ON THE AXIOM OF CHOICE OF WEAK TOPOS \mathcal{F}_{uz}

IG SUNG KIM

Abstract. Topos is a set-like category. In topos, the axiom of choice can be expressed as (AC1), (AC2) and (AC3). Category \mathcal{F}_{uz} of fuzzy sets has a similar function to the topos Set and it forms weak topos. But \mathcal{F}_{uz} does not satisfy (AC1), (AC2) and (AC3). So we define (WAC1), (WAC2) and (WAC3) in weak topos \mathcal{F}_{uz}. And we show that they are equivalent in \mathcal{F}_{uz}.

1. Introduction

In a topos, the axiom of choice can be expressed as following.

(AC1) Every epimorphism is a retraction.

(AC2) For any noninitial object A and $f : A \to B$, there exists a morphism $g : B \to A$ such that $f \circ g \circ f = f$.

(AC3) For any noninitial object A, there exists $\sigma : \Omega^A \to A$ such that for all $f : 1 \to \Omega^A$, we have $\sigma \circ f \in f'$ where $f' : A' \to A$ is a monomorphism, provided that $ev \circ (f \times i_A)$ is not the characteristic morphism of $0 \to A$.

They are not necessarily so related ([1], [4]). But in the topos Set they are equivalent.

Category \mathcal{F}_{uz} of fuzzy sets has a similar function to the topos Set. \mathcal{F}_{uz} has finite products, middle object, equalizers, exponentials and weak subobject classifier. So \mathcal{F}_{uz} forms a weak topos ([5], [6]). But \mathcal{F}_{uz} does not satisfy (AC1), (AC2) and (AC3).

In this paper, we define (WAC1), (WAC2), (WAC3) as following.

(WAC1) Every epimorphism $f : (A, \alpha_A) \to (B, \alpha_B)$, where $\alpha_B(b) = \text{Max}\{\alpha_A[A'] | b = f[A'], A' \subseteq A\}$ and there exists an element $a' \in A$ such that $\alpha_A(a') \geq \alpha_B(b)$ for all $b \in B$, is a retraction.

Received May 13, 2005.
2000 Mathematics Subject Classification: 18B25.
Key words and phrases: category \mathcal{F}_{uz}, axiom of choice, weak topos.

This paper was supported by Sangji University Research Fund (Sabbatical year) 2003.
(WAC2) For any noninitial object \(A \) and \(f : A \to B \),
where \(\alpha_B(b) = \text{Max}\{\alpha_A(f[A']) | b = f[A'], A' \subseteq A\} \) and there exists an element \(a' \in A \) such that \(\alpha_A(a') \geq \alpha_B(b) \) for all \(b \in B \), there exists a morphism \(g : B \to A \) such that \(f \circ g \circ f = f \).

(WAC3) For any noninitial object \(A \), there exists \(\sigma : \Omega^A \to A \) such that for all \(f : A \to \Omega \), we have \(\alpha_A(\sigma(f)) = 1 \) where \(\alpha_A : A \to I \).

And we show that (WAC1), (WAC2), (WAC3) are equivalent in weak topos \(\mathcal{F}uz \).

2. Preliminaries

In this section, we state some definitions and properties which will serve as the basic tools for the arguments used to prove our results.

Definition 2.1. An elementary topos is a category \(\mathcal{E} \) such that

(T1) \(\mathcal{E} \) is finitely complete,

(T2) \(\mathcal{E} \) has exponentiation,

(T3) \(\mathcal{E} \) has a subobject classifier.

(T2) means that for every object \(A \) in \(\mathcal{E} \), endofunctor \((-) \times A \) has its right adjoint \((-)^A \). Hence for every object \(A \) in \(\mathcal{E} \), there exists an object \(B^A \), and a morphism \(ev_A : B^A \times A \to B \), called the evaluation map of \(A \), such that for any \(Y \) and \(f : Y \times A \to B \) in \(\mathcal{E} \), there exists a unique morphism \(g \) such that \(ev_A \circ (g \times i_A) = f \);

\[
\begin{array}{ccc}
Y \times A & \xrightarrow{f} & B \\
\downarrow_{g \times i_A} & & \downarrow_{i_B} \\
B^A \times A & \xrightarrow{ev_A} & B
\end{array}
\]

And subobject classifier in (T3) is an \(\mathcal{E} \)-object \(\Omega \), together with a morphism \(\top : 1 \to \Omega \) such that for any monomorphism \(h : D \to C \), there is unique morphism \(\chi_h : C \to \Omega \), called the character of \(h : D \to C \) that makes the following diagram a pull-back;

\[
\begin{array}{ccc}
D & \xrightarrow{1} & 1 \\
\downarrow_{h} & & \downarrow_{\top} \\
C & \xrightarrow{\chi_h} & \Omega
\end{array}
\]
Example 2.2. Category \mathbf{Set} is a topos. The terminal object is the one-element sets $\{\ast\}$. The subobject classifier is $\top : \{\ast\} \to \Omega$ with $\Omega = \{0, 1\}$ defined by $\top(\ast) = 1$. If we define

$$
\begin{cases}
\chi_h = 1 & \text{if } c = h(d) \text{ for some } d \in D, \\
\chi_h = 0 & \text{otherwise},
\end{cases}
$$

then χ_h is a characteristic function of D.

Category \mathbf{Fuz} of fuzzy sets is a category whose object is (A, α_A) where A is an \mathbf{Set}-object and $\alpha_A : A \to I$ is a \mathbf{Set}-morphism with $I = (0, 1]$ and morphism from (A, α_A) to (B, α_B) is a \mathbf{Set}-morphism $f : A \to B$ such that $\alpha_A(a) \leq \alpha_B \circ f(a)$.

Definition 2.3. We say that an object (I, α_I) is a middle object of \mathbf{Fuz} if there exists a unique morphism $f : A \to I$ such that $\alpha_A(a) = \alpha_I \circ f(a)$ for all (A, α_A) and $a \in A$.

Definition 2.4. We say that an object (J, α_J) is a weak subobject classifier of \mathbf{Fuz} if there exists a unique morphism $\alpha_f : (A, \alpha_A) \to (J, \alpha_J)$ for all monomorphism $f : (B, \alpha_B) \to (A, \alpha_A)$ where $J = [0, 1]$ and $\alpha_J(j) = 1$ for all $j \in J$ such that $\alpha_f(a) \leq \alpha_A(a)$ and the following diagram is a pull-back.

$$
\begin{array}{ccc}
(B, \alpha_B) & \xrightarrow{\alpha_B} & (I, \alpha_I) \\
| f \downarrow & & \downarrow i \\
(A, \alpha_A) & \xrightarrow{\alpha_f} & (J, \alpha_J)
\end{array}
$$

Definition 2.5. A weak topos is a category \mathcal{W} such that

- (WT1) \mathcal{W} has equalizer, finite product and exponentiation,
- (WT2) \mathcal{W} has a middle object,
- (WT3) \mathcal{W} has a weak subobject classifier.

3. Main parts

Theorem 3.1. In a weak topos \mathbf{Fuz} the following statements are equivalent:

(WAC1) Every epimorphism $f : (A, \alpha_A) \to (B, \alpha_B)$, where $\alpha_B(b) = \max\{\alpha_A[f(A')] \mid b = f(A'), A' \subseteq A\}$ and there exists an element $a' \in A$ such that $\alpha_A(a') \geq \alpha_B(b)$ for all $b \in B$, is a retraction.
(WAC2) For any noninitial object \(A \) and \(f : A \to B \), where \(\alpha_B(b) = \max \{ \alpha_A[f[A']] \mid b = f[A'], A' \subseteq A \} \) and there exists an element \(a' \in A \) such that \(\alpha_A(a') \geq \alpha_B(b) \) for all \(b \in B \), there exists a morphism \(g : B \to A \) such that \(f \circ g \circ f = f \).

Proof. (WAC1) \(\Rightarrow \) (WAC2) Since \(f : (A, \alpha_A) \to (B, \alpha_B) \) is factored by \((f[A], \alpha_{f[A]}) \), we get \(f = m \circ e \) where \(e \) is an epimorphism and \(m \) is a monomorphism. By hypothesis there exists a morphism \(s : f[A] \to A \) such that \(e \circ s = i_{f[A]} \). Since \(A \) is a disjoint union of \(f[A] \) and \(B - f[A] \), we can construct a morphism \(h : (B - f[A]) \to A \) defined by \(h(b') = a' \) for all \(b' \in B - f[A] \), where \(\alpha_A(a') \geq \alpha_B(b) \) for all \(b \in B \). So we have that \(\alpha_A \circ h \leq \alpha_{B - f[A]} \). By the property of coproduct, there exists a morphism \(g : B \to A \) such that \(g \circ m = s \). That is, the following diagram commute.

\[
\begin{array}{ccc}
A & \xleftarrow{h} & B - f(A) \\
\downarrow{i_A} & & \downarrow{} \\
A & \xleftarrow{g} & B \\
\downarrow{} & & \downarrow{m} \\
f[A] & \xleftarrow{s} & f[A]
\end{array}
\]

We only claim that \(f \circ g \circ f = f \).

\[
f \circ g \circ f = (m \circ e) \circ g \circ (m \circ e) \\
= (m \circ e) \circ (g \circ m) \circ e \\
= (m \circ e) \circ s \circ e \\
= m \circ (e \circ s) \circ e \\
= m \circ e = f.
\]

(WAC2) \(\Rightarrow \) (WAC1) Let \(f : (A, \alpha_A) \to (B, \alpha_B) \) be an epimorphism such that \(\alpha_A \leq \alpha_B \circ f \). By hypothesis there exists a morphism \(g : (B, \alpha_B) \to (A, \alpha_A) \) such that \(\alpha_B \leq \alpha_A \circ g \) and \(e \circ s \circ e = e \). Since \(e \) is an epimorphism, we have \(f \circ g = i_B \). Hence \(f \) is a retraction. \(\square \)

Theorem 3.2. In a weak topos \(\mathcal{F}uz \) which is normal, the following statements are equivalent:

(WAC1) Every epimorphism \(f : (A, \alpha_A) \to (B, \alpha_B) \), where \(\alpha_B(b) = \max \{ \alpha_A[f[A']] \mid b = f[A'], A' \subseteq A \} \) and there exists an element \(a' \in A \) such that \(\alpha_A(a') \geq \alpha_B(b) \) for all \(b \in B \), is a retraction.
(WAC3) For any noninitial object A, there exists $\sigma : \Omega^A \to A$ such that for all $f : A \to \Omega$, we have $\alpha_A(\sigma(f)) = 1$ where $\alpha_A : A \to I$.

Proof. (WAC1) \Rightarrow (WAC3) Consider a morphism $ev : A \times \Omega^A \to \Omega$ defined by $ev(a, s) = s(a)$. By the property of product, for any two morphisms $ev : A \times \Omega^A \to \Omega$ and $p_2 : A \times \Omega^A \to \Omega^A$ there exists a morphism $(ev, p_2) : A \times \Omega^A \to \Omega \times \Omega^A$ such that $p_2 \circ (ev, p_2) = p_2$ and $p_1 \circ (ev, p_2) = ev$ where $p_1 : \Omega \times \Omega^A \to \Omega$ and $p_2' : \Omega \times \Omega^A \to \Omega^A$. That is, the following diagram commute.

\[
\begin{array}{ccc}
A \times \Omega^A & \xrightarrow{ev} & \Omega \\
\downarrow i & & \downarrow p_1' \\
A \times \Omega^A & \xrightarrow{(ev, p_2)} & \Omega \times \Omega^A \\
\downarrow i & & \downarrow p_2' \\
A \times \Omega^A & \xrightarrow{p_2} & \Omega^A
\end{array}
\]

Since (ev, p_2) is an epimorphism, there exists a morphism $h : \Omega \times \Omega^A \to A \times \Omega^A$ such that $(ev, p_2) \circ h = i_{\Omega \times \Omega^A}$. Also for a morphism $g : \Omega^A \to \Omega$ where $g(s) = 1$ for all $s \in \Omega^A$ and a morphism $i_{\Omega^A} : \Omega^A \to \Omega^A$ there exists a morphism $(g, i_{\Omega^A}) : \Omega^A \to \Omega \times \Omega^A$ such that $p_1 \circ (g, i_{\Omega^A}) = g$, $p_2 \circ (g, i_{\Omega^A}) = i_{\Omega^A}$. That is, the following diagram commute.

\[
\begin{array}{ccc}
\Omega & \xleftarrow{g} & \Omega^A \\
\downarrow p_1' & & \downarrow i \\
\Omega \times \Omega^A & \xleftarrow{(g, i_{\Omega^A})} & \Omega^A \\
\downarrow p_2' & & \downarrow i \\
\Omega^A & \xleftarrow{i_{\Omega^A}} & \Omega^A
\end{array}
\]

We get $h \circ (g, i_{\Omega^A})(s) = h(1, s) = (a, u)$ for some $a \in A$ and $u \in \Omega^A$. Also $u = p_2(a, u) = p_2 \circ h(1, s) = p_2' \circ (ev, p_2) \circ h(1, s) = p_2'(1, s) = s$. That is, $h \circ (g, i_{\Omega^A})(s) = (a, s)$. By $(ev, p_2) \circ h \circ (g, i_{\Omega^A})(s) = (ev, p_2)(a, s)$ and $g(s) = 1$ for all $s \in \Omega^A$, we get $s(a) = 1$. So $p_1 \circ h \circ (g, i_{\Omega^A})(s) = p_1(a, s) = a$. Let $\sigma = p_1 \circ h \circ (g, i_{\Omega^A})$, then $\sigma(s) = a$ and $s(a) = 1$.
(WAC3) ⇒ (WAC1) For an epimorphism \(f : A \to B \), we construct a morphism \(\Omega^f : \Omega^B \to \Omega^A \) defined by \(\Omega^f(s) = s \circ f \) where \(s : B \to \Omega \). We only claim that \(f \circ \sigma \circ \Omega^f \circ j = i_B \) where \(j : B \to \Omega^B \) defined by \(j_B(b) = 1 \) and fixed for otherwise.

\[
\begin{array}{ccc}
\Omega^A & \overset{\Omega}{\longrightarrow} & \Omega^B \\
\sigma \downarrow & & \uparrow j \\
A & \overset{f}{\longrightarrow} & B
\end{array}
\]

Then \(f \circ \sigma \circ \Omega^f \circ j(b) = f \circ \sigma(j_B \circ f) \). Let \(\sigma(j_B \circ f) = a \) then, by definition of \(\sigma \), we get that \(j_B(f(a)) = 1 \) and \(b = f(a) \). Therefore \(f \circ \sigma \circ \Omega^f \circ j(b) = b \). \(\square \)

Corollary 3.3. In a weak topos \(\mathcal{F}uz \) which is normal, the following statements are equivalent:

(WAC1) Every epimorphism \(f : (A, \alpha_A) \to (B, \alpha_B) \), where \(\alpha_B(b) = \text{Max}\{\alpha_A(f[A']) \mid b = f[A'], A' \subseteq A\} \) and there exists an element \(a' \in A \) such that \(\alpha_A(a') \geq \alpha_B(b) \) for all \(b \in B \), is a retraction.

(WAC2) For any noninitial object \(A \) and \(f : A \to B \), where \(\alpha_B(b) = \text{Max}\{\alpha_A(f[A']) \mid b = f[A'], A' \subseteq A\} \) and there exists an element \(a' \in A \) such that \(\alpha_A(a') \geq \alpha_B(b) \) for all \(b \in B \), there exists a morphism \(g : B \to A \) such that \(f \circ g \circ f = f \).

(WAC3) For any noninitial object \(A \), there exists \(\sigma : \Omega^A \to A \) such that for all \(f : A \to \Omega \), we have \(\alpha_A(\sigma(f)) = 1 \) where \(\alpha_A : A \to I \).

References

Department of Data Information
Sangji University
Wonju 220-702, Korea
E-mail: iskim@mail.sangji.ac.kr