VARIOUS INVERSE SHADOWING
IN LINEAR DYNAMICAL SYSTEMS

TAEYOUNG CHOI AND KEONHEE LEE

ABSTRACT. In this paper, we give a characterization of hyperbolic linear dynamical systems via the notions of various inverse shadowing. More precisely it is proved that for a linear dynamical system \(f(x) = Ax \) of \(\mathbb{C}^n \), \(f \) has the \(T_h \)-inverse (\(T_h \)-orbital inverse or \(T_h \)-weak inverse) shadowing property if and only if the matrix \(A \) is hyperbolic.

1. Introduction

Consider a dynamical system generated by a homeomorphism \(f \) of a metric space \(X \) with a metric \(d \). For a point \(x \in X \), we denote by \(O(x, f) \) its orbit in the system \(f \); i.e., the set
\[
O(x, f) = \{ f^n(x) : n \in \mathbb{Z} \}.
\]

We say that a sequence \(\xi = \{ x_n \in X : n \in \mathbb{Z} \} \) is a \(\delta \)-pseudo orbit of \(f \) if the inequalities
\[
d(f(x_n), x_{n+1}) < \delta, \ n \in \mathbb{Z}
\]
hold. A \(\delta \)-pseudo orbit is a natural model of computer output in a process of numerical investigation of the system \(f \). In this case, the value \(\delta \) measures errors of the method, round-off errors, etc.

Recall that \(f \) has the shadowing property if given \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any \(\delta \)-pseudo orbit \(\xi = \{ x_n : n \in \mathbb{Z} \} \) we can find a point \(y \in X \) with the property
\[
d(f^n(y), x_n) < \varepsilon, \ n \in \mathbb{Z}.
\]

Received October 5, 2005.
2000 Mathematics Subject Classification: Primary 37C50; Secondary 37D20.
Key words and phrases: inverse shadowing, weak inverse shadowing, orbital inverse shadowing, hyperbolicity.
This work was supported by the KRF Grant funded by the Korean Government (MOEHRD) (KRF-2005-070-C00015).
Of course, if \(f \) has the shadowing property formulated above, then the results of its numerical study with a proper accuracy reflect its qualitative structure.

Let \(N(\varepsilon, A) \) be the \(\varepsilon \)-neighborhood of \(A \). It is said that \(f \) has the weak shadowing property [resp. orbital shadowing property] if given \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any \(\delta \)-pseudo orbit \(\xi = \{x_n\} \) of \(f \) we can find a point \(y \in X \) with the property

\[
\xi \subset N(\varepsilon, O(y, f)) \quad [\text{resp. } \xi \subset N(\varepsilon, O(y, f)) \text{ and } O(y, f) \subset N(\varepsilon, \xi)],
\]

where \(d_H \) denotes the Hausdorff distance on the set of compact subsets of \(X \). The weak shadowing property was introduced in [12] and the orbital shadowing property was introduced in [11].

Let \(X^Z \) be the space of all two sided sequences \(\xi = \{x_n : n \in \mathbb{Z}\} \) with elements \(x_n \in X \), endowed with the product topology. For \(\delta > 0 \), let \(\Phi_f(\delta) \) denote the set of all \(\delta \)-pseudo orbits of \(f \). A mapping \(\varphi : X \to \Phi_f(\delta) \subset X^Z \) is said to be a \(\delta \)-method for \(f \) if \(\varphi(x)_0 = x \), where \(\varphi(x)_0 \) denotes the 0th component of \(\varphi(x) \). Then each \(\varphi(x) \) is a \(\delta \)-pseudo orbit of \(f \) through \(x \). For convenience, write \(\varphi(x) \) for \(\{\varphi(x)_k\}_{k \in \mathbb{Z}} \). Say that \(\varphi \) is a continuous \(\delta \)-method for \(f \) if the map \(\varphi \) is continuous. The set of all \(\delta \)-methods [resp. continuous \(\delta \)-methods] for \(f \) will be denoted by \(T_0(f, \delta) \) [resp. \(T_c(f, \delta) \)]. If \(g : X \to X \) is a homeomorphism with \(d_\infty(f, g) < \delta \), where \(d_\infty(f, g) = \sup_{x \in X} \{d(f(x), g(x)), d(f^{-1}(x), g^{-1}(x))\} \), then \(g \) induces a continuous \(\delta \)-method \(\varphi_g \) for \(f \) by defining

\[
\varphi_g(x) = \{g^n(x) : n \in \mathbb{Z}\}.
\]

Let \(T_h(f, \delta) \) denote the set of all continuous \(\delta \)-methods \(\varphi_g \) for \(f \) which are induced by \(g \in Z(X) \) with \(d_\infty(f, g) < \delta \). We define \(T_\alpha(f) \) by

\[
T_\alpha(f) = \bigcup_{\delta > 0} T_\alpha(f, \delta),
\]

where \(\alpha = 0, c, h \). Clearly,

\[
T_h(f) \subset T_c(f) \subset T_0(f).
\]

The concept of inverse shadowing for homeomorphisms as a "dual" notion of shadowing property was established by Corless and Pilyugin [2], and Kloeden et al [4, 5] redefined this property using the concept of a method. We say that \(f \) has the \(T_\alpha \)-inverse shadowing property, for short \(IS_\alpha \), (\(\alpha = 0, c, h \)), if for any \(\varepsilon > 0 \) there is \(\delta > 0 \) such that for any \(\delta \)-method \(\varphi \) in \(T_\alpha(f, \delta) \) and any point \(x \in X \) there exists a point \(y \in X \) for which

\[
d(f^n(x), \varphi(y)_n) < \varepsilon, \ n \in \mathbb{Z}.
\]
Clearly we have the following relations among the various notions of inverse shadowing

\[IS_0 \Rightarrow IS_c \Rightarrow IS_h. \]

When we study the inverse shadowing property in the qualitative theory of differentiable dynamical systems, an appropriate choice of the class of admissible pseudo orbits is crucial here ([2, 3, 5, 6, 10]). Moreover the inverse shadowing properties are not related to the shadowing property in general.

Example 1.1. [7] Consider the dynamical system \(f \) on the unit circle \(S^1 \) with coordinate \(x \in [0, 1) \), given by

\[f(x) = x + \frac{1}{2\pi} \sin(2\pi x). \]

Then it has the shadowing property. Therefore it has the \(T_c \) inverse shadowing property. But it does not have the \(T_0 \) inverse shadowing property.

Example 1.2. [8] Pseudo-Anosov maps on a compact surface have the \(T_h \) inverse shadowing property but it does not have the shadowing property.

Example 1.3. [4] Let \(\{0, 1\}^\mathbb{Z} \) be the space of all two sided sequences \(x = \{x_i; n \in \mathbb{Z}\} \) with elements \(x_i \in \{0, 1\} \), endowed with a metric \(D \) defined by

\[D(x, y) = \sup_{i \in \mathbb{Z}} \left\{ \frac{|x_i - y_i|}{2^{|i|}} \right\}, \]

where \(x, y \in \{0, 1\}^\mathbb{Z} \). We also write this space as \(\sum_2 \) to shorten the notation. Define a shift map \(\sigma : \sum_2 \to \sum_2 \) by

\[\sigma(x)_i = x_{i+1} \quad (i \in \mathbb{Z}), \]

where \(x \in \sum_2 \). Then the shift homeomorphism \(\sigma \) is an expansive homeomorphism with the shadowing property, but it does not have the \(T_h \) inverse shadowing property.

Now we introduce the notion of weak [resp. orbital] inverse shadowing which is a "dual" notion of weak [resp. orbital] shadowing.

Definition 1.4. We say that \(f \) has the \(T_\alpha \)-weak [resp. \(T_\alpha \)-orbital] inverse shadowing property, for short WIS\(\alpha \) [resp. OIS\(\alpha \)], (\(\alpha = 0, c, h \)), if for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any \(\delta \)-method \(\varphi \in T_\alpha(f, \delta) \) and any point \(x \in M \) there is a point \(y \in M \) for which

\[\varphi(y) \subset N(\varepsilon, O(x, f)) \quad \text{[resp. } \xi \subset N(\varepsilon, O(y, f)) \text{ and } O(y, f) \subset N(\varepsilon, \xi) \text{].} \]
Clearly we have the following relations
\[\text{WIS}_0 \Rightarrow \text{WIS}_c \Rightarrow \text{WIS}_h, \quad \text{OIS}_0 \Rightarrow \text{OIS}_c \Rightarrow \text{OIS}_h, \]
and
\[\text{ISP}_\alpha \Rightarrow \text{OIS}_\alpha \Rightarrow \text{WIS}_\alpha \quad (\alpha = 0, c, h). \]

Remark 1.5. Suppose that \(\mathcal{T}_a(f) \subset \mathcal{T}_b(f) \) for \(a, b \in \{0, c, h\} \). If \(f \) has the \(\mathcal{T}_b \)-weak [resp. \(\mathcal{T}_b \)-orbital] inverse shadowing property then it has the \(\mathcal{T}_a \)-weak [resp. \(\mathcal{T}_a \)-orbital] inverse shadowing property. We can easily show that every irrational rotation \(f \) on the unit circle \(S^1 \) has the \(\mathcal{T}_c \)-weak (or \(\mathcal{T}_h \)-inverse) inverse shadowing property, but it does not have the \(\mathcal{T}_c \)-inverse (or \(\mathcal{T}_h \)-inverse) shadowing property. Furthermore we can show that every rational rotation on the unit circle has the \(\mathcal{T}_c \)-orbital inverse shadowing property, but it does not have the \(\mathcal{T}_c \)-weak inverse shadowing property. It can be checked that every shift homeomorphism does not have the \(\mathcal{T}_c \)-weak inverse shadowing property. Moreover Choi et al. [1] showed that the \(\mathcal{T}_h \)-weak inverse shadowing property is generic in the space of homeomorphisms on a compact metric space with the \(C^0 \) topology.

2. Main theorem

Let \(A \) be a nonsingular matrix on \(\mathbb{C}^n \). We consider the dynamical system \(f(x) = Ax \) of \(\mathbb{C}^n \). We say that the matrix \(A \) is called **hyperbolic** if the spectrum does not intersect the circle \(\{ \lambda : |\lambda| = 1 \} \).

Lemma 2.1. Let \((X,d)\) be a metric space. Assume that for two dynamical systems \(f \) and \(g \) on \(X \) there exists a homeomorphism \(h \) on \(X \) such that \(h \) and \(h^{-1} \) are Lipschitz, and \(f \circ h = h \circ g \). Then \(f \) has the \(\mathcal{T}_h \)-weak inverse shadowing property [resp. \(\mathcal{T}_h \)-inverse shadowing property] if and only if \(g \) has the \(\mathcal{T}_h \)-weak inverse shadowing property [resp. \(\mathcal{T}_h \)-inverse shadowing property].

Proof. We prove the lemma only for the case of the \(\mathcal{T}_h \)-weak inverse shadowing property.

Assume that \(f \) has the \(\mathcal{T}_h \)-weak inverse shadowing property, and let \(\varepsilon > 0 \) be arbitrary. Find \(\varepsilon_1 > 0 \) such that the inequality \(d(x, y) < \varepsilon_1, \ x, y \in X \), implies that \(d(h^{-1}(x), h^{-1}(y)) < \varepsilon \). Take \(\delta_1 > 0 \) corresponding to \(\varepsilon_1 \) by the assumption of the \(\mathcal{T}_h \)-inverse shadowing property of \(f \), and choose \(\delta > 0 \) such that \(d(x, y) < \delta \) implies \(d(h(x), h(y)) < \delta_1 \).
Let \tilde{g} be a δ-perturbation of g, i.e., $d_\infty(\tilde{g}, g) < \delta$, and let $x \in X$. Put $\tilde{f} = h \circ \tilde{g} \circ h^{-1}$. Then $d_\infty(h \circ \tilde{g} \circ h^{-1}, h \circ g \circ h^{-1}) = d_\infty(\tilde{f}, f) < \delta_1$. By the T_h-inverse shadowing property of f, for the given $h(x)$, there exists a point $y \in X$ such that for any $k \in \mathbb{Z}$, we choose $n(k) \in \mathbb{Z}$ satisfying the inequality
\[d(\tilde{f}^{n(k)}(y), f^k(h(x))) < \varepsilon_1.\]

Here we know that $f \circ h = h \circ g$ implies $h^{-1} \circ f^k = g^k \circ h^{-1}$ and $h^{-1} \circ \tilde{f}^k = \tilde{g}^k \circ h^{-1}$ for any $k \in \mathbb{Z}$.

This shows that for any $k \in \mathbb{Z}$, we can choose $n(k) \in \mathbb{Z}$ satisfying the inequality
\[d(\tilde{g}^{n(k)}(h^{-1}(y)), g^k(x)) < \varepsilon, \quad k \in \mathbb{Z}.\]
This means that g has the T_h-weak inverse shadowing property. \hfill \square

Lemma 2.2. Let (X, d) be a metric space. If the dynamical system $f^m(x) = A^m x$ ($m \in \mathbb{N}$) on X has the T_h-weak inverse shadowing property, then the dynamical system $f(x) = Ax$ on X has the T_h-weak inverse shadowing property.

Proof. Assume that the dynamical system f^m has the T_h-weak inverse shadowing property. Let $\varepsilon > 0$ be arbitrary and L be a Lipschitz constant of f. Take $0 < \varepsilon_1 < \min\{\frac{\varepsilon}{L}, \varepsilon\}$ such that $d(x, y) < \varepsilon_1 \Rightarrow d(f^i(x), f^i(y)) < \frac{\varepsilon}{m} \quad (1 \leq i \leq m)$.

Choose $\delta_1 > 0$ corresponding to ε_1 by the assumption of the T_h-weak inverse shadowing property of f^m. Now we find $0 < \delta < \min\{\frac{\varepsilon_1}{m}, \varepsilon_1\}$ such that
\[d_\infty(g, f) < \delta \Rightarrow d_\infty(g^i, f^i) < \frac{\delta_1}{m} \quad (1 \leq i \leq m).\]

Let g be a δ-perturbation of f, i.e., $d_\infty(g, f) < \delta$, and let $x \in X$. Then g^m be a δ_1-perturbation of f^m. By the T_h-weak inverse shadowing property of f^m, there exists $y \in X$ such that for any $k \in \mathbb{Z}$, we choose $n(k) \in \mathbb{Z}$ satisfying the inequality
\[d((f^m)^{n(k)}(x), (g^m)^k(y)) < \varepsilon_1.\]

Then for any $k \in \mathbb{Z}$ and $0 \leq j \leq m$,
\[d(f^{m-n(k)+j}(x), g^{m-k+j}(y)) < \varepsilon_1.\]
Hence we can easily show that for any $l \in \mathbb{Z}$, we choose $t(l) \in \mathbb{Z}$ satisfying the inequalities
\[d(f^{t(l)}(x), g^l(y)) < \varepsilon, \quad l \in \mathbb{Z}.\]
This means that f has the T_h-weak inverse shadowing property. \hfill \Box

Lemma 2.3. [9] Let A be a hyperbolic matrix on \mathbb{C}^n. Then there exists $C > 0$, a natural number m, $0 < \lambda < 1$, invariant linear subspaces $S(p)$ and $U(p)$ of $T_p\mathbb{C}^n$ for $p \in \mathbb{C}^n$ such that

1. $T_p\mathbb{C}^n = S(p) \oplus U(p)$;
2. $|A^{mk}(v)| < C\lambda^k|v|$, $v \in S(p)$, $k \geq 0$;
3. $|A^{-mk}(v)| < C\lambda^{-k}|v|$, $v \in U(p)$, $k < 0$;
4. If $P(p)$ and $Q(p)$ are the projectors in $T_p\mathbb{C}^n$ onto $S(p)$ parallel to $U(p)$ and onto $U(p)$ parallel to $S(P)$ with the property $P(p) + Q(p) = I(p)$, then

$$||P(p)|| \text{ and } ||Q(p)|| \leq C.$$

Lemma 2.4. [9] Let A be a non-hyperbolic matrix, and λ be an eigenvalue of A with $|\lambda| = 1$. Then there exists a nonsingular matrix T such that $J = T^{-1}AT$ is a Jordan form of A and the matrix J has the form

$$
\begin{pmatrix}
B & 0 \\
C & D
\end{pmatrix}
$$

where B is the nonsingular $m \times m$ complex matrix with the form

$$
\begin{pmatrix}
\lambda & 0 & \cdots & 0 & 0 \\
1 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & \lambda
\end{pmatrix}
$$

Lemma 2.5. [Schauder-Tychonoff Theorem] Let Λ be a closed, convex set in a Banach space and $f : \Lambda \to \Lambda$ a continuous function. If $\bar{f}(\Lambda)$ is compact, then f has a fixed point.

Theorem 2.6. For a linear dynamical system $f(x) = Ax$ of \mathbb{C}^n, the following conditions are mutually equivalent:

1. f has the T_h-inverse shadowing property,
2. f has the T_h-orbital inverse shadowing property,
3. f has the T_h-weak inverse shadowing property,
4. The matrix A is hyperbolic.

Proof. By the definition, the implications (1) \Rightarrow (2) \Rightarrow (3) hold. We prove that (3) \Rightarrow (4) and that (4) \Rightarrow (1).

Proof of (3) \Rightarrow (4): Assume that f has the T_h-weak inverse shadowing property. To obtain a contradiction, assume that the matrix A has an
eigenvalue λ such that $|\lambda|=1$. Lemma 2.4 shows that there exists a nonsingular matrix T such that $J = T^{-1}AT$ is a Jordan form of A and the matrix J has the form

\[
\begin{pmatrix}
B & 0 \\
C & D
\end{pmatrix}
\]

where B is the nonsingular $m \times m$ complex matrix with the form

\[
\begin{pmatrix}
\lambda & 0 & \ldots & 0 & 0 \\
1 & \lambda & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & \lambda
\end{pmatrix}
\]

Then, for the dynamical system $g(x) = J(x)$ and the homeomorphism $h(x) = T(x)$, the equality $f \circ h = h \circ g$ holds. Since the homeomorphisms h and h^{-1} are Lipschitz in \mathbb{C}^n, Lemma 2.1 implies that g has the T_h-weak inverse shadowing property. Let $\delta > 0$ corresponding to $\varepsilon = 1$ by the definition of the T_h-weak inverse shadowing property of g. Denote by x_i the i-th component of a vector $x \in \mathbb{C}^n$. We fix a point $w \in \mathbb{C}^n$ with $|w_1| = 3$ and construct a δ-perturbation \tilde{g} of g as follows:

\[
\tilde{g}(x_1, \ldots, x_n) = \left(\lambda x_1 \left(1 + \frac{\delta}{2|x_1|} \right), (Jx)_2, \ldots, (Jx)_n \right).
\]

Let $y = (y_1, \ldots, y_n)$ be an arbitrary vector in \mathbb{C}^n. Since for $k \to \infty$, $(\tilde{g}(y))_1^k$ leaves on the 1-neighborhood of $S_3 = \{ x_1 \in \mathbb{C} : |x_1| = 3 \}$, there exists $k(y) \in \mathbb{N}$ such that $(\tilde{g}(y))_1^{k(y)}$ leaves on 1-neighborhood of S_3. This means that $\tilde{g}^{k(y)}(y)$ leaves on 1-neighborhood of $O(w, g)$. Hence we show that g does not have the T_h-weak inverse shadowing property, and so the contradiction completes the proof.

Proof of (4) \Rightarrow (1): Assume that the matrix A is hyperbolic. It suffices to show that $f(x) = Ax$ has the Lipschitz T_h-inverse shadowing property, i.e., there exist positive numbers δ_0 and L such that for if g is a δ-perturbation of f with $\delta < \delta_0$, then for any $p \in \mathbb{C}^n$ there exists a point $x_0 \in \mathbb{C}^n$ satisfying the inequalities

\[
|g^k(x_0) - f^k(p)| < L\delta, \quad k \in \mathbb{Z}.
\]

Denote by $S(p)$ the invariant subspace of $T_p\mathbb{C}^n$ corresponding to the eigenvalues λ_j of A such that $|\lambda_j| < 1$, and by $U(p)$ the invariant subspace of $T_p\mathbb{C}^n$ corresponding to the eigenvalues λ_j of A such that $|\lambda_j| > 1$. By Lemma 2.3, there exist $C > 0$, a natural number m,
0 < \lambda < 1$, invariant linear subspaces $S(p)$ and $U(p)$ of $T_p\mathbb{C}^n$ for $p \in \mathbb{C}^n$ such that

(a1) $T_p\mathbb{C}^n = S(p) \oplus U(p)$;

(a2) $|A^{mk}(v)| < C\lambda^k|v|$, $v \in S(p)$, $k \geq 0$;

(a3) $|A^{-mk}(v)| < C\lambda^{-k}|v|$, $v \in U(p)$, $k < 0$;

(a4) If $P(p)$ and $Q(p)$ are the projectors in $T_p\mathbb{C}^n$ onto $S(p)$ parallel to $U(p)$ and onto $U(p)$ parallel to $S(P)$ with the property $P(p) + Q(p) = I(p)$, then

$$||P(p)||, ||Q(p)|| \leq C.$$

By Lemma 2.2, it is enough to show that $f^m(x) = A^n(x)$ has the T_h-inverse shadowing property. To simplify the notations, we assume that the inequalities (a2) and (a3) hold with $m = 1$ (another possibility holds similarly.)

Fix a point $p \in \mathbb{C}^n$ and identify the tangent space $T_p\mathbb{C}^n$ with the linear space of \mathbb{C}^n. For a point $x \in \mathbb{C}^n$, we define a mapping $a_p : \mathbb{C}^n \to T_p\mathbb{C}^n$ by $a_p(x) = (x - p)_p$. It is easy to see that the following statements hold:

(b1) the mapping $a_p : \mathbb{C}^n \to T_p\mathbb{C}^n$ is continuous;

(b2) $|a_p(x) - a_p(y)| \leq |x - y|$ for $x, y \in \mathbb{C}^n$;

(b3) there exists a positive number $r'(\text{independent of } p)$ such that a_p is a diffeomorphism of the set

$$B_{r'}(p) = \{ x \in \mathbb{C}^n : |x - p| < r' \}$$

onto its image for which $Da_p(p) = I$ and

$$|a_p^{-1}(v) - a_p^{-1}(v')| \leq 2|v - v'|$$

for $v, v' \in a_p(B_{r'}(p))$.

In formula (2.1) and below, for $v \in a_p(B_{r'}(p))$, we denote by $a_p^{-1}(v)$ the unique point $x \in B_{r'}(p)$ such that $a_p(x) = v$.

Take

$$L = 4L_0 + 1,$$

where $L_0 = C^{2\frac{1}{1-\lambda}}$. For $r > 0$, denote $W_r(p) = \{ v \in T_p\mathbb{C}^n : |v| \leq r \}$. It is easy to see that we can choose a positive number $r < r'$ (where r' is from the property (b3) of the mappings a_p) such that, for any $p \in \mathbb{C}^n$, the inclusions $W_r(p) \subset a_p(B_{r'}(p))$ hold, hence the mappings

$$F_p = a_{f(p)} \circ f \circ a_p^{-1}$$

are defined on $W_r(p)$. We assume that, for the chosen r, any mapping F_p can be represented as

$$F_p(v) = A(v) + G(v),$$
where

\[(2.3) \quad |G(v)| \leq \frac{1}{2L_0} \quad \text{for} \quad v \in W_r(p).\]

We take

\[\delta < \delta_0 = \frac{r}{2L_0}\]

and fix a \(\delta\)-perturbation \(g\) of \(f\), i.e., \(d_\infty(g, f) < \delta\), and \(p \in \mathbb{C}^n\). We denote \(p_k = f^k(p)\) and \(g_k = g\). We introduce the following mappings defined for \(v \in W_r(p_k); G_k\) are the mappings in the representation (2.2) for the points \(p_k\),

\[\Phi_k = a_{p_{k+1}} \circ f \circ a_{p_k}^{-1} \quad \text{and} \quad \Psi_k = a_{p_{k+1}} \circ g_k \circ a_{p_k}^{-1}.\]

Let \(E\) be the space of sequences

\[V = \{v_k \in T_{p_k} \mathbb{C}^n : k \in \mathbb{Z}\}\]

such that \(||V||_\infty = \sup_{|k| < \infty} |v_k| \leq 2L_0\delta.\]

For a natural number \(m\), we introduce the space \(E_m\) of sequences

\[V = \{v_k \in T_{p_k} \mathbb{C}^n : |k| \leq m\}\]

with the norm

\[||V||_m = \max_{|k| \leq m} |v_k| \leq 2L_0\delta.\]

Denote by \(\pi_m\) and \(\pi_m^l, m \leq l\), the natural projectors of \(E\) to \(E_m\) and of \(E_l\) to \(E_m\), respectively. For a sequence \(V \in E\), let \(Z(V) = \{z_k(V)\}\), where

\[z_{k+1}(V) = G_k(v_k) + \Psi_k(v_k) - \Phi_k(v_k).\]

Since \(|f(x) - g_k(x)| < \delta\) for all \(x\) and \(k\), and \(v_k \in W_r(p_k)\) by the definition of the space \(E\) and by our choice of \(\delta\), it follows from (b2) and (2.3) that

\[(2.4) \quad ||Z(V)||_\infty < \frac{1}{2L_0} ||V||_\infty + d.\]

Define an operator \(R\) on the space \(E\) as follows : \(R(V) = \{w_k\}\), where

\[(2.5) \quad w_k = \sum_{i=-\infty}^{k} A^{k-i}(p_i)P(p_i)z_i(V) - \sum_{i=k+1}^{\infty} A^{k-i}(p_i)Q(p_i)z_i(V).\]

The inequalities (a2)-(a4) show that

\[||R(V)||_\infty \leq L_0 ||Z(V)||_\infty,\]

hence it follows from (2.4) that \(R\) maps \(E\) into itself.

Now it suffices to show that the operator \(R\) has a fixed point in \(E\). Consider the space \(E\) with the topology of uniform convergence on
compact subsets of Z. For a natural number m, we define the operator $R_m : E \to E_m$ by

$$R_m(V) = \{w_k : |k| \leq m\},$$

where

$$w_k = \sum_{i=-m}^{k} A^{k-i} P(p_i)z_i(V) - \sum_{i=k+1}^{m} A^{k-i} Q(p_i)z_i(V).$$

Since the values $z_k(V), |k| \leq m$, are determined by the values $v_k, |k| \leq m + 1$, each operator R_m is continuous.

The operator $\pi_m R$ maps a sequence $V \in E$ to the sequence $\{w_k : |k| \leq m\}$, where the w_k are given by formula (2.5). Fix a number $l > m$ and consider the operator $\pi_m^l R_l$ mapping a sequence $V \in E$ to the sequence $\{w'_k : |k| \leq m\}$, where

$$w'_k = \sum_{i=-l}^{k} A^{k-i} P(p_i)z_i(V) - \sum_{i=k+1}^{l} A^{k-i} Q(p_i)z_i(V).$$

Let us estimate

$$||\pi_m R(V) - \pi_m^l R_l(V)||_m = \max_{|k| \leq m} |w_k - w'_k|$$

$$\leq 2L_0 C^2 d \max_{|k| \leq m} \left(\sum_{i=-\infty}^{-l-1} \lambda^{k-i} + \sum_{i=l+1}^{\infty} \lambda^{i-k} \right)$$

$$\leq 4L_0 C^2 d \lambda^{1-m} \frac{1 - \lambda^l}{1 - \lambda} \lambda^l.$$

This estimate implies that the operator $\pi_m R$ is the uniform limit (as $l \to \infty$) of the continuous operators $\pi_m^l R_l$, hence the operator $\pi_m R$ is continuous. It follows from our choice of topology of the space E that the operator R is continuous. It is easy to see that the image $R(E)$ is relatively compact in E. Since R maps E into itself, Lemma 2.5 implies the existence of a fixed point of R in E.

If $V = R(V)$ for some $V \in E$, then

$$v_{k+1} = Av_k + z_{k+1}(V) = Av_k + G_k(v_k) + \Psi_k(v_k) - \Phi_k(v_k),$$

i.e., $v_{k+1} = \Psi_k(v_k)$. This means that, for the sequence of points $x_k = a_{p_k}^{-1}(v_k)$, the equalities $x_{k+1} = g_k(x_k)$ hold. The inclusion $V \in E$ and
the property (b3) of the mappings a_p imply the inequalities
\[
|g^k(x_0) - f^k(p)| = |x_k - p_k| = |a^{-1}_{p_k}(v_k) - a^{-1}_{p_k}(0_{p_k})| \\
\leq |v_k - 0_{p_k}| \leq 4L_0\delta < L\delta.
\]

Therefore, f has the Lipschitz T_n-inverse shadowing property, and so completes the proof. \qed

Remark 2.7. Remark 2.1 in [11] and Theorem 3.2.1 in [9] say that, for a linear dynamical system $f(x) = Ax$ of \mathbb{C}^n, the following conditions are mutually equivalent:

1. f has the shadowing property,
2. f has the orbital shadowing property,
3. f has the weak shadowing property,
4. the matrix A is hyperbolic.

References

Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail: shadowcty@hanmail.net
khlee@math.cnu.ac.kr