ROUGHNESS IN SUBTRACTION ALGEBRAS

SUN SHIN AHN, YOUNG BAE JUN, AND KYOUNG JA LEE

Abstract. As a generalization of ideals in subtraction algebras, the notion of rough ideals is discussed.

1. Introduction

B. M. Schein [10] considered systems of the form \((\Phi; \circ, \setminus)\), where \(\Phi\) is a set of functions closed under the composition \("\circ\"") of functions (and hence \((\Phi; \circ)\) is a function semigroup) and the set theoretic subtraction \("\setminus\"") (and hence \((\Phi; \setminus)\) is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [11] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun et al. [4] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [3], Y. B. Jun and H. S. Kim established the ideal generated by a set, and discussed related results. Y. B. Jun and K. H. Kim [5] introduced the notion of prime and irreducible ideals of a subtraction algebra, and gave a characterization of a prime ideal. They also provided a condition for an ideal to be a prime/irreducible ideal. In 1982, Pawlak introduced the concept of a rough set (see [8]). This concept is fundamental for the examination of granularity in knowledge. It is a concept which has many applications in data analysis (see [9]). Rough set theory is applied to semigroups and groups (see [6, 7]). In this paper, we apply the rough set theory to subtraction algebras, and we introduce the notion of upper/lower rough subalgebras/ideals which is an extended notion of subalgebras/ideals in a subtraction algebra.
2. Preliminaries

By a subtraction algebra we mean an algebra $(X; -)$ with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

(S1) $x - (y - x) = x$;
(S2) $x - (x - y) = y - (y - x)$;
(S3) $(x - y) - z = (x - z) - y$.

The last identity permits us to omit parentheses in expressions of the form $(x - y) - z$. The subtraction determines an order relation on X: $a \leq b \iff a - b = 0$, where $0 = a - a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is $a - b$; and if $b, c \in [0, a]$, then

$$b \lor c = (b' \wedge c')' = a - ((a - b) \wedge (a - c)) = a - ((a - b) - ((a - b) - (a - c))).$$

In a subtraction algebra, the following are true (see [4, 5]):

(a1) $(x - y) - y = x - y$.
(a2) $x - 0 = x$ and $0 - x = 0$.
(a3) $(x - y) - x = 0$.
(a4) $x - (x - y) \leq y$.
(a5) $(x - y) - (y - x) = x - y$.
(a6) $x - (x - (x - y)) = x - y$.
(a7) $(x - y) - (z - y) \leq x - z$.
(a8) $x \leq y$ if and only if $x = y - w$ for some $w \in X$.
(a9) $x \leq y$ implies $x - z \leq y - z$ and $z - y \leq z - x$ for all $z \in X$.
(a10) $x, y \leq z$ implies $x - y = x \land (z - y)$.
(a11) $(x \land y) - (x \land z) \leq x \land (y - z)$.

A nonempty subset S of a subtraction algebra X is called a subalgebra of X if $x - y \in S$ whenever $x, y \in S$.

A nonempty subset A of a subtraction algebra X is called an ideal of X, denoted by $A \triangleleft X$, if it satisfies

- $0 \in A$
- $(\forall x \in X)(\forall y \in A)(x - y \in A \Rightarrow x \in A)$.

Note that every ideal of a subtraction algebra X is a subalgebra of X.

Lemma 2.1. [5] An ideal A of a subtraction algebra X has the following property:

$$(\forall x \in X)(\forall y \in A)(x \leq y \Rightarrow x \in A).$$

3. Rough sets in subtraction algebras

In what follows let X denote a subtraction algebra unless otherwise specified.

An equivalence relation ρ on X is called a congruence relation on X if whenever $(x, y), (u, v) \in \rho$ then $(x - u, y - v) \in \rho$. We denote by $[a]_\rho$ the ρ-congruence class containing the element $a \in X$. Let X/ρ denote the set of all ρ-congruence classes on X, i.e., $X/\rho := \{[a]_\rho \mid a \in X\}$. For any $[x]_\rho, [y]_\rho \in X/\rho$, if we define $[x]_\rho - [y]_\rho = [x - y]_\rho$, then $(X/\rho, -)$ is a subtraction algebra. Let ρ be an equivalence relation on X and let $\mathcal{P}(X)$ denote the power set of X and $\mathcal{P}^*(X) = \mathcal{P}(X) \setminus \{\emptyset\}$. For all $x \in X$, let $[x]_\rho$ denote the equivalence class of x with respect to ρ. Define the functions $\rho_*, \rho^* : \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ as follows: $\forall S \in \mathcal{P}(X)$,

$$\rho_*(S) = \{x \in X \mid [x]_\rho \subseteq S\} \text{ and } \rho^*(S) = \{x \in X \mid [x]_\rho \cap S \neq \emptyset\}.$$

$\rho_*(S)$ is called the ρ-lower approximation of S while $\rho^*(S)$ is called the ρ-upper approximation of S. For a nonempty subset S of X,

$$\rho(S) = (\rho_*(S), \rho^*(S))$$

is called a rough set with respect to ρ of $\mathcal{P}(X) \times \mathcal{P}(X)$ if $\rho_*(S) \neq \rho^*(S)$.

A subset S of X is said to be definable if $\rho_*(S) = \rho^*(S)$. The pair (X, ρ) is called an approximation space.

The following property is useful for our research (cf. [8]).

Proposition 3.1. Let ρ and λ be congruence relations on X. Then the following assertions are true.

1. $(\forall F \in \mathcal{P}^*(X)) \ (\rho_*(F) \subseteq F \subseteq \rho^*(F))$,
2. $(\forall F, G \in \mathcal{P}^*(X)) \ (\rho^*(F \cup G) = \rho^*(F) \cup \rho^*(G))$,
3. $(\forall F, G \in \mathcal{P}^*(X)) \ (\rho_*(F \cap G) = \rho_*(F) \cap \rho_*(G))$,
4. $(\forall F, G \in \mathcal{P}^*(X)) \ (F \subseteq G \Rightarrow \rho_*(F) \subseteq \rho_*(G))$,
(5) \((\forall F, G \in \mathcal{P}^*(X)) (F \subseteq G \Rightarrow \rho^*(F) \subseteq \rho^*(G)),\)
(6) \((\forall F, G \in \mathcal{P}^*(X)) (\rho_*(F) \cup \rho_*(G) \subseteq \rho_*(F \cup G)),\)
(7) \((\forall F, G \in \mathcal{P}^*(X)) (\rho^*(F \cap G) \subseteq \rho^*(F) \cap \rho^*(G)),\)
(8) \((\forall F \in \mathcal{P}^*(X)) (\rho \subseteq \lambda \Rightarrow \lambda_*(F) \subseteq \rho_*(F), \ \rho^*(F) \subseteq \lambda^*(F)).\)

Proof. Straightforward. \(\square\)

Corollary 3.2. If \(\rho\) and \(\lambda\) are congruence relations on \(X\), then

(i) \((\forall F \in \mathcal{P}^*(X)) ((\rho \cap \lambda)^*(F) \subseteq \rho^*(F) \cap \lambda^*(F)).\)

(ii) \((\forall F \in \mathcal{P}^*(X)) (\rho_*(F) \cap \lambda_*(F) \subseteq (\rho \cap \lambda)_*(F)).\)

Proof. It follows immediately from Proposition 3.1. \(\square\)

For any \(F, G \in \mathcal{P}^*(X)\), we define \(F - G := \{a - b \mid a \in F, b \in G\}\).

Theorem 3.3. If \(\rho\) is a congruence relation on \(X\), then

\[(\forall F, G \in \mathcal{P}^*(X)) (\rho^*(F) - \rho^*(G) \subseteq \rho^*(F - G)).\]

Proof. Let \(c \in \rho^*(F) - \rho^*(G)\). Then there exist \(a \in \rho^*(F)\) and \(b \in \rho^*(G)\) such that \(c = a - b\). It follows that \([a]_\rho \cap F \neq \emptyset\) and \([b]_\rho \cap G \neq \emptyset\) so that \(x \in [a]_\rho \cap F\) and \(y \in [b]_\rho \cap G\) for some \(x, y \in X\). Hence \(x - y \in [a]_\rho - [b]_\rho = [a - b]_\rho\) and \(x - y \in F - G\), that is, \(x - y \in [a - b]_\rho \cap (F - G)\). Thus \(c = a - b \in \rho^*(F - G)\), and so \(\rho^*(F) - \rho^*(G) \subseteq \rho^*(F - G)\). \(\square\)

Theorem 3.4. If \(\rho\) is a congruence relation on \(X\), then

\[(\forall F, G \in \mathcal{P}^*(X)) (\rho_*(F - G) \neq \emptyset \Rightarrow \rho_*(F) - \rho_*(G) \subseteq \rho_*(F - G)).\]

Proof. Let \(c \in \rho_*(F) - \rho_*(G)\). Then \(c = a - b\) for some \(a \in \rho_*(F)\) and \(b \in \rho_*(G)\). Thus we get \([a]_\rho \subseteq F\) and \([b]_\rho \subseteq G\). It follows that

\([a - b]_\rho = [a]_\rho - [b]_\rho \subseteq F - G\)

so that \(c = a - b \in \rho_*(F - G)\). Therefore the result is valid. \(\square\)

The following example shows the condition that \(\rho_*(F - G) \neq \emptyset\) in Theorem 3.4 is necessary.

Example 3.5. Let \(X = \{0, a, b, c\}\) be a subtraction algebra with the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>
Let ρ be a congruence relation on X such that $\{0,a\}$, $\{b\}$, and $\{c\}$ are all ρ-congruences of X. Taking $F = \{b,c\}$ and $G = \{c\}$, we have $F - G = \{0\}$, $\rho_*(F - G) = \emptyset$, $\rho_*(F) = \{b,c\}$, $\rho_*(G) = \{c\}$, and $\rho_*(F) - \rho_*(G) = \{0\}$.

For any congruence relation ρ on X, we note that

- $(\forall F \in \mathcal{P}^*(X)) \ (\rho_*(F) \subseteq F)$,
- $(\forall F, G \in \mathcal{P}^*(X)) \ (F \subseteq G \Rightarrow \rho_*(F) \subseteq \rho_*(G))$,
- $(\forall F \in \mathcal{P}^*(X)) \ (\rho_*(\rho_*(F)) = \rho_*(F))$,

which means that ρ_* is an interior operator on X. This operation induces a topology \mathcal{T} on X such that

$$F \in \mathcal{T} \iff \rho_*(F) = F.$$

Lemma 3.6. For any congruence relation ρ on X, ρ^* is a closure operator on the topological space (X, \mathcal{T}).

Proof. For any $F \in \mathcal{P}^*(X)$ we have

$$x \in \rho^*(F) \iff [x]_{\rho} \cap F \neq \emptyset \iff [x]_{\rho} \subseteq F^c \iff x \notin \rho_*(F^c) \iff x \in (\rho_*(F^c))^c,$$

that is, $\rho^*(F) = (\rho_*(F^c))^c$, which completes the proof. \qed

Lemma 3.7. For any congruence relation ρ on X, we have

(i) $(\forall F \in \mathcal{P}(X)) \ (\rho_*(F) = F \iff \rho^*(F^c) = F^c)$,
(ii) $(\forall F \in \mathcal{P}(X)) \ (\rho_*(F) = F \iff \rho^*(F) = F)$.

Proof. Straightforward. \qed

Based on the above two lemmas we have the following result.

Theorem 3.8. For any $F \subseteq X$ and a congruence relation ρ on X, the following assertions are equivalent.

(i) F is definable with respect to ρ.
(ii) F is open in the topological space (X, \mathcal{T}).
(iii) F is closed in the topological space (X, \mathcal{T}).

According to [7], we say that an open set F of X is said to be free in an approximation space (X, ρ) if $x \notin \rho^*(F \setminus \{x\})$ for all $x \in X$. Since $\rho^*(F \setminus \{x\}) = (\rho_*(F \setminus \{x\}))^c$, a nonempty subset F of X is free if and only if $x \in \rho_*(F^c \cup \{x\})$, i.e., if and only if $[x]_{\rho} \subseteq F^c \cup \{x\}$ for every $x \in F$. Thus for a free subset F and any $(x,y) \in \rho \cap (F \times F)$ we have $y \in F$, which together with $y \in [x]_{\rho} \subseteq F^c \cup \{x\}$ implies that $y = x$. Therefore $\rho \cap (F \times F) = \{(a,a) \mid a \in F\}$. Conversely, let

$$\rho \cap (F \times F) = \{(a,a) \mid a \in F\}$$
and let y be an arbitrary element of $[x]_{\rho}$. If $y \in F$, then $y = x$, i.e., $y \in \{x\} \subseteq F^c \cup \{x\}$. If $y \notin F$, then $y \in F^c \subseteq F^c \cup \{x\}$. Thus, in each case $[x]_{\rho} \subseteq F^c \cup \{x\}$, which means that F is free. Consequently, we obtain the following characterization of free subsets.

Theorem 3.9. $F \subseteq X$ is free if and only if $\rho \cap (F \times F) = \{(a, a) \mid a \in F\}$.

Corollary 3.10. If X is free, then any subset of X is free.

4. Roughness of ideals

Let A be an ideal of X. Define a relation \mathcal{R} on X by

$$(\forall x, y \in X) \ ((x, y) \in \mathcal{R} \iff x - y \in A, y - x \in A).$$

Then \mathcal{R} is an equivalence relation on X related to an ideal A of X. Moreover \mathcal{R} satisfies

$$(\forall x, y, u, v \in X) \ ((x, y) \in \mathcal{R}, (u, v) \in \mathcal{R} \Rightarrow (x - u, y - v) \in \mathcal{R}).$$

Hence \mathcal{R} is a congruence relation on X. Let A_x denote the equivalence class of x with respect to the equivalence relation \mathcal{R} related to the ideal A of X, and X/A denote the collection of all equivalence classes, that is, $X/A = \{A_x \mid x \in X\}$. Then $A_0 = A$. If $A_x \ominus A_y$ is defined as the class containing $x - y$, that is, $A_x \ominus A_y = A_{x-y}$, then it is easy to verify that $(X/A, -, A_0)$ is a subtraction algebra. Let \mathcal{R} be an equivalence relation on X related to an ideal A of X. For any nonempty subset S of X, the lower and upper approximations of S are denoted by $\underline{\mathcal{R}}(A; S)$ and $\overline{\mathcal{R}}(A; S)$ respectively, that is,

$$\underline{\mathcal{R}}(A; S) = \{x \in X \mid A_x \subseteq S\} \text{ and } \overline{\mathcal{R}}(A; S) = \{x \in X \mid A_x \cap S \neq \emptyset\}.$$

If $A = S$, then $\underline{\mathcal{R}}(A; S)$ and $\overline{\mathcal{R}}(A; S)$ are denoted by $\underline{\mathcal{R}}(A)$ and $\overline{\mathcal{R}}(A)$, respectively.

Example 4.1. (1) Let $X = \{0, a, b, c\}$ be a set with the Cayley table as follows:

<table>
<thead>
<tr>
<th>$-$</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>
Then \((X, -, 0)\) is a subtraction algebra. Consider an ideal \(A = \{0, a\}\) of \(X\) and let \(\mathcal{R}\) be an equivalence relation on \(X\) related to \(A\). Then \(A_0 = A_3 = A, A_2 = \{b\}\), and \(A_1 = \{c\}\). Hence

\[
\begin{align*}
\mathcal{R}(A; \{0, b\}) &= \{b\} = \mathcal{R}(A; \{b\}), & \mathcal{R}(A; \{0\}) &= \emptyset = \mathcal{R}(A; \{a\}), \\
\mathcal{R}(A; \{0, c\}) &= \{c\} = \mathcal{R}(A; \{c\}), & \mathcal{R}(A; \{0, a, c\}) &= \{0, a, c\} \triangleleft X, \\
\mathcal{R}(A; \{0, a, b\}) &= \{0, a, b\} \triangleleft X, & \mathcal{R}(A; \{0, b, c\}) &= \{b, c\}, \\
\mathcal{R}(A; \{0, a\}) &= \{0, a\} \triangleleft X, & \mathcal{R}(A; \{0, b\}) &= \{0, a, b\} \triangleleft X, \\
\mathcal{R}(A; \{c\}) &= \{0, a, c\} \triangleleft X, & \mathcal{R}(A; \{0, a\}) &= A \triangleleft X, \\
\mathcal{R}(A; \{a\}) &= A \triangleleft X, & \mathcal{R}(A; \{b\}) &= \{b\}.
\end{align*}
\]

(2) Let \(X = \{0, a, b, c, d\}\) be a subtraction algebra with the Cayley table as follows:

\[
\begin{array}{ccccc}
 & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & a & 0 \\
b & b & b & 0 & 0 \\
c & c & b & a & 0 \\
d & d & d & d & d \\
\end{array}
\]

Consider \(A = \{0, b, d\} \triangleleft X\) and let \(\mathcal{R}\) be an equivalence relation on \(X\) related to \(A\). Then the equivalence classes are as follows: \(A_0 = A_4 = A_d = A, A_2 = \{a, c, d\}\), and \(A_1 = \{a\}\). Thus

\[
\begin{align*}
\mathcal{R}(A; \{0, a\}) &= \emptyset, & \mathcal{R}(A; \{0, b, c\}) &= \emptyset, \\
\mathcal{R}(A; \{0, a, d\}) &= \emptyset, & \mathcal{R}(A; \{0, a, c\}) &= \{c\}, \\
\mathcal{R}(A; \{0, b, d\}) &= A \triangleleft X, & \mathcal{R}(A; \{0, a, b, c\}) &= \{c\}, \\
\mathcal{R}(A; \{0, b, c, d\}) &= A \triangleleft X, & \mathcal{R}(A; \{0, a\}) &= X, \\
\mathcal{R}(A; \{0, b\}) &= \{0, a, b\} \triangleleft X, & \mathcal{R}(A; \{0, c\}) &= X, \\
\mathcal{R}(A; \{0, d\}) &= \{0, a, b, d\}, & \mathcal{R}(A; \{0, a, d\}) &= X, \\
\mathcal{R}(A; \{b\}) &= A \triangleleft X, & \mathcal{R}(A; \{c\}) &= \{a, c\}, \\
\mathcal{R}(A; \{d\}) &= A \triangleleft X.
\end{align*}
\]

In Example 4.1, we know that there exists a non-ideal \(U\) of \(X\) such that \(\mathcal{R}(A; U) \triangleleft X\); and there exists a non-ideal \(V\) of \(X\) such that \(\mathcal{R}(A; V) \triangleleft X\), where \(\mathcal{R}\) is an equivalence relation on \(X\) related to \(A \triangleleft X\).

Proposition 4.2. Let \(\mathcal{R}\) and \(\mathcal{Q}\) be equivalence relations on \(X\) related to ideals \(A\) and \(B\) of \(X\), respectively. If \(A \subseteq B\), then \(\mathcal{R} \subseteq \mathcal{Q}\).

Proof. If \((x, y) \in \mathcal{R}\), then \(x - y \in A \subseteq B\) and \(y - x \in A \subseteq B\). Hence \((x, y) \in \mathcal{Q}\), and so \(\mathcal{R} \subseteq \mathcal{Q}\). \(\square\)

Proposition 4.3. Let \(\mathcal{R}\) be an equivalence relation on \(X\) related to an ideal \(A\) of \(X\). Then
(1) \((\forall S \in \mathcal{P}(X)) (\overline{\mathcal{R}}(A; S) \subseteq S \subseteq \overline{\mathcal{R}}(A; S))\),
(2) \((\forall S, T \in \mathcal{P}(X)) (\overline{\mathcal{R}}(A; S \cup T) = \overline{\mathcal{R}}(A; S) \cup \overline{\mathcal{R}}(A; T))\),
(3) \((\forall S, T \in \mathcal{P}(X)) (\overline{\mathcal{R}}(A; S \cap T) = \overline{\mathcal{R}}(A; S) \cap \overline{\mathcal{R}}(A; T))\),
(4) \((\forall S, T \in \mathcal{P}(X)) (S \subseteq T \Rightarrow \overline{\mathcal{R}}(A; S) \subseteq \overline{\mathcal{R}}(A; T), \overline{\mathcal{R}}(A; S) \subseteq \overline{\mathcal{R}}(A; T))\),
(5) \((\forall S, T \in \mathcal{P}(X)) (\overline{\mathcal{R}}(A; S \cup T) \supseteq \overline{\mathcal{R}}(A; S) \cup \overline{\mathcal{R}}(A; T))\),
(6) \((\forall S, T \in \mathcal{P}(X)) (\overline{\mathcal{R}}(A; S \cap T) \subseteq \overline{\mathcal{R}}(A; S) \cap \overline{\mathcal{R}}(A; T))\),
(7) If \(\mathcal{Q}\) is an equivalence relation on \(X\) related to an ideal \(B\) of \(X\) and if \(A \subseteq B\), then \(\overline{\mathcal{R}}(A; S) \subseteq \overline{\mathcal{R}}(B; S)\) for all \(S \in \mathcal{P}(X)\).

Proof. (1) is straightforward.
(2) For any subsets \(S\) and \(T\) of \(X\), we have

\[
x \in \overline{\mathcal{R}}(A; S \cup T) \iff A_x \cap (S \cup T) \neq \emptyset
\iff (A_x \cap S) \cup (A_x \cap T) \neq \emptyset
\iff A_x \cap S \neq \emptyset \text{ or } A_x \cap T \neq \emptyset
\iff x \in \overline{\mathcal{R}}(A; S) \text{ or } x \in \overline{\mathcal{R}}(A; T)
\iff x \in \overline{\mathcal{R}}(A; S) \cup \overline{\mathcal{R}}(A; T),
\]

and hence \(\overline{\mathcal{R}}(A; S \cup T) = \overline{\mathcal{R}}(A; S) \cup \overline{\mathcal{R}}(A; T)\).

(3) For any subsets \(S\) and \(T\) of \(X\) we have

\[
x \in \overline{\mathcal{R}}(A; S \cap T) \iff A_x \subseteq S \cap T
\iff A_x \subseteq S \text{ and } A_x \subseteq T
\iff x \in \overline{\mathcal{R}}(A; S) \text{ and } x \in \overline{\mathcal{R}}(A; T)
\iff x \in \overline{\mathcal{R}}(A; S) \cap \overline{\mathcal{R}}(A; T).
\]

Hence \(\overline{\mathcal{R}}(A; S \cap T) = \overline{\mathcal{R}}(A; S) \cap \overline{\mathcal{R}}(A; T)\).

(4) Let \(S, T \in \mathcal{P}(X)\) be such that \(S \subseteq T\). Then \(S \cap T = S\) and \(S \cup T = T\). It follows from (3) and (2) that

\[
\overline{\mathcal{R}}(A; S) = \overline{\mathcal{R}}(A; S \cap T) = \overline{\mathcal{R}}(A; S) \cap \overline{\mathcal{R}}(A; T)
\]

and

\[
\overline{\mathcal{R}}(A; T) = \overline{\mathcal{R}}(A; S \cup T) = \overline{\mathcal{R}}(A; S) \cup \overline{\mathcal{R}}(A; T),
\]

which yield \(\overline{\mathcal{R}}(A; S) \subseteq \overline{\mathcal{R}}(A; T)\) and \(\overline{\mathcal{R}}(A; S) \subseteq \overline{\mathcal{R}}(A; T)\), respectively.

(5) Since \(S \subseteq S \cup T\) and \(T \subseteq S \cup T\), it follows from (4) that

\[
\overline{\mathcal{R}}(A; S) \subseteq \overline{\mathcal{R}}(A; S \cup T) \text{ and } \overline{\mathcal{R}}(A; T) \subseteq \overline{\mathcal{R}}(A; S \cup T).
\]

Thus \(\overline{\mathcal{R}}(A; S) \cup \overline{\mathcal{R}}(A; T) \subseteq \overline{\mathcal{R}}(A; S \cup T)\).

(6) Since \(S \cap T \subseteq S, T\), it follows from (4) that

\[
\overline{\mathcal{R}}(A; S \cap T) \subseteq \overline{\mathcal{R}}(A; S) \text{ and } \overline{\mathcal{R}}(A; S \cap T) \subseteq \overline{\mathcal{R}}(A; T)
\]

so that \(\overline{\mathcal{R}}(A; S \cap T) \subseteq \overline{\mathcal{R}}(A; S) \cap \overline{\mathcal{R}}(A; T)\).
(7) If \(x \in \mathcal{R}(A; S) \), then \(A_x \cap S \neq \emptyset \), and so there exists \(a \in S \) such that \(a \in A_x \). Hence \((a, x) \in \mathcal{R} \), that is, \(a - x \in A \) and \(x - a \in A \). Since \(A \subseteq B \), it follows that \(a - x \in B \) and \(x - a \in B \) so that \((a, x) \in \mathcal{S} \), that is, \(a \in B_x \). Therefore \(a \in B_x \cap S \), which means \(x \in \mathcal{S}(B; S) \). This completes the proof. \(\square \)

Proposition 4.4. Let \(\mathcal{R} \) be an equivalence relation on \(X \) related to any ideal \(A \) of \(X \). Then \(\mathcal{R}(A; X) = X = \mathcal{R}(A; X) \), that is, \(X \) is definable.

Proof. It is straightforward. \(\square \)

Proposition 4.5. Let \(\mathcal{R} \) be an equivalence relation on \(X \) related to the trivial ideal \(\{0\} \) of \(X \). Then \(\mathcal{R}(\{0\}; S) = S = \mathcal{R}(\{0\}; S) \) for every nonempty subset \(S \) of \(X \), that is, every nonempty subset of \(X \) is definable.

Proof. Note that \(\{0\}_x = \{x\} \) for all \(x \in X \), since if \(a \in \{0\}_x \) then \((a, x) \in \mathcal{R} \) and hence \(a - x = 0 \) and \(x - a = 0 \). It follows that \(a = x \). Hence

\[
\mathcal{R}(\{0\}; S) = \{ x \in X \mid \{0\}_x \subseteq S \} = S
\]

and

\[
\mathcal{R}(\{0\}; S) = \{ x \in X \mid \{0\}_x \cap S \neq \emptyset \} = S.
\]

This completes the proof. \(\square \)

Remark 4.6. Let \(\mathcal{R} \) be an equivalence relation on \(X \) related to an ideal \(A \) of \(X \). If \(B \) is an ideal of \(X \) such that \(A \neq B \), then \(\mathcal{R}(A; B) \) is not an ideal of \(X \) in general. For, consider a subtraction algebra \(X \) in Example 4.1(2) and an equivalence relation \(\mathcal{R} \) on \(X \) related to the ideal \(A = \{0, 1, 2\} \). If we take an ideal \(B = \{0, 1, 3\} \) of \(X \), then \(A \neq B \) and \(\mathcal{R}(A; B) = \{3\} \) which is not an ideal of \(X \).

Definition 4.7. Let \(\mathcal{R} \) be an equivalence relation on \(X \) related to an ideal \(A \) of \(X \). A nonempty subset \(S \) of \(X \) is called an upper (resp. a lower) rough subalgebra/ideal of \(X \) if the upper (resp. nonempty lower) approximation of \(S \) is a subalgebra/ideal of \(X \). If \(S \) is both an upper and a lower rough subalgebra/ideal of \(X \), we say that \(S \) is a rough subalgebra/ideal of \(X \).

Theorem 4.8. Let \(\mathcal{R} \) be an equivalence relation on \(X \) related to an ideal \(A \) of \(X \). Then every subalgebra \(S \) of \(X \) is a rough subalgebra of \(X \).

Proof. Let \(x, y \in \mathcal{R}(A; S) \). Then \(A_x \subseteq S \) and \(A_y \subseteq S \). Since \(S \) is a subalgebra of \(X \), it follows that \(A_{x-y} = A_x \cap A_y \subseteq S \) so that \(x - y \in
\(\mathcal{R}(A; S) \). Hence \(\mathcal{R}(A; S) \) is a subalgebra of \(X \). Now if \(x, y \in \mathcal{R}(A; S) \), then \(A_x \cap S \neq \emptyset \) and \(A_y \cap S \neq \emptyset \), and so there exist \(a, b \in S \) such that \(a \in A_x \) and \(b \in A_y \). It follows that \((a, x) \in \mathcal{R} \) and \((b, y) \in \mathcal{R} \). Since \(\mathcal{R} \) is a congruence relation on \(X \), we have \((a - b, x - y) \in \mathcal{R} \). Hence \(a - b \in A_{x-y} \). Since \(S \) is a subalgebra of \(X \), we get \(a - b \in S \), and therefore \(a - b \in A_{x-y} \cap S \), that is, \(A_{x-y} \cap S \neq \emptyset \). This shows that \(x - y \in \mathcal{R}(A; S) \), and consequently \(\mathcal{R}(A; S) \) is a subalgebra of \(X \). This completes the proof.

COROLLARY 4.9. Let \(\mathcal{R} \) be an equivalence relation on \(X \) related to an ideal \(A \) of \(X \). Then \(\mathcal{R}(A) \) (\(\neq \emptyset \)) and \(\mathcal{R}(A) \) are subalgebras of \(X \), that is, \(A \) is a rough subalgebra of \(X \).

PROOF. It is straightforward.

THEOREM 4.10. Let \(\mathcal{R} \) be an equivalence relation on \(X \) related to an ideal \(A \) of \(X \). If \(U \) is an ideal of \(X \) containing \(A \), then

1. \(\mathcal{R}(A; U) \) (\(\neq \emptyset \)) is an ideal of \(X \), that is, \(U \) is a lower rough ideal of \(X \).
2. \(\mathcal{R}(A; U) \) is an ideal of \(X \), that is, \(U \) is an upper rough ideal of \(X \).

PROOF. Let \(U \) be an ideal of \(X \) containing \(A \). Let \(x \in A_0 \). Then \(x \in A \subseteq U \), and so \(A_0 \subseteq U \). Hence \(0 \in \mathcal{R}(A; U) \). Let \(x, y \in X \) be such that \(y \in \mathcal{R}(A; U) \) and \(x - y \in \mathcal{R}(A : U) \). Then \(A_y \subseteq U \) and \(A_x \cap A_y = A_{x-y} \subseteq U \). Let \(a \in A_x \) and \(b \in A_y \). Then \((a, x) \in \mathcal{R} \) and \((b, y) \in \mathcal{R} \), which implies \((a - b, x - y) \in \mathcal{R} \). Hence \(a - b \in A_{x-y} \subseteq U \). Since \(b \in A_y \subseteq U \) and \(U \) is an ideal, it follows that \(a \in U \), so that \(A_x \subseteq U \). Thus \(x \in \mathcal{R}(A; U) \). This shows that \(\mathcal{R}(A; U) \) is an ideal of \(X \), that is, \(U \) is a lower rough ideal of \(X \). Now, obviously \(0 \in \mathcal{R}(A; U) \). Let \(x, y \in X \) be such that \(y \in \mathcal{R}(A; U) \) and \(x - y \in \mathcal{R}(A; U) \). Then \(A_y \cap U \neq \emptyset \) and \(A_{x-y} \cap U \neq \emptyset \), and so there exist \(a, b \in U \) such that \(a \in A_y \) and \(b \in A_{x-y} \). Hence \((a, y) \in \mathcal{R} \) and \((b, x - y) \in \mathcal{R} \), which implies \(y - a \in A \subseteq U \) and \((x - y) - b \in A \subseteq U \). Since \(a, b \in U \) and \(U \) is an ideal, we get \(y \in U \) and \(x - y \in U \); hence \(x \in U \). Note that \(x \in A_x \), thus \(x \in A_x \cap U \), that is, \(A_x \cap U \neq \emptyset \). Therefore \(x \in \mathcal{R}(A; U) \), and consequently \(U \) is an upper rough ideal of \(X \).

COROLLARY 4.11. Let \(\mathcal{R} \) be an equivalence relation on \(X \) related to an ideal \(A \) of \(X \). Then \(\mathcal{R}(A) \) (\(\neq \emptyset \)) and \(\mathcal{R}(A) \) are ideals of \(X \), that is, \(A \) is a rough ideal of \(X \).

Theorem 4.10 shows that the notion of an upper (resp. a lower) rough ideal is an extended notion of an ideal in a subtraction algebra.
The following example shows that if A and U are ideals of X such that $A \not\subseteq U$, then $\mathcal{R}(A; U)$ may not be an ideal of X.

Example 4.12. (1) Let $X = \{0, a, b, c, d\}$ be a subtraction algebra described in Example 4.1(2). Consider two ideals $A = \{0, b\}$ and $U = \{0, d\}$ of X. Then $\mathcal{R}(A; U) = \{d\}$ which is not an ideal of X.

(2) Let $X = \{0, a, b, c, d\}$ be a subtraction algebra with the Cayley table as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>0</td>
</tr>
</tbody>
</table>

Consider $A = \{0, a, b\} \triangleleft X$ and let \mathcal{R} be an equivalence relation on X related to A. Then the equivalence classes are as follows: $A_0 = A_a = A_b = A$, $A_c = \{c\}$, and $A_d = \{d\}$. Then $U = \{0, a, c\}$ is an ideal of X which does not contain A, and $\mathcal{R}(A; U) = \{c\}$ which is not an ideal of X.

References

Sun Shin Ahn
Department of Mathematics Education
Dongguk University
Seoul 100-715, Korea
E-mail: sunshine@dongguk.ac.kr

Young Bae Jun
Department of Mathematics Education (and RINS)
Gyeongsang National University
Chinju 660-701, Korea
E-mail: ybjun@gnu.ac.kr or jamjana@korea.com

Kyoung Ja Lee
School of General Education
Kookmin University
Seoul 136-702, Korea
E-mail: lsj1109@kookmin.ac.kr