THE CLOSED PROPERTY OF SET OF SOLUTIONS
FOR STOCHASTIC DIFFERENTIAL INCLUSIONS

YONG SIK YUN

Abstract. We consider the stochastic differential inclusion of the form
\[dX_t \in \sigma(t, X_t) dB_t + b(t, X_t) dt, \]
where \(\sigma, b \) are set-valued maps, \(B \) is a standard Brownian motion. We prove that the set of solutions is closed.

1. Introduction

Let \((\Omega, \mathcal{F}, P) \) be a complete probability space with a right-continuous increasing family \((\mathcal{F}_t)_{t \geq 0} \) of sub \(\sigma \)-fields of \(\mathcal{F} \) each containing all \(P \)-null sets. Let \(B = (B_t)_{t \geq 0} \) be an \(r \)-dimensional \((\mathcal{F}_t) \)-Brownian motion. We consider the following stochastic differential inclusion.

\[
(1.1) \quad dX_t \in \sigma(t, X_t) dB_t + b(t, X_t) dt,
\]

where \(\sigma : [0, T] \times \mathbb{R}^d \to \mathcal{P}(\mathbb{R}^d \otimes \mathbb{R}^r), \ b : [0, T] \times \mathbb{R}^d \to \mathcal{P}(\mathbb{R}^d) \) are set-valued maps. In recent years the study of the existence and properties of solution for these stochastic differential inclusions have been developed by many authors ([1], [5]). Furthermore the results for the viable solutions have been made ([3], [6]). For the stochastic differential equation associated with (1.1), many results for the existence, uniqueness and properties of solutions have been done under various conditions that \(\sigma \) and \(b \) are continuous and bounded or Lipschitzian or Hölder continuous ([4]). We proved the existence of solution for stochastic differential inclusion (1.1) under the condition that \(\sigma \) and \(b \) satisfy the local Lipschitz property and linear growth ([7]) and any solution for stochastic differential inclusion (1.1) is bounded ([8]).

Received April 19, 2004.
2000 Mathematics Subject Classification: 60D05.
Key words and phrases: stochastic differential inclusion, Brownian motion.
In this paper, we prove that the set of solutions for stochastic differential inclusion (1.1) is closed.

2. Preliminaries

We prepare the definition of solution for stochastic differential inclusion and some results for the stochastic differential equation and selection theorems.

Definition 2.1. An r-dimensional continuous process $B = (B_t)_{t \in [0, \infty)}$ is called an r-dimensional (\mathcal{F}_t)-Brownian motion if it is (\mathcal{F}_t)-adapted and satisfies

$$E[\exp[i < \xi, B_t - B_s>] | \mathcal{F}_s] = \exp[-(t-s)|\xi|^2/2], \text{ a.s.}$$

for every $\xi \in \mathbb{R}^r$ and $0 \leq s < t$.

Let us consider the stochastic differential inclusion

(1.1) \quad dX_t \in \sigma(t, X_t)dB_t + b(t, X_t)dt

with the initial value $X_0 = x$, where $\sigma : [0, T] \times \mathbb{R}^d \to \mathcal{P}(\mathbb{R}^d \otimes \mathbb{R}^r)$, $b : [0, T] \times \mathbb{R}^d \to \mathcal{P}(\mathbb{R}^d)$ are set-valued maps and x is a \mathbb{R}^d-valued \mathcal{F}_0-measurable function. Here $\mathcal{P}(\mathbb{R}^d)$ is the power set of \mathbb{R}^d.

Definition 2.2. A predictable continuous stochastic process $X = \{X_t, \ t \in [0, T]\}$ is called a solution of (1.1) on $[0, T]$ with the initial condition x_0 if there are predictable random processes $f : \Omega \times [0, T] \to \mathbb{R}^d \otimes \mathbb{R}^r$, $g : \Omega \times [0, T] \to \mathbb{R}^d$ such that $f(t) \in \sigma(t, X_t)$, $g(t) \in b(t, X_t)$ for every $t \in [0, T]$ almost surely and

$$X_t = x + \int_0^t f(s) \ dB_s + \int_0^t g(s) \ ds.$$

For the stochastic differential equation

(2.1) \quad X_t = x + \int_0^t \sigma_1(s, X_s)dB_s + \int_0^t b_1(s, X_s)ds,$$

where $\sigma_1 : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^r$, $b_1 : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ are $\mathcal{B}([0, T]) \otimes \mathcal{B}(\mathbb{R}^d)$-measurable and x is \mathcal{F}_0-measurable, the following theorems are well known.
THEOREM 2.3. ([4]) If \(\sigma_1 \) and \(b_1 \) are continuous and satisfy the linear growth condition

\[
||\sigma_1(t, x)||^2 + |b_1(t, x)|^2 \leq K(1 + |x|^2),
\]

for some positive constant \(K \), then (2.1) has a solution on \([0, T]\).

THEOREM 2.4. ([4]) Assume that for each \(N > 0 \), there exists a constant \(C_N > 0 \) such that

\[
||\sigma_1(t, x) - \sigma_1(t, y)||^2 + |b_1(t, x) - b_1(t, y)|^2 \leq C_N \cdot |x - y|^2, \quad x, y \in B_N,
\]

where \(B_N = \{ x \in \mathbb{R}^d, |x| \leq N \} \) and \(||\sigma_1||^2 = \sum_{j=1}^{r} \sum_{i=1}^{d} |(\sigma_1)^i_j|^2 \equiv tr(\sigma_1 \sigma_1^*) \). Then (2.1) has a unique solution \(X_t \) up to explosion time.

3. Main results

For a Banach space \(X \) with the norm \(||\cdot|| \) and for non-empty sets \(A, A' \) in \(X \), we denote \(||A|| = \sup\{ ||a|| \mid a \in A \} \), \(d(a, A') = \inf\{ d(a, a') \mid a' \in A' \} \), \(d(A, A') = \sup\{ d(a, A') \mid a \in A \} \) and \(d_{H}(A, A') = \max\{ d(A, A') \} \).

A Hausdorff metric. Given a family of sets \(\{ F_{\alpha} \mid \alpha \in A \} \), a selection is a map \(\alpha \rightarrow f_{\alpha} \) in \(F_{\alpha} \). The most famous continuous selection theorem is the following result by Michael.

THEOREM 3.1. ([2]) Let \(X \) be a metric space and \(Y \) a Banach space. Let \(F \) from \(X \) into the closed convex subsets of \(Y \) be lower semi-continuous. Then there exists \(f : X \rightarrow Y \), a continuous selection from \(F \).

If \(\sigma \) and \(b \) satisfy the linear growth condition, then clearly all selections from \(\sigma \) and \(b \) satisfy the linear growth condition. Thus by Theorem 2.3 and Theorem 3.1, (1.1) has a solution if \(\sigma \) and \(b \) are closed convex valued lower semi-continuous and satisfy the linear growth property.

THEOREM 3.2. Assume that \(\sigma \) and \(b \) are lower semi-continuous with closed convex values satisfying the linear growth condition

\[
||\sigma(t, x)||^2 + |b(t, x)|^2 \leq K(1 + |x|^2),
\]

for some constant \(K \). Then (1.1) has a solution on \([0, T]\).

The existence of solution to (1.1) can be proved also under Lipschitz condition using the fixed point theorem.
Theorem 3.3. ([7]) Assume that $\sigma : [0,T] \times \mathbb{R}^d \to \mathcal{P}(\mathbb{R}^d \otimes \mathbb{R}^r)$, $b : [0,T] \times \mathbb{R}^d \to \mathcal{P}(\mathbb{R}^d)$ are closed convex set-valued functions which are Lipschitz, i.e., there exists a constant $L > 0$ such that

$$
\begin{cases}
 d_H(\sigma(t,x), \sigma(t,y)) \leq L \cdot |x - y|, \\
 d_H(b(t,x), b(t,y)) \leq L \cdot |x - y|.
\end{cases}
$$

Then there exists a solution for the stochastic differential inclusion (1.1).

For the proof of the existence of solution for stochastic differential inclusion (1.1) under the local Lipschitz condition, we prepare the local Lipschitz barycentric selection based on that proposed by Aubin[2]. Let $A \subset \mathbb{R}^n$ be a compact convex body, i.e., a compact set with nonempty interior, and let m_n be an n-dimensional Lebesgue measure. Since $m_n(A)$ is positive, we can define the barycenter of A as

$$
b(A) = \frac{1}{m_n(A)} \int_A x \, dm_n.
$$

Then the barycenters of A and $A^1 = A + B$ belong to A, where B is the closed unit ball in \mathbb{R}^n if A be a compact and convex set ([2]). Using this, we have the following local Lipschitz barycentric selection theorem.

Proposition 3.4. ([7]) Let $F : \mathbb{R}^n \to \mathcal{P}(\mathbb{R}^n)$ be a local Lipschitz set-valued map with compact convex images, i.e., there exists a constant $K_N > 0$ such that

$$
d_H(F(x), F(y)) \leq K_N \cdot |x - y|, \quad \forall x, y \in B_N = \{x \in \mathbb{R}^n, |x| \leq N\}.
$$

Assume moreover that there exists a constant $C > 0$ such that $||F(x)|| \leq C \cdot (1 + |x|)$, for every $x \in \mathbb{R}^n$. Then there exist a constant $\hat{C}_N > 0$ and a single valued map $f : \mathbb{R}^n \to \mathbb{R}^n$, local Lipschitzian with constant \hat{C}_N, a selection from F.

Proof. Since the single valued map $b^1 : x \to b(F(x) + B)$ is a selection of F, we have to prove that it is a local Lipschitzian selection. Fix $x, y \in B_N$. Call $\Phi(x) = F(x) + B$ and $\Phi(y) = F(y) + B$. Since $||\Phi(x)|| \leq ||F(x) + B|| \leq ||F(x)|| + 1 \leq C \cdot (1 + |x|) + 1 \leq C \cdot (1 + N) + 1 = C_N$, and $m_n(\Phi(x)) \leq C_{n'}$, we have
\[
\frac{1}{m_n(\Phi(x))} \int_{\Phi(x)} x \, dm_n - \frac{1}{m_n(\Phi(y))} \int_{\Phi(y)} x \, dm_n \\
\leq \left(\frac{1}{m_n(\Phi(x))} - \frac{1}{m_n(\Phi(y))} \right) \int_{\Phi(x) \cap \Phi(y)} x \, dm_n \\
+ \frac{1}{m_n(\Phi(x))} \int_{\Phi(x) \setminus \Phi(y)} x \, dm_n \\
- \frac{1}{m_n(\Phi(y))} \int_{\Phi(y) \setminus \Phi(x)} x \, dm_n \\
\leq |m_n(\Phi(x)) - m_n(\Phi(y))| \cdot C_{N'} \cdot C_{N''} / (m_n(B))^2 \\
+ \{m_n(\Phi(x) \setminus \Phi(y)) + m_n(\Phi(y) \setminus \Phi(x))\} \cdot C_{N'} \cdot C_{N''} / m_n(B).
\]

The above can be estimated in terms of \(d_H(\Phi(x), \Phi(y))\) (see [2]). Thus we have

\[
|b^1(x) - b^1(y)| \leq C \cdot d_H(F(x), F(y)) \\
\leq C \cdot K_N \cdot |x - y| = \hat{C}_N \cdot |x - y|,
\]

for some constants \(C, \hat{C}_N > 0\), i.e., \(f = b^1\) is the required local Lipschitzian selection.

By Theorem 2.4 and Proposition 3.4, we have the following theorem.

Theorem 3.5. ([7]) Assume that for each \(N > 0\), there exist constants \(C > 0\) and \(C_N > 0\) such that

\[
\begin{align*}
&d_H(\sigma(t,x), \sigma(t,y)) \leq C_N \cdot |x - y|, \quad x, y \in B_N, \\
&d_H(b(t,x), b(t,y)) \leq C_N \cdot |x - y|, \quad x, y \in B_N, \\
&||\sigma(t,x)|| + |b(t,x)| \leq C \cdot (1 + |x|), \quad x \in \mathbb{R}^n,
\end{align*}
\]

where \(B_N = \{x \in \mathbb{R}^d, |x| \leq N\}\). Then (1.1) has a solution \(X_t\).

Furthermore, we have the following main theorem for boundedness of solutions.

Theorem 3.6. ([8]) Let \(X_t\) be any solution of (1.1). Then \(X_t\) is bounded, i.e., \(E[\sup_{0 \leq s \leq t} |X_s|^p] < \infty\) for \(p \geq 2\).
PROOF. Let X_t be a solution. Then there exist $f_s \in \sigma(X_s)$ and $g_s \in b(X_s)$ such that

$$X_t = x + \int_0^t f_s dB_s + \int_0^t g_s ds.$$

Since

$$E[\sup_{0 \leq s \leq t} |X_s|^p] \leq 3^{p-1}|x|^p + 3^{p-1}C_1 E\left[\int_0^t |f_s|^2 ds\right]^{p/2}$$

$$+ 3^{p-1} E\left[\int_0^t |g_s|^2 ds\right]^p$$

$$\leq 3^{p-1}|x|^p + 3^{p-1}C_1 E\left[\int_0^t |f_s|^p ds\right]^{p/2} \int_0^t 1 ds$$

$$+ 3^{p-1} E\left[\int_0^t |g_s|^p ds\right]^{p/2} \int_0^t 1 ds$$

$$\leq 3^{p-1}|x|^p + 3^{p-1}C_1 T^{p-2} \int_0^t E[|f_s|^p] ds$$

$$+ 3^{p-1} T^{p-1} \int_0^t E[|g_s|^p] ds$$

$$\leq 3^{p-1}|x|^p + 3^{p-1}C_1 T^{p-2} \int_0^t E[|\sigma(X_s)|^p] ds$$

$$+ 3^{p-1} T^{p-1} \int_0^t E[|b(X_s)|^p] ds$$

$$\leq 3^{p-1}|x|^p + 3^{p-1}C_1 T^{p-2} \int_0^t K^p (1 + E[|X_s|^p]) 2^{p-1} ds$$

$$+ 3^{p-1} T^{p-1} \int_0^t K^p (1 + E[|X_s|^p]) 2^{p-1} ds,$$

if we put $\varphi(t) = E[\sup_{0 \leq s \leq t} |X_s|^p],$

$$\varphi(t) \leq 3^{p-1}|x|^p + 6^{p-1}K^p T^{p-2} C_1 + 6^{p-1}K^p T^{p-2} \int_0^t \varphi(s) ds$$

$$+ 6^{p-1}K^p T^{p-1} + 6^{p-1}K^p T^{p-1} \int_0^t \varphi(s) ds$$
\[= 3^{p-1}|x|^p + 6^{p-1}K^pT^{\frac{p}{2}}(C_1 + 1) \]
\[+ 6^{p-1}K^p(T^{\frac{p-2}{2}}C_1 + T^{p-1}) \int_0^t \varphi(s)ds. \]

By Gronwall’s inequality,
\[\varphi(t) \leq (3^{p-1}|x|^p + 6^{p-1}K^pT^{\frac{p}{2}}(C_1 + 1)) \cdot \exp(6^{p-1}K^p(T^{\frac{p-2}{2}}C_1 + T^{p-1})t). \]

Hence \(X_t \) is bounded. \(\square \)

Furthermore, we have the following main theorem that the set of solutions for SDI (1.1) is closed.

. Theorem 3.7 For \(p \geq 2 \),
\[S^p(x) = \{ X_t \text{ be a solution of (1.1) and } E[\sup_{0 \leq s \leq t} |X_s|^p < \infty] \} \]
is closed.

Proof. Let \(\{ X^n_t \}_{n=1,2,..} \) be a sequence in \(S^p(x) \) of solutions for SDI (1.1) converging to \(X_t \), i.e.,
\[\lim_{n \to \infty} E[\sup_{0 \leq t \leq T} |X^n_t - X_t|^p] = 0. \]

Since \(\{ X^n_t \} \) are solutions of (1.1), there exist sequences \(\{ \xi^n_t \} \) and \(\{ \eta^n_t \} \) such that
\[X^n_t = x + \int_0^t \xi^n_s dB_s + \int_0^t \eta^n_s ds. \]

For closed convex set \(C \subset \mathbb{R}^d \), define \(P_C(x) \in \mathbb{R}^d \) by \(||x - P_C(x)|| = d(x,C) \). Then \(P_C(x) \) exists uniquely. Put \(\hat{\xi}^n_t = P_{\sigma(X_t)}(\xi^n_t) \) and \(\hat{\eta}^n_t = P_b(X_t)(\eta^n_t) \). Then by hypothesis,
\[|\hat{\xi}^n_t - \xi^n_t| \leq d_H(\sigma(X_t), \sigma(X^n_t)) \leq L|X_t - X^n_t|, \]
\[|\hat{\eta}^n_t - \eta^n_t| \leq d_H(b(X_t), b(X^n_t)) \leq L|X_t - X^n_t|. \]

Since
\[E\left[\int_0^T |\hat{\xi}_t^n|^p \, dt \right] \leq E\left[\int_0^T |\sigma(X_t)|^p \, dt \right] \leq E[2^p K^p \int_0^T (1 + |X_t|^p) \, dt], \]

\{\hat{\xi}_t^n\} and \{\hat{\eta}_t^n\} are \(L^p\)-bounded. Taking suitable subsequence of \(\{\hat{\xi}_t^n\}\) and convex combinations of subsequence, we can estimate the limit \(\hat{\xi}_t\) by the following way ([9]).

\[E\left[\int_0^T |\hat{\xi}_t - \sum_{j=1}^{N_n} \lambda_j \hat{\xi}_t^j|^p \, dt \right] \leq \frac{1}{2^n}. \]

Similarly, for \(\{\hat{\eta}_t\}\),

\[E\left[\int_0^T |\hat{\eta}_t - \sum_{j=1}^{N_n} \lambda_j \hat{\eta}_t^j|^p \, dt \right] \leq \frac{1}{2^n}. \]

Since

\[
|X_t - x - \int_0^t \hat{\xi}_s \, dB_s - \int_0^t \hat{\eta}_s \, ds| \\
= \left| X_t - \sum_{j=1}^{N_n} \lambda_j X_t^j + \sum_{j=1}^{N_n} \lambda_j X_t^j \right| \\
- x - \sum_{j} \lambda_j \int_0^t \hat{\xi}_s^j \, dB_s - \sum_{j} \lambda_j \int_0^t \hat{\eta}_s^j \, ds \\
+ \sum_{j} \lambda_j \int_0^t (\xi_s^j - \hat{\xi}_s^j) \, dB_s + \sum_{j} \lambda_j \int_0^t (\eta_s^j - \hat{\eta}_s^j) \, ds \\
+ \int (\sum_{j} \lambda_j \hat{\xi}_s^j - \hat{\xi}_s) \, dB_s + \int (\sum_{j} \lambda_j \hat{\eta}_s^j - \hat{\eta}_s) \, ds \\
\leq \sum_{j} \lambda_j |X_t - X_t^j| + \sum_{j} \lambda_j \left| \int_0^t (\xi_s^j - \hat{\xi}_s^j) \, dB_s \right| \\
+ \int (\sum_{j} \lambda_j \hat{\xi}_s^j - \hat{\xi}_s) \, dB_s + \sum_{j} \lambda_j \int_0^t |\eta_s^j - \hat{\eta}_s^j| \, ds \\
+ \int_0^t \left| \sum_{j} \lambda_j \hat{\eta}_s^j - \hat{\eta}_s \right| \, ds,
\]
we have

\[
\| \sup_{0 \leq t \leq T} |X_t - x - \int_0^t \dot{\xi}_s dB_s - \int_0^t \dot{\eta}_s ds| \|_p \\
\leq \sum_j \lambda_j \| \sup_{0 \leq t \leq T} |X_t - X_t^j| \|_p + \sum_j \lambda_j \| \sup_{0 \leq t \leq T} \int_0^t (\xi_s^j - \hat{\xi}_s^j) dB_s \|_p \\
+ \| \sup_{0 \leq t \leq T} \int_0^t (\sum_j \lambda_j \xi_s^j - \hat{\xi}_s) dB_s \|_p \\
+ \sum_j \lambda_j \int_0^T |\eta_s^j - \hat{\eta}_s^j| ds \|_p + \| \int_0^T \sum_j \lambda_j \eta_s^j - \hat{\eta}_s | ds \|_p \\
\leq \sum_j \lambda_j \| \sup_{0 \leq t \leq T} |X_t - X_t^j| \|_p + C_1 \sum_j \lambda_j E\{ \int_0^T |\xi_s^j - \hat{\xi}_s^j|^2 ds \}^{p/2} \}^{1/p} \\
+ C_1 E\{ \int_0^T | \sum_j \lambda_j \xi_s^j - \hat{\xi}_s |^2 ds \}^{p/2} \}^{1/p} \\
+ \sum_j \lambda_j E\{ \int_0^T |\eta_s^j - \hat{\eta}_s^j|^p ds \}^{1/p} + E\{ \int_0^T | \sum_j \lambda_j \eta_s^j - \hat{\eta}_s |^p ds \}^{1/p} \\
\leq \sum_j \lambda_j \| \sup_{0 \leq t \leq T} |X_t - X_t^j| \|_p + C_1 T^{(\frac{1}{2} - \frac{1}{p})} \sum_j \lambda_j E[\int_0^T |\xi_s^j - \hat{\xi}_s^j|^p ds] \\
+ C_1 T^{(\frac{1}{2} - \frac{1}{p})} E[\int_0^T | \sum_j \lambda_j \xi_s^j - \hat{\xi}_s |^p ds] \\
+ T^{(1 - \frac{1}{p})} \sum_j \lambda_j E[\int_0^T |\eta_s^j - \hat{\eta}_s^j|^p ds] \\
+ T^{(1 - \frac{1}{p})} E[\int_0^T | \sum_j \lambda_j \eta_s^j - \hat{\eta}_s |^p ds].
\]

Letting \(n \to \infty \), the right hand side tends to 0. We can \(\sum_{j=1}^{N_n} \lambda_j \hat{\xi}_s^j \to \hat{\xi}_t \) a.e.t, a.e.w for some subsequence. And since \(\sigma(X_t) \) is convex, \(\hat{\xi}_t \in \sigma(X_t) \) a.e.t, a.e.w. By the same way, \(\hat{\eta}_t \in b(X_t) \) a.e.t, a.e.w. This proves that \((X_t) \) is a solution of (1.1). Thus \(S^p(x) \) is closed. \(\square \)
References

Department of Mathematics
College of Natural Sciences
Cheju National University
Cheju 690-756, Korea
E-mail: yunys@cheju.ac.kr