ALMOST SURE CONVERGENCE FOR LINEAR PROCESS GENERATED BY ASYMPTOTICALLY LINEAR NEGATIVE QUADRANT DEPENDENCE PROCESSES

GUANG-HUI CAI

ABSTRACT. In this paper, we obtain strong law of large numbers for linear process generated by asymptotically linear negative quadrant dependence processes.

1. Introduction

In 2000, Zhang gave the concept of asymptotically linear negative quadrant dependence. The concept of asymptotically linear negative quadrant dependence see the following definition.

DEFINITION 1 A random variables sequence \(\{X_k, k \in \mathbb{N}\} \) is said to be asymptotically linear negative quadrant dependence (ALNQD), if

\[
\rho^-(r) = \sup \{\rho^-(S, T); \ dist(S, T) \geq r, S, T \subset \mathbb{N} \ are \ finite\} \to 0
\]
as \(r \to \infty \), where

\[
\rho^-(S, T) = 0 \lor \sup \left\{ \frac{\text{Cov}(f(X), g(Y))}{(\text{Var}(X))^{1/2}(\text{Var}(Y))^{1/2}}; X \in F(S), Y \in F(T) \right\}.
\]

In this paper, we assume that \(\{Y_i, 0 \leq i < \infty\} \) be an asymptotically linear negative quadrant dependence sequence. Let \(X_t \) be a linear process generated by \(Y_t \), that is

\[
(1) \quad X_t = \sum_{i=0}^{\infty} a_i Y_{t-i}
\]

Received August 2, 2004.
2000 Mathematics Subject Classification: Primary 60F05, 60G10; Secondary 60F15.
Key words and phrases: strong law of large numbers, linear process, asymptotically linear negative quadrant dependence.
where

$$\sum_{i=0}^{\infty} |a_i| < \infty. \quad (2)$$

In this paper, we obtain a strong law of large numbers for linear process generated by asymptotically linear negative quadrant dependence processes.

Throughout this paper, C will represent a positive constant though its value may change from one appearance to the next, and $a_n \ll b_n$ will mean $a_n \leq C b_n$.

2. Proof of the main theorem

In order to proof our theorems, we need the following lemmas.

Lemma 1. (Zhang, 2000) Let $\{Y_i, i \geq 1\}$ be a sequence of centered asymptotically linear negative quadrant dependence (ALNQD) random variables and $E|Y_i|^p < \infty$ for some $p > 2$ and every $i \geq 1$. Then there exists $C = C(p, \rho_0(n))$, such that

$$E \max_{1 \leq k \leq n} \left| \sum_{i=1}^{k} Y_i \right|^p \leq C n^{p/2} \max_{1 \leq k \leq n} E|Y_i|^p$$

Lemma 2. Let $\{Y_i, i \geq 1\}$ be a sequence of centered asymptotically linear negative quadrant dependence (ALNQD) random variables and $E|Y_i|^p < \infty$ for some $p > 2$ and every $i \geq 1$. Let Then as $n \to \infty$, we have $\sum_{i=1}^{n} Y_i \to 0$ a.s.

Proof of Lemma 2. $\forall \varepsilon > 0$ and for some $p > 2$. Using Lemma 1 and
Markov inequality, we have

\[\sum_{n=1}^{\infty} P(\left| \sum_{i=1}^{n} Y_i \right| > \varepsilon n) \leq \sum_{n=1}^{\infty} \frac{E|\sum_{i=1}^{n} Y_i|^p}{(\varepsilon n)^p} \leq \sum_{n=1}^{\infty} \frac{E\max_{1 \leq k \leq n}\left| \sum_{i=1}^{k} Y_i \right|^p}{(\varepsilon n)^p} \leq \sum_{n=1}^{\infty} Cn^{p/2} \max_{1 \leq k \leq n} E|Y_i|^p(\varepsilon n)^{-p} \leq \sum_{n=1}^{\infty} Cn^{-p/2} < \infty. \]

(3)

By Borel-Cantelli Lemma, when \(n \to \infty \), we have \(\frac{\sum_{i=1}^{n} Y_i}{n} \to 0 \) a.s. \(\square \)

The following theorem is the strong law of large numbers for linear process generated by asymptotically linear negative quadrant dependence processes.

Theorem 1. Let \(\{Y_n, \ n \geq 0\} \) be an asymptotically linear negative quadrant dependence sequence of identically distributed random variables with \(EY_i = 0, E|Y_i|^p < \infty \), for some \(p > 2 \), and let \(\{X_t, \ t \geq 0\} \) be a linear process defined by (1). Suppose that (2) holds, \(S_n = \sum_{i=1}^{n} X_i \), then as \(n \to \infty \), we have \(\frac{S_n}{n} \to 0 \) a.s.

Proof of Theorem 1. Let \(\tilde{X}_t = (\sum_{i=0}^{\infty} a_i)Y_t, \tilde{S}_n = \sum_{i=1}^{n} \tilde{X}_t \) It is clear that

\[\tilde{S}_k = \sum_{t=1}^{k} \tilde{X}_t \]

\[= \sum_{t=1}^{k} \left(\sum_{i=0}^{k-t} a_i \right)Y_t + \sum_{t=1}^{k} \left(\sum_{i=k-t+1}^{\infty} a_i \right)Y_t \]

\[= \sum_{t=1}^{k} \left(\sum_{i=0}^{t-1} a_i Y_{t-i} \right) + \sum_{t=1}^{k} \left(\sum_{i=k-t+1}^{\infty} a_i \right)Y_t. \]

(4)
Then

\[(5) \quad \tilde{S}_k - S_k = -\sum_{t=1}^{k} (\sum_{i=t}^{\infty} a_i Y_{t-i}) + \sum_{t=1}^{k} (\sum_{i=k-t+1}^{\infty} a_i) Y_t =: A + B.\]

First we prove

\[(6) \quad n^{-1} \max_{1 \leq k \leq n} |\tilde{S}_k - S_k| \overset{P}{\longrightarrow} 0.\]

In order to prove (6), we need only to show

\[(7) \quad n^{-1} \max_{1 \leq k \leq n} |A| \overset{P}{\longrightarrow} 0.\]

and

\[(8) \quad n^{-1} \max_{1 \leq k \leq n} |B| \overset{P}{\longrightarrow} 0.\]

Using the Minkowsky inequality, Lemma 1 with \(r > 2\) and the dominated convergence theorem, then

\[
\begin{align*}
 n^{-r} E & \max_{1 \leq k \leq n} |\sum_{t=1}^{k} \sum_{i=t}^{\infty} a_i Y_{t-i}|^r \\
 &= n^{-r} E \max_{1 \leq k \leq n} \left| \sum_{i=1}^{\infty} \sum_{t=1}^{i \land k} a_i Y_{t-i} \right|^r \\
 &\leq n^{-r} E \left(\sum_{i=1}^{\infty} |a_i| \max_{1 \leq k \leq n} \left| \sum_{t=1}^{i \land k} Y_{t-i} \right| \right)^r \\
 &\leq n^{-r} \left(\sum_{i=1}^{\infty} |a_i| \left(E \max_{1 \leq k \leq n} \left| \sum_{t=1}^{i \land k} Y_{t-i} \right|^r \right)^{1/r} \right)^r \\
 &\leq n^{-r} \left(\sum_{i=1}^{\infty} |a_i| C(i \land n)^{1/2} \right)^r \\
 &\leq C \left(\sum_{i=1}^{\infty} |a_i| (i \land n)^{1/2} n^{-1} \right)^r = o(1).
\end{align*}
\]
By (9), we have (7).

Because
\[B = \sum_{t=1}^{k} \left(\sum_{i=k-t+1}^{\infty} a_i \right) Y_t \]
\[= \sum_{i=1}^{k} a_i \sum_{t=k-i+1}^{k} Y_t + \sum_{i=k+1}^{\infty} a_i \sum_{t=1}^{\infty} Y_t =: B_1 + B_2. \]

Let \(\{p_n\} \) be a positive integers \(\{p_n\} \) such that \(p_n \to \infty \) and \(p_n/n \to 0 \),

we have
\[
n^{-1} \max_{1 \leq k \leq n} |B_2| \leq (\sum_{i=0}^{\infty} |a_i|) n^{-1} \max_{1 \leq k \leq p_n} |\sum_{i=1}^{k} Y_i| + (\sum_{i=p_n+1}^{\infty} |a_i|) n^{-1} \max_{1 \leq k \leq n} |\sum_{i=1}^{k} Y_i| \]
\(\leq B_{21} + B_{22}. \)

Using Lemma 1 with \(r > 2 \), we have
\[
E|B_{21}|^r = (\sum_{i=0}^{\infty} |a_i|^r) n^{-r} E \max_{1 \leq k \leq p_n} |\sum_{i=1}^{k} Y_i|^r \leq (\sum_{i=0}^{\infty} |a_i|^r) n^{-r} C(p_n)^{r/2} E|Y_1|^r \leq C(\sum_{i=0}^{\infty} |a_i|^r) (p_n/n)^{r/2} n^{-r/2} = o(1).
\]

Using Lemma 1 with \(r > 2 \), we have
\[
E|B_{22}|^r = (\sum_{i=p_n+1}^{\infty} |a_i|^r) n^{-r} E \max_{1 \leq k \leq n} |\sum_{i=1}^{k} Y_i|^r \leq (\sum_{i=p_n+1}^{\infty} |a_i|^r) n^{-r} Cn^{r/2} E|Y_1|^r \leq C(\sum_{i=p_n+1}^{\infty} |a_i|^r) n^{-r/2} = o(1).
\]

By (11), (12) and (13), we have
\[
n^{-1} \max_{1 \leq k \leq n} |B_2| \to 0.
\]
Next, we want to prove

\begin{equation}
L_n = n^{-1} \max_{1 \leq k \leq n} |B_1| \xrightarrow{P} 0.
\end{equation}

For each \(m \geq 1 \), let

\[B_{1,m} = \sum_{i=1}^{k} b_i \sum_{t=k-i+1}^{k} Y_t, \]

where \(b_i = a_i I(i \leq m) \). Let

\[L_{n,m} = n^{-1} \max_{1 \leq k \leq n} |B_{1,m}|, \]

for each \(m \geq 1 \), then

\begin{equation}
L_{n,m} \leq (|a_1| + \cdots + |a_m|)n^{-1}(|Y_1| + \cdots + |Y_m|) \xrightarrow{P} 0.
\end{equation}

\(\forall \varepsilon > 0 \), by Lemma 1, we have

\[P(|L_n - L_{n,m}| > \varepsilon) \]

\[\leq \varepsilon^{-r} (L_n - L_{n,m})^r \]

\[\leq \varepsilon^{-r} n^{-r} E \max_{m \leq k \leq n} \left| \sum_{i=1}^{k} (a_i - b_i)(Y_k + \cdots + Y_{k-i+1}) \right|^r \]

\[\leq \varepsilon^{-r} n^{-r} E \max_{m \leq k \leq n} \left(\sum_{i=m+1}^{k} |a_i|(\sum_{i=1}^{k-i} Y_i - \sum_{i=1}^{k-i} Y_{i-i}) \right)^r \]

\[\leq 2^r \varepsilon^{-r} \left(\sum_{i=m+1}^{\infty} |a_i|^r n^{-r} E \max_{1 \leq k \leq n} \left| \sum_{i=1}^{k} Y_i \right|^r \right) \]

\[\leq 2^r \varepsilon^{-r} \left(\sum_{i=m+1}^{\infty} |a_i|^r n^{-r/2} E Y_1^r \right) \]

\begin{equation}
\leq C \left(\sum_{i=m+1}^{\infty} |a_i|^r n^{-r/2} \right) \to 0,
\end{equation}

when \(n \to \infty \). By (17), we have

\begin{equation}
|L_n - L_{n,m}| \xrightarrow{P} 0.
\end{equation}

Using (16) and (18), we have (15). By (14), (15) and (10), we have (8). Therefore we have (6). By

\[E \tilde{X}_t = (\sum_{i=0}^{\infty} a_i) E Y_t = 0, E|\tilde{X}_t|^p = (\sum_{i=0}^{\infty} a_i)^p E|Y_t|^p < \infty, \]
By Lemma 2, we have

\[\frac{\tilde{S}_n - ES_n}{n} \to 0 \text{ a.s.} \]

By

\[ES_n = \sum_{i=1}^{n} E\tilde{X}_t = 0, \]

and

\[EX_t = \sum_{i=0}^{\infty} a_i EY_{t-i} = 0, ES_n = \sum_{i=1}^{n} EX_i = 0, \]

thus by (19) and (6), we have \(\frac{\tilde{S}_n}{n} \to 0 \) a.s. Now we complete the proof of Theorem 1. \(\square \)

Because asymptotically linear negative quadrant dependence (ALNQD) sequence is more general than linear negative quadrant dependence (LNQD) sequence or \(\rho^* \)-mixing sequence. So we have the following two Corollaries.

Corollary 1. Let \(\{Y_n, n \geq 0\} \) be a LNQD sequence of identically distributed random variables with \(EY_t = 0, E|Y_t|^p < \infty \) for some \(p > 2 \), and let \(\{X_t, t \geq 0\} \) be a linear process defined by (1). Suppose that (2) holds, \(S_n = \sum_{i=1}^{n} X_t \), then as \(n \to \infty \), we have \(\frac{\tilde{S}_n}{n} \to 0 \) a.s.

Corollary 2. Let \(\{Y_n, n \geq 0\} \) be a \(\rho^* \)-mixing sequence of identically distributed random variables with \(EY_t = 0, E|Y_t|^p < \infty \) for some \(p > 2 \), and let \(\{X_t, t \geq 0\} \) be a linear process defined by (1). Suppose that (2) holds, \(S_n = \sum_{i=1}^{n} X_t \), then as \(n \to \infty \), we have \(\frac{\tilde{S}_n}{n} \to 0 \) a.s.

References

Department of Mathematics and Statistics
Zhejiang Gongshang University
Hangzhou 310035, China

E-mail: cghzju@sohu.com