FUNCTIONAL CENTRAL LIMIT THEOREMS
FOR MULTIVARIATE LINEAR PROCESSES
GENERATED BY DEPENDENT RANDOM VECTORS

Mi-Hwa Ko

ABSTRACT. Let X_t be an m-dimensional linear process defined by
$X_t = \sum_{j=0}^{\infty} A_j Z_{t-j}$, $t = 1, 2, \ldots$, where $\{Z_t\}$ is a sequence of
m-dimensional random vectors with mean $0 : m \times 1$ and positive
definite covariance matrix $\Gamma : m \times m$ and $\{A_j\}$ is a sequence of
coefficient matrices. In this paper we give sufficient conditions so
that $\sum_{t=1}^{[n\alpha]} X_t$ (properly normalized) converges weakly to Wiener
measure if the corresponding result for $\sum_{t=1}^{[n\alpha]} Z_t$ is true.

1. Introduction

Consider m-dimensional linear process of the form

$$X_t = \sum_{j=0}^{\infty} A_j Z_{t-j},$$

where the innovation $\{Z_t\}$ is a sequence of m-dimensional random vec-
tors with mean $0 : m \times 1$ and positive definite covariance matrix $\Gamma : m \times m$. Throughout we shall assume that

$$\sum_{j=0}^{\infty} \|A_j\| < \infty \quad \text{and} \quad \sum_{j=0}^{\infty} A_j \neq O_{m \times m},$$

where for any $m \times m, m \geq 1$, matrix $A = (a_{ij}), \quad i, j = 1, \ldots, m, \quad \|A\| = \sum_{i=1}^{m} \sum_{j=1}^{m} |a_{ij}|$ and $O_{m \times m}$ denotes the $m \times m$ zero matrix. Let W^m
denote Wiener measure on $D^m[0, 1]$, the space of all real valued functions.

2000 Mathematics Subject Classification: 60F05, 60G10.

Key words and phrases: functional central limit theorem, Linear process, moving
average process, negatively associated, martingale difference.

This work was supported by the Korea Research Foundation Grant funded by the
on \([0,1]\) that are right continuous and have finite left limits, endowed with
the sup norm (see, e.g., [3], [10]). Further, let

\[
T = \left(\sum_{j=0}^{\infty} A_j \right) \Gamma \left(\sum_{j=0}^{\infty} A_j \right)^{\prime},
\]

\(S_n = \sum_{t=1}^{n} X_t, n \geq 1(S_0 = \emptyset)\) and define for \(n \geq 1\) the stochastic process \(\xi_n\) by

\[
\xi_n(s) = n^{-\frac{1}{2}} S_{[ns]} \quad 0 \leq s \leq 1.
\]

In this paper we give sufficient conditions so that \(\sum_{t=1}^{\lfloor ns \rfloor} X_t\) (properly normalized) converges weakly to Wiener measure if the corresponding result for \(\sum_{t=1}^{\lfloor ns \rfloor} Z_t\) is true. As applications we also discuss functional central limit theorems for linear processes generated by martingale difference and negatively associated random vectors.

2. Main results

Theorem 2.1. Let \(X_t\) satisfy model (1.1) and \(d(n)\) be a positive constant sequence satisfying that \(d(n) \to \infty\) as \(n \to \infty\). Assume that \(\{A_j\}\) satisfies (1.2) and \(\{Z_t\}\) is any random vector sequence satisfying

\[
sup_j E \max_{1 \leq m \leq n} \left\| \sum_{k=1}^{m} Z_{k+j} \right\|^2 \leq C d^2(n) \quad \text{for every } n \geq 1
\]

and, as \(n \to \infty\),

\[
\frac{1}{d(n)} \max_{-n \leq k \leq n} \left\| Z_k \right\| \to^p 0.
\]

Then,

\[
\frac{1}{d(n)} \sum_{t=1}^{k_n(s)} X_t \Rightarrow W^m(s) \quad \text{implies} \quad \frac{1}{d(n)} \sum_{t=1}^{k_n(s)} X_t \Rightarrow BW^m(s),
\]

where \(k_n(s) = \sup \{ m : d^2(m) \leq sd^2(n) \}\) and \(B = \sum_{k=0}^{\infty} A_k \).

Theorem 2.1 can be applied to many important cases, such as whether innovation \(\{Z_t\}\) is martingale difference or negatively associated sequence. In the following, we will derive corollaries of Theorem 2.1. We note that Corollary 2.3 below is Theorem 1(i) of [6] and Corollary 2.8 is a new result.
DEFINITION 2.2. Let \(\{Z_k\} \) be a random vector sequence. We say that \(\{Z_k\} \) is a martingale difference sequence if \(E(Z_k|F_{k-1}) = 0 \), a.s. \(k = 0, \pm 1, \pm 2, \ldots \), where \(F_k = \sigma \{Z_i, i \leq k\} \).

COROLLARY 2.3. Define \(X_t \) as in (1.1) and \(\xi_n \) as in (1.4), respectively. Let \(\{Z_t\} \) be a sequence of \(m \)-dimensional martingale difference vectors with \(E(Z_t|F_{t-1}) = 0 \) a.s. and \(\Gamma_t \) denote the conditional covariance matrix of \(Z_t \), \(E(Z_tZ_t'|F_{t-1}) = \Gamma_t \) a.s., such that \(\frac{1}{n} \sum_{t=1}^{n} \Gamma_t \to^p \Gamma \), where \(F_t \) is sub-\(\sigma \)-algebra generated by \(Z_u, u \leq t \) and the prime denotes transpose and \(\Gamma \) is a positive definite(d.f.) non random matrix. Assume that \(\sup \ E\|Z_t\|^2 < \infty \) and \(\frac{1}{n} \sum_{t=1}^{n} E(Z_tZ_t'|I(Z_tZ_t' > n\epsilon)|F_{t-1}) \to^p 0 \) as \(n \to \infty \) for every \(\epsilon > 0 \), where \(I(\cdot) \) denotes the indicator function. Then, \(\xi_n \Rightarrow W^m \), where \(W^m \) is a Wiener measure with covariance matrix \(T = (\sum_{j=0}^{\infty} A_j)\Gamma(\sum_{j=0}^{\infty} A_j)' \).

PROOF. Define for \(n \geq 1 \) the stochastic process \(\eta_n \) by

\[
\eta_n(s) = n^{-\frac{1}{2}} \sum_{i=1}^{[ns]} Z_i, \ 0 \leq s \leq 1.
\]

(2.4)

It follows from the multivariate version of Theorem 1 of [2] or Theorem 2 of [1] that \(\eta_n(s) \) converges weakly to Wiener measure with covariance matrix \(\Gamma \) (c.f. Theorem 3.1 of [8]). On the other hand, it follows from Doob's maximal inequality and \(\sup \ E\|Z_t\|^2 < \infty \) that for every \(n \geq 1 \)

\[
\sup_j \max_{1 \leq m \leq n} \left(\sum_{k=1}^{m} Z_{k+j} \right)^2 \leq C_1 n \sup_j \max_{1 \leq m \leq n} \left(\sum_{k=1}^{m} Z_{k+j} \right)^2 \leq C_2 n
\]

(2.5)

and

\[
\frac{1}{\sqrt{n}} \max_{-n \leq k \leq n} \|Z_k\| \to^p 0.
\]

(2.6)

Hence, corollary 2.3 follows immediately from Theorem 2.1 with \(d(n) = \sqrt{n} \). \(\square \)

DEFINITION 2.4. Let \(\{Z_i, 1 \leq i \leq n\} \) be a sequence of \(m \)-dimensional random vectors. They are said to be negatively associated(NA) for every pair of disjoint subsets \(A \) and \(B \) of \(\{1, \ldots, n\} \) Cov\(f(Z_i, i \in A), g(Z_j, j \in B) \) \(\leq 0 \) whenever \(f \) and \(g \) are coordinatewise increasing and the covariance exists. An infinite family is negatively associated if every finite subfamily is negatively associated.

LEMMA 2.5. Let \(r \geq 2 \) and let \(\{Z_i, 1 \leq i \leq n\} \) be a sequence of \(m \)-dimensional negatively associated random vectors with \(E Z_i = 0 \) and
$E\|Z_i\|^r < \infty$, where $\|Z_i\| = (Z_{i1}^2 + \cdots + Z_{im}^2)^{\frac{1}{2}}$. Then there exists a constant $0 < A_r < \infty$ such that

$$(2.7) \quad E \max_{1 \leq k \leq n} \| \sum_{i=1}^{k} Z_i \|^r \leq A_r m^r \{ (\sum_{i=1}^{n} E\|Z_i\|^2)^{\frac{r}{2}} + \sum_{i=1}^{n} E\|Z_i\|^r \}. $$

Proof. Note that

$$(2.8) \quad \max_{1 \leq k \leq n} \| \sum_{i=1}^{k} Z_i \| \leq \sum_{j=1}^{m} \max_{1 \leq k \leq n} | \sum_{i=1}^{k} Z_{ij} |$$

and by the result in [11] we have

$$(2.9) \quad E \max_{1 \leq k \leq n} | \sum_{i=1}^{k} Z_{ij} |^r \leq A_r \{ (\sum_{i=1}^{n} E(Z_{ij})^2)^{\frac{r}{2}} + \sum_{i=1}^{n} E|Z_{ij}|^r \}$$

Hence, from (2.8) and (2.9) equation (2.7) follows. \qed

Lemma 2.6. Let $\{Z_i, 1 \leq i \leq n\}$ be a sequence of m-dimensional negatively associated random vectors with $E(Z_i) = 0$ and $E\|Z_i\|^2 < \infty$. Then for all $x > 0$ and $a > 0$,

$$(2.10) \quad P(\max_{1 \leq k \leq n} \| \sum_{i=1}^{k} Z_i \| \geq mx) \leq 2mP(\max_{1 \leq k \leq n} \| Z_k \| > a) + 4m \exp\left(-\frac{x^2}{8 \sum_{i=1}^{n} E\|Z_i\|^2}\right)$$

$$+ 4m\left(\frac{\sum_{i=1}^{n} E\|Z_i\|^2}{4(ax + \sum_{i=1}^{n} E\|Z_i\|^2)}\right)^{x/(12a)}.$$

Proof. From (2.8) and the result of [11], (2.10) follows easily. \qed

Theorem 2.7. Let $\{Z_i, i \geq 1\}$ be a strictly stationary sequence of m-dimensional negatively associated random vectors with $E(Z_1) = 0$ and $E\|Z_1\|^2 < \infty$. Define, for $t \in [0, 1]$, $n \geq 1 \xi_n(t) = n^{-\frac{1}{2}} \sum_{i=1}^{nt} Z_i$. If $E\|Z_1\|^2 + 2 \sum_{i=2}^{\infty} \sum_{j=1}^{m} E(Z_{1j}Z_{ij}) = \sigma^2 < \infty$, then, as $n \to \infty$, $\xi_n \Rightarrow B^m$, where B^m is an m-dimensional Wiener measure with covariance matrix $\Gamma = (\sigma_{kj})$ and $\sigma_{kj} = E(Z_{1k}Z_{1j}) + \sum_{i=2}^{\infty} E(Z_{1k}Z_{ij}) + E(Z_{1j}Z_{ik})$.

Proof. By means of the simple device due to Cramer Wold (see [3], [4]), from the Newman’s central limit theorem for negatively associated
random variables (see [9]) we obtain $n^{-\frac{1}{2}} \sum_{i=1}^{n} Z_i \rightarrow^{D} N(0, \Gamma)$, where $N(0, \Gamma)$ denotes an m-dimensional normal random vector and the symbol \rightarrow^{D} indicates convergence in distribution. Hence, as in the proof of Theorem 2 of [5] on weakly associated random vectors, the limit point of $\xi_n(\cdot)$ is an m-dimensional Wiener measure with covariance matrix $\Gamma = (\sigma_{k,l})$. It remains to verify the tightness of $\xi_n(\cdot)$ (see Theorem 15.1 of [3]). By Theorem 8.4 of [3] we only need to show that for any $\varepsilon > 0$, there exist a positive number λ and an integer n such that for every $n \geq n_0$

$$P(\max_{1 \leq k \leq n} \| \sum_{i=1}^{k} Z_i \| > \lambda n^{\frac{1}{2}}) \leq m^3 \varepsilon \lambda^{-2}. \quad (2.11)$$

Applying Lemma 2.6 with $\lambda = m\lambda'$, $x = \lambda' n^{\frac{1}{2}}$ and $a = \lambda' n^{\frac{1}{2}}/48$

$$P(\max_{1 \leq k \leq n} \| \sum_{i=1}^{k} Z_i \| > \lambda n^{\frac{1}{2}}) = P(\max_{1 \leq k \leq n} \| \sum_{i=1}^{k} Z_i \| > m\lambda' n^{\frac{1}{2}}) \leq 2mP(\max_{1 \leq k \leq n} \| Z_k \| > \lambda' n^{\frac{1}{2}}/48)

+ 4m \exp\left(-\frac{\lambda'^2 n}{8nE\|Z_1\|^2}\right) + 4m\left(\frac{nE\|Z_1\|^2}{4(nE\|Z_1\|^2 + \lambda'^2 n/48)}\right)^4 \leq m\lambda'^{-2} = m^3 \varepsilon \lambda^{-2}$$

provided that λ is sufficiently large. This proves (2.11), and hence the proof of Theorem 2.7 is complete. \hfill \Box

Corollary 2.8. Let $\{Z_i, i \geq 1\}$ be a strictly stationary negatively associated sequence of m-dimensional random vectors centered at expectations and $E\|Z_1\|^2 < \infty$ and X_t be defined as in (1.1). Let the stochastic process ξ_n be defined as in (1.4). Assume (1.2) and $E\|Z_1\|^2 + 2 \sum_{i=2}^{\infty} \sum_{j=1}^{m} E(Z_{1j}Z_{ij}) = \sigma^2 < \infty$ hold. Then $\xi_n \Rightarrow W^m$.

Proof. First note that $\xi_n(s) = n^{-\frac{1}{2}} \sum_{i=1}^{[ns]} Z_i$ converges weakly to Wiener measure B^m with covariance matrix Γ by Theorem 2.7. On the
other hand, it follows from Lemma 2.5 and the condition $E\|Z_1\|^2 < \infty$ that (2.5) and (2.6) hold. Hence, Corollary 2.8 follows immediately from Theorem 2.1 with $d(n) = \sqrt{n}$.

\[\square\]

3. Proof of Theorem 2.1

For every fixed $l \geq 1$, put

\[
X_{1j}^{(l)} = \sum_{k=0}^{l} A_k z_{j-k} \quad \text{and} \quad X_{2j}^{(l)} = \sum_{k=l+1}^{\infty} A_k z_{j-k}.
\]

From the idea in [7] (p.320) we obtain that for any $m \geq 1$,

\[
\sum_{j=1}^{m} X_{1j}^{(l)} = \sum_{j=1}^{m} \sum_{k=0}^{l} A_k z_{j-k}
\]

\[
= \sum_{k=0}^{l} A_k \sum_{j=1}^{m} z_{j} + \sum_{s=1}^{l} \sum_{j=s}^{l} A_j + \sum_{s=0}^{l-1} \sum_{j=s+1}^{l} A_j
\]

\[
= \sum_{k=0}^{l} A_k \sum_{j=1}^{m} z_{j} + R(m, l), \quad \text{(say)}.
\]

Therefore, it follows that for every fixed $l \geq 1$,

\[
\frac{1}{d(n)} \sum_{t=1}^{k_n(s)} X_t = \left(\sum_{k=0}^{l} A_k\right) \frac{1}{d(n)} \sum_{j=1}^{k_n(s)} z_{j} + \frac{1}{d(n)} R(k_n(s), l)
\]

\[
\frac{1}{d(n)} \sum_{j=1}^{k_n(s)} X_{2j}^{(l)}.
\]

By (3.3), Theorem 4.1 given in [3] (p.25) and noting that $\sum_{k=0}^{l} \|A_k\| \to B$ as $l \to \infty$, to prove (2.3), it suffices to show that for any $\delta > 0$,

\[
\limsup_{n \to \infty} P\{ \sup_{0 \leq t \leq 1} \|R(k_n(t), l)\| \geq \delta d(n)\} = 0,
\]

for every fixed $l \geq 1$ and

\[
\lim_{l \to \infty} \limsup_{n \to \infty} P\{ \sup_{0 \leq t \leq 1} \|\sum_{j=1}^{k_n(l)} X_{2j}^{(l)}\| \geq \delta d(n)\} = 0.
\]
By condition (2.2) since $\sum_{k=0}^{\infty} \|A_k\| < \infty$, as $n \to \infty$,

$$\frac{1}{d(n)} \sup_{0 \leq t \leq 1} \|R(k_n(s), l)\| \leq \frac{1}{d(n)} \max_{-l \leq j \leq n} \|Z_j\| \sum_{s=0}^{l} \left(\sum_{j=s}^{l} \|A_j\| + \sum_{j=s+1}^{\infty} \|A_u\| \right) \to P_0 0$$

and hence (3.4) holds.

Noting that $\sum_{j=1}^{m} X_{2j}^{(l)} = \sum_{k=l+1}^{\infty} A_k \sum_{j=1}^{m} Z_{j-k}$ for any $m \geq 1$, by applying Hölder inequality and (2.1), we have

$$E \sup_{1 \leq t \leq 1} \|\sum_{j=1}^{k_n(t)} X_{2j}^{(l)}\|^2 \leq (\sum_{k=l+1}^{\infty} \|A_k\|)^2 E \max_{1 \leq m \leq n} \|\sum_{j=1}^{m} Z_{j-k}\|^2 \leq C d^2(n) \left(\sum_{k=l+1}^{\infty} \|A_k\| \right)^2.$$

Hence, (3.5) follows immediately from the Markov inequality and $\sum_{k=l+1}^{\infty} \|A_k\| \to 0$ as $l \to \infty$. The proof of Theorem 2.1 is complete. \(\square\)

References

Department of Mathematics
WonKwang University
Jeonbuk 570-749, Korea
E-mail: songhack@wonkwang.ac.kr