lambda - \omega)^{k+1} \cdot \frac{1}{k!} r^{(k)}(\lambda)\| < \infty.
\]

It is well-known that the Laplace-Stieltjes transform \(F \mapsto \widehat{dF}(\lambda) := \int_0^\infty e^{-\lambda t} dF(t), \lambda > \omega \) is an isometric isomorphism from \(\text{Lip}_\omega([0,\infty);X) \) onto \(C^\infty_\omega((\omega,\infty);X) \) (see [3], [4], or [5] for example).

THEOREM 1. Let \(\{F_n\}_n \) be a sequence of functions in \(\text{Lip}_\omega([0,\infty);X) \) for which there exists a constant \(M \geq 0 \) such that \(\|F_n\|_{\text{Lip}_\omega} \leq M \) for all \(n \in \mathbb{N} \). Then the following are equivalent.

(i) There exist constants \(a > \omega \) and \(b > 0 \) such that \(\lim_{n \to \infty} \widehat{dF_n}(\lambda_k) \) exists for all \(\lambda_k := a + kb, k \in \mathbb{N}_0 := \{0\} \cup \mathbb{N} \).

(ii) There exists an \(F \in \text{Lip}_\omega([0,\infty);X) \) such that \(\|\widehat{dF}\|_{W,\omega} \leq M \) and \(\{\widehat{dF}_n(\cdot)\}_n \) converges to \(\widehat{dF}(\cdot) \) uniformly on compact subsets of \((\omega,\infty)\).

(iii) \(\lim_{n \to \infty} F_n(t) \) exists for every \(t \geq 0 \).

(iv) There exists an \(F \in \text{Lip}_\omega([0,\infty);X) \) with \(\|F\|_{\text{Lip}_\omega} \leq M \) such that \(\{F_n(\cdot)\}_n \) converges to \(F(\cdot) \) uniformly on compact subsets of \([0,\infty)\).

The following is a characterization of solutions of \((VE)\) in [4]. By \(\widehat{f}(\lambda) \) we denote the Laplace transform \(\int_0^\infty e^{-\lambda t} f(t)dt \) of \(f \).

THEOREM 2. Suppose that the assumptions in \((A)\) hold. Let \(f \in L_{1,\text{loc}}^1([0,\infty);X) \) be Laplace transformable. Let \(v \in C([0,\infty);X) \) with \(\omega(v) < \infty \) and let \(\omega \) be a number such that \(\omega \geq \max\{\epsilon, \text{abs}(f), \omega(v)\} \). Then the following are equivalent.
(i) \(v \) solves \((VE)\).

(ii) \(\tilde{v}(\lambda) \in D(A) \) and \((I - \hat{d}\mu(\lambda)A)\tilde{v}(\lambda) = \hat{f}(\lambda) \) if \(\lambda \in \mathbb{C}_\omega \).

(iii) \(\tilde{v}(\omega) \in D(A) \) and \((I - \hat{d}\mu(\omega)A)\tilde{v}(\omega) = \hat{f}(\omega) \) if \(\omega < k \in \mathbb{N} \).

The following definition of convoluted solution operator families is taken from [5].

Definition 3. Suppose that the assumptions for \(A \) and \(\mu \) in (A) hold. Let \(k \in L^1_{loc}([0, \infty); \mathbb{C}) \) be Laplace transformable. Let \(M > 0 \) and \(\omega \geq \max\{\varepsilon, \text{abs}(k)\} \) be some constants. Suppose that \((I - \hat{d}\mu(\lambda)A)^{-1} \in L(X) \) for all \(\lambda > \omega \). A strongly continuous mapping \(S : [0, \infty) \to L(X) \) is said to be a \(k \)-convoluted solution operator family (\(k \)-c.s.o.f. for short) of exponential type \((M; \omega)\) with generator \((A, \mu)\) if the following hold.

(i) \(||S(t)|| \leq Me^{\omega t} \) for all \(t \geq 0 \).

(ii) \(\tilde{k}(\lambda)(I - \hat{d}\mu(\lambda)A)^{-1}x = \tilde{S}(\lambda)x = \int_0^\infty e^{-\lambda t} S(t)x \, dt \) for every \(\lambda > \omega \) and every \(x \in X \).

Remark 4. (i) If \(S \) is a \(k \)-c.s.o.f. of exponential type \((M; \omega)\) with generator \((A, \mu)\), then

\[
S(t)x = \int_0^t S(t - s)Ax\,ds(s) + k(t)x
\]

for every \(t \geq 0 \) and \(x \in D(A) \). (ii) If \(k(t) = \frac{tm}{m!} \), \(t \geq 0 \) for some \(m \in \mathbb{N}_0 \), a \(k \)-convoluted solution operator family with generator \((A, \mu)\) is an \(m \)-times integrated solution operator family with generator \((m \text{-i.s.o.f. for short}) (A, \mu)\).

One can refer to Corollary 3.1.12 in [4] for the following.

Theorem 5. Let \(S \) be an \(m \)-i.s.o.f. with generator \((A, \mu)\) for some \(m \in \mathbb{N}_0 \). Suppose that \(f \in C^{(m+1)}([0, \infty); X) \), i.e., \(f = g^{[m+1]} \) for some \(g \in C([0, \infty); X) \). Then the function \(v \) defined as \(v(t) := \int_0^t S(t - s)g(s)\,ds \), \(t \geq 0 \) is a solution of \((VE)\).

Theorems 1 and 2 imply a convergence of the solutions of \((VE_n)\) to a solution of \((VE)\).

Theorem 6. Suppose that the assumptions in (A) hold. Let \(A_n, n \in \mathbb{N} \) be closed linear operators on the Banach space \(X \) and \(\mu_n \in BV(X) \) for every \(n \in \mathbb{N} \). Let \(f, f_n \in L^1_{loc}([0, \infty); X) \) be Laplace transformable functions for which there exists a constant \(a \geq 0 \) such that \(\text{abs}(f), \text{abs}(f_n) \leq a \) for all \(n \in \mathbb{N} \). Let \(v_n \in \text{Lip}_\omega([0, \infty); X) \) be
a solution of \((VE_n)\) for every \(n \in \mathbb{N}\) for which there exist constants \(M > 0\) and \(\omega \geq \max\{\epsilon, a\}\) such that \(\|v_n\|_{Lip_\omega} \leq M\) for all \(n \in \mathbb{N}\). Suppose that \((I - \widehat{d\mu}(\lambda)A)^{-1}\) and \((I - \widehat{d\mu_n}(\lambda)A_n)^{-1}\) exist in \(L(X)\) for all \(n \in \mathbb{N}\) and that \(\lim_{n \to \infty} (I - \widehat{d\mu_n}(\lambda)A_n)^{-1}f_n(\lambda) = (I - \widehat{d\mu}(\lambda)A)^{-1}f(\lambda)\) for every \(\lambda > \omega\). Then \(v_n(t)\) converges to a solution of \((VE)\) uniformly on compact subsets of \([0, \infty)\).

Proof. Let \(\lambda > \omega\). Since \(v_n\) is an exponentially bounded solution of \((VE_n)\) with \(\omega(v_n) \leq a \leq \omega\), by Theorem 2, \(\lambda(I - \widehat{d\mu_n}(\lambda)A_n)^{-1}f_n(\lambda) = \lambda \widehat{w}_n(\lambda) = \widehat{d\delta v}(\lambda)\) for every \(n \in \mathbb{N}\). Since \(\|v_n\|_{Lip_\omega} \leq M\) for all \(n \in \mathbb{N}\) and since by the hypothesis, \(\lim_{n \to \infty} \widehat{d\delta v}(\lambda) = \lambda(I - \widehat{d\mu}(\lambda)A)^{-1}\widehat{f}(\lambda)\) for every \(\lambda > \omega\), it follows from Theorem 1 that the solution \(v_n(t)\) of \((VE_n)\) converges to a function \(v(t)\) in \(Lip_\omega([0, \infty); X)\) uniformly on compact subsets of \([0, \infty)\). By Theorem 2 and the uniqueness of a limit, \(\lambda \widehat{\delta v}(\lambda) = \widehat{d\delta v}(\lambda) = \lambda(I - \widehat{d\mu}(\lambda)A)^{-1}\widehat{f}(\lambda)\) for every \(\lambda > \omega\). Thus, \((I - \widehat{d\mu}(\lambda)A)\widehat{\delta v}(\lambda) = \widehat{f}(\lambda)\) for every \(\lambda > \omega\). By Theorem 2, \(v(t)\) is a solution of the equation \((VE)\). \(\square\)

Let \(X\) be a Banach space and let \(M > 0\) and \(\omega \geq 0\) be some constants. A sequence \(\{S_n\}_n\) of operator valued functions \(S_n : [0, \infty) \to L(X)\) is said to be \((M; \omega)\)-stable (or simply stable) if \(\|S_n(t)\| \leq Me^{\omega t}\) for all \(t \geq 0\) and \(n \in \mathbb{N}\). The Trotter-Kato type approximations of convoluted solution operator families, Theorems 4.1 and 4.2 in [5] can be formulated to the case that the spaces on which the operators \(A_n\) are defined vary depending on \(n\). For the results we set assumptions for \((VE)\) and \((VE)_n\):

(B) Let \((X, \|\cdot\|)\) and \((X_n, \|\cdot\|_n)\), \(n \in \mathbb{N}\) be Banach spaces. Let \(A\) and \(A_n\), \(n \in \mathbb{N}\) be closed linear operators on \(X\) and \(X_n\), \(n \in \mathbb{N}\) respectively. For some \(\epsilon \geq 0\), let \(\mu, \mu_n \in BV_{\epsilon}([0, \infty); \mathbb{C})\) for all \(n \in \mathbb{N}\).

In addition we assume that \(f \in L^1_{loc}([0, \infty); X)\) and \(f_n \in L^1_{loc}([0, \infty); X_n)\), \(n \in \mathbb{N}\) are Laplace transformable. We prove the new results analogously to Theorems 4.1 and 4.2 in [5] but under weaker conditions on the scalar functions in Theorem 9 that follows.

Theorem 7. Suppose that the assumptions in (B) hold. Let \(k\) which is in \(L^1_{loc}([0, \infty); \mathbb{C})\) be Laplace transformable. Let \(M > 0, L > 0, \) and \(\omega \geq \epsilon\) be some constants. Let \(\{S_n\}_n\) be an \((M; \omega)\)-stable sequence of \(k\)-convoluted solution operator families \(S_n\) with generators \((A_n, \mu_n)\) for \(n \in \mathbb{N}\). Let \(P_n \in L(X; X_n)\) and \(Q_n \in L(X_n; X)\) with \(\|P_n\|, \|Q_n\| \leq L\) for all \(n \in \mathbb{N}\). Suppose that \((I - \widehat{d\mu}(\lambda)A)^{-1}\) exists as an operator in \(L(X)\) for
every $\lambda > \omega$ and that $\lim_{n \to \infty} Q_n(I - \hat{d}\mu_n(\lambda))A_n^{-1}P_n x = (I - \hat{d}\mu(\lambda))A^{-1}x$ for every $\lambda > \omega$ and $x \in X$. Then (A, μ) generates a $k^{[1]}$-c.s.o.f. $T \in Lip_\omega([0,\infty); L(X))$ with $\|T\|_{Lip_\omega} \leq L^2M$. Moreover, for every $x \in X$, the sequence $\{Q_nS_n^{[1]}(t)P_n x\}$ converges to $T(t)x$ uniformly on compact subsets of $[0,\infty)$. If in addition, A is densely defined and μ is absolutely continuous on $[0,\infty)$, then there exists a k-c.s.o.f. S of exponential type $(M; \omega)$ with generator (A, μ). In fact, $S(t)x = \frac{dT(t)x}{dt}$ for every $t \geq 0$ and $x \in X$.

Proof. Define $T_n(t)x := Q_nS_n^{[1]}(t)P_n x := Q_n \int_0^t S_n(s)P_n x ds$ for every $n \in \mathbb{N}$, $t \geq 0$, and $x \in X$. Then clearly, $T_n \in Lip_\omega([0,\infty); L(X))$ with $\|T_n\|_{Lip_\omega} \leq L^2M$ for all $n \in \mathbb{N}$ and so $\|T_n(\cdot)x\|_{Lip_\omega} \leq L^2M\|x\|$ for all $n \in \mathbb{N}$ and all $x \in X$. Then it follows from $\lim_{n \to \infty} Q_n(I - \hat{d}\mu_n(\lambda))A_n^{-1}P_n x = (I - \hat{d}\mu(\lambda))A^{-1}x$ that $\hat{d}T_n(\lambda)x = Q_nS_n(\lambda)P_n x = \hat{k}(\lambda)Q_n(I - \hat{d}\mu_n(\lambda))A_n^{-1}P_n x$ converges to $\hat{k}(\lambda)(I - \hat{d}\mu(\lambda))A^{-1}x$ for every $\lambda > \omega$ and $x \in X$. Thus, by Theorem 1, it holds that for every $x \in X$, there exists $T_x \in Lip_\omega([0,\infty); X)$ with $\|T_x\|_{Lip_\omega} \leq L^2M\|x\|$ such that $\{T_n(\cdot)x\}$ converges to $T_x(\cdot)$ uniformly on compact subsets of $[0,\infty)$. Define $T(t)x := T_x(t)$ for every $t \geq 0$ and $x \in X$. Then by the uniqueness of a limit, $T(t) : X \to X$ is linear for every $t \geq 0$. Moreover, $T \in Lip_\omega([0,\infty); L(X))$ with $\|T\|_{Lip_\omega} \leq L^2M$. Thus, it follows from Theorem 1 that for every $x \in X$, $\{\hat{d}T_n(\lambda)x\}$ converges to $\hat{d}T(\lambda)x$ uniformly on compact subsets of (ω,∞). By the uniqueness of a limit, $\hat{k}^{[1]}(\lambda)(I - \hat{d}\mu(\lambda))A^{-1}x = \frac{\hat{k}(\lambda)}{\hat{\chi}}(I - \hat{d}\mu(\lambda))A^{-1}x = \frac{\hat{d}T(\lambda)}{\hat{\chi}}x = \hat{T}(\lambda)x$ for every $\lambda > \omega$ and $x \in X$. Thus, T is a $k^{[1]}$-c.s.o.f. with generator (A, μ). Assuming that A is densely defined and μ is absolutely continuous on $[0,\infty)$, it follows from the second half of the proof of Theorem 3.4 in [5] that $S(t)x := \frac{dT(t)x}{dt}$ exists for all $t \geq 0$ and $x \in X$, that $S(t) \in L(X)$ for every $t \geq 0$, and that $S(t)x$ is continuous on $[0,\infty)$ for every $x \in X$, and finally that S is a k-c.s.o.f. with generator (A, μ). □

If P_nQ_n is the identity operator on X_n and $\lim_{n \to \infty} Q_nP_n x = x$ for all $x \in X$ in Theorem 7, it is deduced under additional assumptions on μ and μ_n that for every $x \in X$, the sequence $\{Q_nS_n(t)P_n x\}$ converges to $S(t)x$ uniformly on compact subsets of $[0,\infty)$. We use the following elementary fact for the result.

Lemma 8. Let $\{T_n\}_n$ be an $(M; \omega)$-stable sequence of k-convoluted solution operator families $T_n : [0,\infty) \to L(X)$ for every $n \in \mathbb{N}$ and for
some $\epsilon \geq 0$, let $\mu_n \in BV_c((0, \infty); \mathbb{C})$ for all $n \in \mathbb{N}$. If $\lim_{n \to \infty} \mu_n(t) = 0$, then $\lim_{n \to \infty} \int_0^t T_n(s)xd\mu_n(s) = 0$ for every $t \geq 0$ and every $x \in X$.

Proof. Case 1. Suppose that μ_n is an increasing function in the space $BV_c([0, \infty); \mathbb{R})$ for every $n \in \mathbb{N}$. Let $t \geq 0$ and $x \in X$. Since $\| \int_0^t T_n(s)xd\mu_n(s)\| \leq \int_0^t \|T_n(s)x\|d\mu_n(s) \leq Me^{\omega t}\|x\|\mu_n(t)$ and since the last term converges to 0 as $n \to \infty$, it holds that $\lim_{n \to \infty} \int_0^t T_n(s)xd\mu_n(s) = 0$.

Case 2. Suppose that $\mu_n \in BV_c([0, \infty); \mathbb{C})$ for every $n \in \mathbb{N}$. Then $\mu_n = \alpha_n - \beta_n$ for some increasing functions α_n and β_n in $BV_c([0, \infty); \mathbb{R})$ and so $\int_0^t T_n(s)xd\mu_n(s) = \int_0^t T_n(s)x\alpha_n(s) - \int_0^t T_n(s)x\beta_n(s)$ for every $n \in \mathbb{N}$. Thus, it follows from Case 1 that $\lim_{n \to \infty} \int_0^t T_n(s)xd\mu_n(s) = 0$ for every $t \geq 0$ and $x \in X$.

Case 3. Suppose that $\mu_n \in BV_c([0, \infty); \mathbb{R})$ for every $n \in \mathbb{N}$. Then $\mu_n = \gamma_n + i\delta_n$ for some $\gamma_n, \delta_n \in BV_c([0, \infty); \mathbb{R})$ for every $n \in \mathbb{N}$ implies that $\lim_{n \to \infty} \int_0^t T_n(s)xd\mu_n(s) = 0$ for every $t \geq 0$ and $x \in X$. \square

Theorem 9. Suppose that the assumptions in (B) hold. Additionally suppose that A and A_n, $n \in \mathbb{N}$ are densely defined and that μ and μ_n, $n \in \mathbb{N}$ are absolutely continuous. Suppose that there exist constants $R, a > 0$ such that $\mu_n' \in Lip_a([0, \infty); \mathbb{C})$ with $\|\mu_n'\|_{Lip_a} \leq R$ for all $n \in \mathbb{N}$ and that the sequence $\{\mu_n(t)\}_n$ converges to $\mu(t)$ uniformly on compact subsets of $[0, \infty)$. Let $k \in L^1_{\text{loc}}([0, \infty); \mathbb{C})$ be a Laplace transformable function which is bounded on compact subsets of $[0, \infty)$. Let $M > 0$ and $\omega \geq \max\{\epsilon, a, \text{abs}(k)\}$ be some constants. Let $\{S_n\}_n$ be an $(M; \omega)$-stable sequence of k-convoluted solution operator families S_n with generators (A_n, μ_n) for $n \in \mathbb{N}$. Suppose that $\hat{\mu} \neq 0$ on (ω, ∞) and that $\hat{(I - d\mu(\lambda)A)^{-1}}$ exists in $L(X)$ for every $\lambda > \omega$. Let $P_n \in L(X; X_n)$ and $Q_n \in L(X_n; X)$ such that $P_nQ_n = I_n$, the identity operator on X_n and $\lim_{n \to \infty} Q_nP_nx = x$ for all $x \in X$. Suppose that there exists a constant $L \geq 0$ such that $\|P_n\|, \|Q_n\| \leq L$ for all $n \in \mathbb{N}$ and that $\lim_{n \to \infty} Q_n(I - d\mu(\lambda)A_n)^{-1}P_nx = (I - d\mu(\lambda)A)^{-1}x$ for every $\lambda > \omega$ and $x \in X$. Then there exists a k-c.s.o.f. $S = \{S(t)\}_{t \geq 0}$ of exponential type $(L^2M; \omega)$ with generator (A, μ) such that for every $x \in X$, the sequence $\{Q_nS_n(t)P_nx\}_n$ converges to $S(t)x$ uniformly on compact subsets of $[0, \infty)$.

Proof. Since the hypotheses include the assumptions for Theorem 7, (A, μ) generates a k-c.s.o.f. $S = \{S(t)\}_{t \geq 0}$ of exponential type
For the uniform convergence of \(\{S_n(t)\}_n \) to \(S(t) \) on compact subsets of \([0, \infty)\), we first show that for every \(y \in D(A) \), the sequence \(\{Q_nS_n(t)P_ny\}_n \) converges to \(S(t)y \) uniformly on compact subsets of \([0, \infty)\). Let \(y \in D(A) \) and \(y_n \in D(A_n) \) for \(n \in \mathbb{N} \). Since \(S \) and \(S_n \), \(n \in \mathbb{N} \) are \(k \)-convoluted solution operator families with generators \((A, \mu)\) and \((A_n, \mu_n)\), respectively and \(Q_n \) are bounded linear operators, it follows from Remark 4 following Definition 3 that

\[
(1) \quad S(t)y = \int_0^t S(t-s)Ay \mu(s) + k(t)y
\]

and

\[
(2) \quad Q_nS_n(t)y_n = \int_0^t Q_nS_n(t-s)A_ny_n \mu(s) + k(t)Q_ny_n
\]

hold for every \(t \geq 0 \). Let \(h(\lambda) := (I - \widetilde{d \mu}(\lambda)A)^{-1} \) and let \(h_n(\lambda) := (I - \widetilde{d \mu_n}(\lambda)A_n)^{-1} \) for \(\lambda > \omega \) and \(n \in \mathbb{N} \). Then from the hypothesis,

\[
\lim_{n \to \infty} Q_nh_n(\lambda)P_n x = h(\lambda)x \text{ for every } \lambda > \omega \text{ and } x \in X.
\]

Let \(\lambda_0 > \omega \) such that \(\widetilde{d \mu}(\lambda_0) \neq 0 \) and let \(z := (I - \widetilde{d \mu}(\lambda_0)A)y \). Then \(y = h(\lambda_0)z \).

\[
||Q_nS_n(t)P_n y - S(t)y|| \leq ||Q_nS_n(t)P_n \left(h(\lambda_0)z - Q_nh_n(\lambda_0)P_n z\right)||
\]

\[
+ ||Q_nS_n(t)h_n(\lambda_0)P_n z - S(t)h(\lambda_0)z||.
\]

Since \(Q_nS_n(t)P_n \) are uniformly bounded on compact subsets of \([0, \infty)\) and since \(\lim_{n \to \infty} Q_nh_n(\lambda_0)P_n z = h(\lambda_0) \), it suffices to estimate the convergence of the second term in (3). It is deduced from the condition \(\mu_n \in Lip_\alpha([0, \infty); \mathbb{C}) \) with \(|\mu_n|_{Lip_\alpha} \leq R \) for all \(n \in \mathbb{N} \) that \(\mu_n \in Lip_\alpha([0, \infty); \mathbb{C}) \) and \(||\mu_n||_{Lip_\alpha} \leq R \) for all \(n \in \mathbb{N} \) (see [4] or [5] for example). Since \(\lim_{n \to \infty} \mu_n(t) = \mu(t) \) for every \(t \geq 0 \) with \(||\mu_n||_{Lip_\alpha} \leq R \) for all \(n \in \mathbb{N} \), by Theorem 1, \(\lim_{n \to \infty} \widetilde{d \mu_n}(\lambda_0) = \widetilde{d \mu}(\lambda_0) \). Since \(\lim_{n \to \infty} \widetilde{d \mu_n}(\lambda_0) = \widetilde{d \mu}(\lambda_0) \neq 0 \), to estimate the convergence of the second term

\[
||Q_nS_n(t)h_n(\lambda_0)P_n z - S(t)h(\lambda_0)z||
\]

in (3) is equivalent to estimate that of the sequence

\[
\{||\widetilde{d \mu}(\lambda_0)\widetilde{d \mu_n}(\lambda_0)(Q_nS_n(t)h_n(\lambda_0)P_n z - S(t)h(\lambda_0)z)||\}_n.
\]
By (1) and (2),

\[
\| \widehat{d\mu}(\lambda_0) \widehat{d\mu_n}(\lambda_0) \left(Q_n S_n(t) h_n(\lambda_0) P_n z - S(t) h(\lambda_0) z \right) \| \\
\leq \| \widehat{d\mu}(\lambda_0) \widehat{d\mu_n}(\lambda_0) \left(\int_0^t Q_n S_n(t-s) A_n h_n(\lambda_0) P_n z \, d\mu_n(s) \\
- \int_0^t S(t-s) A h(\lambda_0) z \, d\mu(s) \right) \| \\
+ \| \widehat{d\mu}(\lambda_0) \widehat{d\mu_n}(\lambda_0) k(t) \left(Q_n h_n(\lambda_0) P_n z - h(\lambda_0) z \right) \|.
\]

(4)

Since the second term converges to 0 uniformly on compact subsets of \([0, \infty)\), it suffices to estimate the convergence of the first term in (4).

\[
\| \widehat{d\mu}(\lambda_0) \widehat{d\mu_n}(\lambda_0) \left(\int_0^t Q_n S_n(t-s) A_n h_n(\lambda_0) P_n z d\mu_n(s) \\
- \int_0^t S(t-s) A h(\lambda_0) z d\mu(s) \right) \| \\
= \| \widehat{d\mu}(\lambda_0) \int_0^t Q_n S_n(t-s)(h_n(\lambda_0) - I) P_n z d\mu_n(s) \\
- \widehat{d\mu_n}(\lambda_0) \int_0^t S(t-s)(h(\lambda_0) - I) z d\mu(s) \| \\
\leq \| \left(\widehat{d\mu}(\lambda_0) - \widehat{d\mu_n}(\lambda_0) \right) \int_0^t Q_n S_n(t-s)(h_n(\lambda_0) - I) P_n z d\mu_n(s) \| \\
+ |\widehat{d\mu_n}(\lambda_0)| \left\| \int_0^t Q_n S_n(t-s)(h_n(\lambda_0) - I) P_n z d\mu_n(s) \\
- \int_0^t S(t-s)(h(\lambda_0) - I) z d\mu(s) \right\|.
\]

(5)

Since \(\| \int_0^t Q_n S_n(t-s)(h_n(\lambda_0) - I) P_n z \, d\mu_n(s) \| \) are uniformly bounded on compact subsets of \([0, \infty)\) and since \(\lim_{n \to \infty} \widehat{d\mu_n}(\lambda_0) = \widehat{d\mu}(\lambda_0) \) in the first term of (5), it suffices to estimate the convergence of the term

\[
\| \int_0^t Q_n S_n(t-s)(h_n(\lambda_0) - I) P_n z d\mu_n(s) - \int_0^t S(t-s)(h(\lambda_0) - I) z d\mu(s) \|.
\]
in the second term of (5).

\[
\| \int_0^t Q_n S_n(t - s)(h_n(\lambda_0) - I)P_n z d\mu_n(s) \hspace{1cm} - \int_0^t S(t - s)(h(\lambda_0) - I)z d\mu(s) \| \\
= \| \int_0^t Q_n S_n(s)(h_n(\lambda_0) - I)P_n z d\mu_n(t - s) \hspace{1cm} - \int_0^t S(s)(h(\lambda_0) - I)z d\mu(t - s) \| \\
= \| \int_0^t Q_n S_n(s)P_n (Q_n h_n(\lambda_0)P_n z - Q_n P_n z) d\mu_n(t - s) \hspace{1cm} - \int_0^t S(s)(h(\lambda_0) - I)z d\mu(t - s) \| \\
\leq \| \int_0^t Q_n S_n(s)P_n (Q_n h_n(\lambda_0)P_n z - h(\lambda_0)z) d\mu_n(t - s) \| \\
\hspace{1cm} + \| \int_0^t (Q_n S_n(s)P_n - S(s))(h(\lambda_0) - Q_n P_n)z d\mu_n(t - s) \| \\
\hspace{1cm} + \| \int_0^t S(s)(I - Q_n P_n)z d\mu_n(t - s) \| \\
\hspace{1cm} + \| \int_0^t S(s)(h(\lambda_0) - I)z d\mu_n(t - s) \| \\
= \| \int_0^t Q_n S_n(s)P_n (Q_n h_n(\lambda_0)P_n z - h(\lambda_0)z) \mu_n'(t - s) ds \|
\hspace{1cm} + \| \int_0^t (Q_n S_n(s)P_n - S(s))(h(\lambda_0) - Q_n P_n)z \mu_n'(t - s) ds \| \\
\hspace{1cm} + \| \int_0^t S(s)(z - Q_n P_n z) \mu_n'(t - s) ds \| \\
\hspace{1cm} + \| \int_0^t S(t - s)(h(\lambda_0) - I)z d\left(\mu_n(s) - \mu(s)\right) \|.
\]

Since \(\|Q_n S_n(s)P_n\|\ |\mu_n'(t - s)|\) are uniformly bounded on compact subsets of \([0, \infty)\) and since \(\lim_{n \to \infty} Q_n h_n(\lambda_0)P_n z = h(\lambda_0)z\), the first term in (6) converges to 0 uniformly on compact subsets of \([0, \infty)\). Since \(\|S(s)\|\ |\mu_n'(t - s)|\) are uniformly bounded on compact subsets of \([0, \infty)\)
and \(\lim_{n \to \infty} Q_n P_n z = z \), the third term in (6) converges to 0 uniformly on compact subsets of \([0, \infty)\). Lemma 8 implies that the fourth term in (6) converges uniformly on compact subsets of \([0, \infty)\). Thus, it suffices to estimate the second term in (6). By the integration by parts,

\[
\left\| \int_0^t \left(Q_n S_n(s) P_n - S(s) \right) (h(\lambda_0) - Q_n P_n) z \mu_n'(t-s) ds \right\|
\leq \left\| \int_0^t \left(Q_n S_n^{[1]}(s) P_n - S^{[1]}(s) \right) (h(\lambda_0) z - Q_n P_n z) \mu''_n(t-s) ds \right\|
\leq \sup_{n \in \mathbb{N}} \| h(\lambda_0) z - Q_n P_n z \| \cdot \sup_{n \in \mathbb{N}} \sup_{s \in [0, t]} | \mu''_n(s) | \cdot \int_0^t \| Q_n S_n^{[1]}(s) P_n - S^{[1]}(s) \| ds.
\]

Since \(\sup_{n \in \mathbb{N}} | \mu'_n |_{Lip_a} \leq R \), \(\sup_{n \in \mathbb{N}} \sup_{s \in [0, t]} | \mu''_n(s) | < \infty \) for every \(t \geq 0 \).

Since \(\lim_{n \to \infty} Q_n P_n x = x \) for all \(x \in X \), \(\sup_{n \in \mathbb{N}} \| h(\lambda_0) z - Q_n P_n z \| \) is finite.

Since for every \(x \in X \), \(\{ Q_n S_n^{[1]}(s) P_n x \}_n \) converges to \(S^{[1]}(s)x \) uniformly on compact subsets of \([0, \infty)\), (7) converges to 0 uniformly on compact subsets of \([0, \infty)\). Thus, \(Q_n S_n(t) P_n y \) converges to \(S(t)y \) uniformly on compact subsets of \([0, \infty)\) for every \(y \in D(A) \). Since \(\overline{D(A)} = X \) and since \(Q_n S_n(t) P_n y \) are uniformly bounded on compact subsets of \([0, \infty)\), \(Q_n S_n(t) P_n x \) converges to \(S(t)x \) uniformly on compact subsets of \([0, \infty)\) for every \(x \in X \).

If \(X_n = X \) and \(Q_n = P_n = I \), the identity operator on \(X \) for all \(n \in \mathbb{N} \) Theorem 7 becomes Theorem 4.1 in [5] and Theorem 9 does almost Theorem 4.2 in [5] but with weaker conditions on the scalar functions \(\mu_n \) and \(\mu \) as follows.

Corollary 10. (a) Let \(A \) and \(A_n \), \(n \in \mathbb{N} \) be densely defined closed linear operators on a Banach space \(X \) and let \(\mu \) and \(\mu_n \), \(n \in \mathbb{N} \) be absolutely continuous functions in \(BV_e([0, \infty); \mathbb{C}) \) for some \(\epsilon \geq 0 \) for all \(n \in \mathbb{N} \). Additionally suppose that \(D(A) \cap \bigcap_{n \in \mathbb{N}} D(A_n) \) contains a dense subset \(D \) of \(X \), that \(\mu_n(t) \) converges to \(\mu(t) \) uniformly on compact subsets of \([0, \infty), \) and that there exist constants \(L, a > 0 \) such that \(\mu'_n \in Lip_a([0, \infty); \mathbb{C}) \) and \(| \mu'_n |_{Lip_a} \leq L \) for all \(n \in \mathbb{N} \).

(b) Let \(k \in L^1_{loc}([0, \infty); \mathbb{C}) \) be a Laplace transformable function which is bounded on compact subsets of \([0, \infty)\). Let \(\omega \geq \max\{ \epsilon, a, \text{abs}(k) \} \)
and \(M > 0 \) be some constants. Let \(\{S_n\}_n \) be an \((M; \omega)\)-stable sequence of \(k\)-convoluted solution operator families \(S_n \) with generators \((A_n, \mu_n)\) for \(n \in \mathbb{N} \).

(c) Suppose that \(\hat{d} \mu \neq 0 \) on \((\omega, \infty)\) and that \((I - \hat{d} \mu(\lambda)A)^{-1} \) exists in \(L(X) \) for every \(\lambda > \omega \) and \(\lim_{n \to \infty} (I - \hat{d} \mu_n(\lambda)A_n)^{-1}x = (I - \hat{d} \mu(\lambda)A)^{-1}x \) for every \(\lambda > \omega \) and \(x \in X \).

Then there exists a \(k\)-c.s.o.f. \(S \) of exponential type \((M; \omega)\) with generator \((A, \mu)\) for which for every \(x \in X \), the sequence \(\{S_n(\cdot)x\}_n \) converges to \(S(\cdot)x \) uniformly on compact subsets of \([0, \infty)\).

Suppose that for some \(x \in X \), \(f(t) = f_n(t) = \frac{t^{m+1}}{(m+1)!}x \) for all \(t \geq 0 \) and \(n \in \mathbb{N} \) in \((VE_n)\) and \((VE)\) so that the equations \((VE_n)\) and \((VE)\) become

\[
(VE_n') \quad v(t) = A_n \int_0^t v(t-s)d\mu_n(s) + \frac{t^{m+1}}{(m+1)!}x, \quad t \geq 0
\]

\[
(VE') \quad v(t) = A \int_0^t v(t-s)d\mu(s) + \frac{t^{m+1}}{(m+1)!}x, \quad t \geq 0,
\]

respectively. If \(k(t) = \frac{t^m}{m!} \) for some \(m \in \mathbb{N}_0 \) in Corollary 10 so that \((A_n, \mu_n)\), \(n \in \mathbb{N} \) generate \(m \)-times integrated solution operator families, a solution of the equation \((VE')\) is obtained as a limit of the solutions of the equations \((VE_n')\) as follows.

Assume \((a')\) through \((c')\):

(a') the assumption \((a)\) in Corollary 10.

(b') Let \(m \in \mathbb{N}_0 \). For some constants \(M > 0 \) and \(\omega \geq \max\{\epsilon, a\} \), suppose that \(\{S_n\}_n \) is an \((M; \omega)\)-stable sequence of \(m \)-times integrated solution operator families \(S_n \) with generators \((A_n, \mu_n)\) for \(n \in \mathbb{N} \).

(c') the assumption \((c)\) in Corollary 10.

Then by Corollary 10, \((A, \mu)\) generates an \(m \)-i.s.o.f. \(S \) of exponential type \((M; \omega)\) for which for every \(x \in X \), \(\{S_n(\cdot)x\}_n \) converges to \(S(\cdot)x \) uniformly on compact subsets of \([0, \infty)\). Thus, \(v_n(t) := \int_0^t S_n(s)x\,ds \) converges to \(\int_0^t S(s)x\,ds \) uniformly on compact subsets of \([0, \infty)\). Note that by Theorem 5, \(v(t) := \int_0^t S(s)x\,ds \) is the unique solution of \((VE')\).

Acknowledgment. The author gives thanks to the referee for the helpful comments and suggestions on this paper.
References

Department of Mathematics
Kyung Hee University
Yongin 449-701, Korea
E-mail: mkim-3@hanmail.net