ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES

SEOK WOO KIM AND YONG HAH LEE

Abstract. We prove that if a graph G of bounded degree has finitely many p-hyperbolic ends ($1 < p < \infty$) in which every bounded energy finite p-harmonic function is asymptotically constant for almost every path, then the set $\mathcal{HBD}_p(G)$ of all bounded energy finite p-harmonic functions on G is in one to one corresponding to \mathbb{R}^l, where l is the number of p-hyperbolic ends of G. Furthermore, we prove that if a graph G' is roughly isometric to G, then $\mathcal{HBD}_p(G')$ is also in one to one correspondence with \mathbb{R}^l.

1. Introduction

We say that a graph G has the Liouville property if every bounded harmonic function on G is constant. Thus the set of all bounded harmonic functions on G having Liouville property is in one to one correspondence with the real line \mathbb{R}. With this view point, given an operator \mathcal{A} on a graph, it seems natural to regard a class \mathcal{S} of solutions of \mathcal{A} which is in an one to one correspondence with the Euclidean space \mathbb{R}^l for some positive integer l as a generalized version of the Liouville property of the pair $(\mathcal{A}, \mathcal{S})$. In this paper, we study case of the p-Laplacian operator ($1 < p < \infty$) and the bounded p-harmonic functions on a graph G of bounded degree. If $p = 2$, then we obtain harmonic functions on G as a special case. (See [6] and [8]..) In Section 3, we study a sort of an asymptotic behavior of p-harmonic functions which enables us to identify a subset of the set of the bounded p-harmonic functions on G. To be precise, if a graph G has a finite number of p-hyperbolic ends and every bounded energy finite p-harmonic function on G satisfies such an behavior, then we have the following theorem:

Theorem 1.1. Let G be a graph with l ($l \geq 1$) p-hyperbolic ends. Suppose that every p-harmonic function in $\mathcal{HBD}_p(G)$ is asymptotically constant for p-almost every path in each p-hyperbolic end, where $\mathcal{HBD}_p(G)$ denotes the set of all

Received March 5, 2007.
2000 Mathematics Subject Classification. Primary 31C20.
Key words and phrases. p-harmonic function, almost every path, rough isometry.
The first author was supported by grant No. R01-2006-000-10047-0(2007) from the Basic Research Program of the Korea Science & Engineering Foundation.

©2007 The Korean Mathematical Society
bounded energy finite p-harmonic functions on G. Then given any real numbers $a_1, a_2, \ldots, a_l \in \mathbb{R}$, there exists a unique p-harmonic function $v \in \mathcal{HD}_p(G)$ such that

$$v(p) = a_i \text{ for } p\text{-almost every path } p \in \mathcal{P}_{E_i}$$

for each $i = 1, 2, \ldots, l$, where E_1, E_2, \ldots, E_l are p-hyperbolic ends of G, and \mathcal{P}_{E_i} denotes a family of paths lying in E_i to be explained in Section 3.

In Section 4, we extend our result to graphs being roughly isometric to those satisfying the assumption of Theorem 1.1:

Theorem 1.2. Let G be a graph with $l \ (l \geq 1)$ p-hyperbolic ends. Suppose that every p-harmonic function in $\mathcal{HD}_p(G)$ is asymptotically constant for p-almost every path in each p-hyperbolic end. Let G' be a graph being roughly isometric to G. Then given any real numbers $a_1, a_2, \ldots, a_l \in \mathbb{R}$, there exists a unique p-harmonic function $v \in \mathcal{HD}_p(G')$ such that

$$v(p) = a_i \text{ for } p\text{-almost every path } p \in \mathcal{P}_{E_i}$$

for each $i = 1, 2, \ldots, l$, where E_1, E_2, \ldots, E_l are p-hyperbolic ends of G'.

2. Preliminaries

Let $G = (V_G, E_G)$ be a graph, where V_G and E_G denote the vertex set and the edge set, respectively, of G. If vertices x and y are the endpoints of the same edge, then we say that x and y are neighbors and write $y \in N_x$ and $x \in N_y$. The degree of x is the number of all neighbors of x and it is denoted by $\|N_x\|$. A graph G is said to be of bounded degree if there exists a number $\nu < \infty$ such that $\|N_x\| \leq \nu$ for all $x \in V_G$. A sequence $x = (x_0, x_1, \ldots, x_r)$ of vertices in V_G is called a path from x_0 to x_r with the length r if x_k is an element of $N_{x_{k-1}}$ for each $k = 1, 2, \ldots, r$. We say that a graph G is connected if any two points of V_G can be joined by a path. Throughout this paper, G is a connected infinite graph with no self-loops and is of bounded degree.

For any vertices x and y, we define $d(x, y)$ to be the length of the shortest path joining x to y. Then d defines a metric on V_G. For this metric d and $r \in \mathbb{N}$, define an r-neighborhood $N_r(x) = \{y \in V_G : d(x, y) \leq r\}$ for each $x \in V_G$. Given any subset $S \subset V_G$, the outer boundary ∂S and the inner boundary δS of S are defined by

$$\partial S = \{x \in V_G : d(x, S) = 1\} \text{ and } \delta S = \{x \in V_G : d(x, V_G \setminus S) = 1\},$$

respectively.

For each real valued function u on $S \cup \partial S$, define the norm of p-gradient, the p-Dirichlet sum, and the p-Laplacian of u at a point $x \in S$, where $1 < p < \infty$, respectively.
in such a way that

\[|Du|(x) = \left(\sum_{y \in N_x} |u(y) - u(x)|^p \right)^{1/p}, \]

\[I_p(u, S) = \sum_{x \in S} |Du|^p(x), \]

\[\Delta_p u(x) = \sum_{y \in N_x} \text{sign}(u(y) - u(x))|u(y) - u(x)|^{p-1} \]

\[= \sum_{y \in N_x} |u(y) - u(x)|^{p-2}(u(y) - u(x)), \]

respectively.

We say that \(u \) is \(p \)-harmonic on \(S \) if \(\Delta_p u(x) = 0 \) for all \(x \in S \). We introduce some useful properties of \(p \)-harmonic functions on graphs in [1]. If a subset \(S \subset V_G \) is finite, then the following conditions are equivalent:

(i) A function \(u \) is \(p \)-harmonic on \(S \).

(ii) A function \(u \) satisfies \(p \)-Laplacian equation in a weak form. That is,

\[\sum_{x \in S} \sum_{y \in N_x} |u(y) - u(x)|^{p-2}(u(y) - u(x))(w(y) - w(x)) = 0 \]

for any real valued function \(w \) on \(S \cup \partial S \) such that \(w = 0 \) on \(\partial S \).

(iii) A function \(u \) is a minimizer of \(p \)-Dirichlet sum \(I_p(\cdot, S) \) among functions on \(S \cup \partial S \) with the same values on \(\partial S \). That is,

\[\sum_{x \in S} |Du|^p(x) \leq \sum_{x \in S} |Dv|^p(x) \]

for every function \(v \) on \(S \cup \partial S \) such that \(v = u \) on \(\partial S \).

Let us set \(T(u, w; x, y) = |u(y) - u(x)|^{p-2}(u(y) - u(x))(w(y) - w(x)) \) whenever functions \(u \) and \(w \) are defined at \(x \) and \(y \). Then it is easy to check that

\[T(v, v - u; x, y) \geq T(u, v - u; x, y) \]

if \(u \) and \(v \) are defined at \(x \) and \(y \). The equality occurs only if \(v(x) - u(x) = v(y) - u(y) \). By \((2) \), the following comparison principle holds on \(S \): Suppose there exist \(p \)-harmonic functions \(u \) and \(v \) on a finite set \(S \subset V_G \) such that \(u \geq v \) on \(\partial S \). Then \(u \geq v \) on \(S \).

Let \(S \) be a finite subset of \(V_G \). Suppose that \(\{u_i\} \) is a sequence of functions on \(S \cup \partial S \) converging to a function \(u \) pointwisely. Then for each point \(x \in S \),

\[|Du_i|^p(x) \to |Du|^p(x) \]

and

\[\Delta_p u_i(x) \to \Delta_p u(x) \]

and

\[I_p(u_i, S) \to I_p(u, S) \]

as \(i \to \infty \). By these facts together with the comparison principle, the following existence and uniqueness result holds: Let \(S \) be a finite subset of \(V_G \). For any
function v on ∂S, there exists a unique function on $S \cup \partial S$ which is p-harmonic on S and equal to v on ∂S.

Let $\{S_i\}$ be an increasing sequence of finite connected subsets of V_G and $S = \bigcup S_i$. Let $\{u_i\}$ be a sequence of functions on $S \cup \partial S$ such that each u_i is p-harmonic on S_i and $u_i(x) \to u(x) < \infty$ as $i \to \infty$ for all $x \in S \cup \partial S$. Then the limit function u is p-harmonic on S.

We say that a real valued function u is energy finite if it has finite p-Dirichlet sum on the whole set V_G, i.e., $I_p(u, V_G) < \infty$. Let $BD_p(G)$ denote the set of all bounded energy finite functions on V_G. Then, $BD_p(G)$ is a Banach space with the norm

$$||u||_p = \sup_{V_G} |u| + I_p(u, V_G)^{1/p}. $$

We denote by $BD_{p,0}(G)$ the closure of the set of all finitely supported functions on V_G in $BD_p(G)$ with respect to the norm $|| \cdot ||_p$. The subset of all bounded p-harmonic functions in $BD_p(G)$ is denoted by $\mathcal{H}BD_p(G)$.

The subgraph Γ induced by a set $S \subset V_G$ is the graph $\Gamma = (S, E_\Gamma)$, where E_Γ is the set of all edges in E_G with both ends points in S. In particular, that a subset $S \subset V_G$ is connected means that the subgraph $\Gamma = (S, E_\Gamma)$ induced by S is connected. A connected subset $S \subset V_G$ with $\partial S \neq \emptyset$ is called D_p-massive if there exists a nonnegative p-harmonic function u on S such that $u = 0$ on ∂S, $\sup_S u = 1$ and $I_p(u, S) < \infty$. We say that a connected infinite set $S \subset V_G$ is p-hyperbolic if there exists a nonempty finite set $A \subset S$ such that

$$\text{Cap}_p(A, \infty, S) = \inf_u I_p(u, S) > 0,$$

where the infimum is taken over all finitely supported function u on $S \cup \partial S$ such that $u = 1$ on A. Otherwise, S is called p-parabolic.

We now introduce the p-Royden decomposition: (See [9].)

Proposition 2.1. If a graph G is p-hyperbolic, then for each function $u \in BD_p(G)$, there exist unique functions $h \in \mathcal{H}BD_p(G)$ and $g \in BD_{p,0}(G)$ such that $u = h + g$.

For each nonnegative real valued function w on E_G, define

$$\mathcal{E}_p(w) = \sum_{e \in E_G} w^p(e).$$

Let P be a family of infinite paths in G. The p-extremal length $\lambda_p(P)$ of P is defined by

$$\lambda_p(P) = \left(\inf_w \mathcal{E}_p(w)\right)^{-1},$$

where the infimum is taken over the set of all nonnegative functions w on E_G such that $\mathcal{E}_p(w) < \infty$ and $\sum_{e \in E_x} w(e) \geq 1$ for each path $x \in P$, where E_x denotes the edge set of x. The following proposition gives some fundamental properties of the extremal length. (See [4].)

Proposition 2.2. Let $P_n, n = 1, 2, \ldots,$ be families of paths in a graph G.

(i) If $P_1 \subset P_2$, then $\lambda_p(P_1) \geq \lambda_p(P_2)$.

(ii) $\sum_{n=1}^{\infty} \lambda_p(P_n)^{-1} \geq \lambda_p(\cup_{n=1}^{\infty} P_n)^{-1}$.

On the other hand, the p-extremal length is closely related to the p-capacity:

Let $S \subset V_G$ be a connected infinite subset. For a nonempty finite subset $A \subset S$, let $P_{S,A}$ be the set of all non-self-intersecting infinite paths in S starting from a vertex in A. Then we have

$$(3) \quad \lambda_p(P_{S,A}) = \text{Cap}_p(A, \infty, S)^{-1}.$$

(See [9] and [7].) Furthermore, if $S \subset V_G$ is p-hyperbolic, then by (3),

$$(4) \quad \lambda_p(P_{S,A}) = \text{Cap}_p(A, \infty, S)^{-1} < \infty.$$

We say that a property holds for p-almost every path in P if the subset of all paths for which the property is not true has p-extremal length ∞.

The following proposition gives some p-almost every path properties of energy finite functions: (See [4] and [9].)

Proposition 2.3. Let P_o be the family of all non-self-intersecting infinite paths from a fixed point $o \in V_G$.

(i) If $u \in BD_p(G)$, then $u(x)$ exists and is finite for p-almost every path $x \in P_o$, where $u(x) = \lim u(x)$ as $x \to \infty$ along the vertices of x.

(ii) $u \in BD_{p,0}(G)$ if and only if $u(x) = 0$ for p-almost every path $x \in P_o$.

3. Asymptotically constant for p-almost every path on ends

We now define ends of a graph G with its vertex set V_G: Fix a point $o \in V_G$. For each $r \in \mathbb{N}$, we denote by $\#(r)$ the number of infinite connected components of $V_G \setminus N_r(o)$. Let $\lim_{r \to \infty} \#(r) = l$, where l may be infinity, then we say that the number of ends of G is l. If l is finite, then we can choose $r_0 \in \mathbb{N}$ such that $\#(r) = l$ for all $r \geq r_0$.

Using the p-hyperbolicity, we can divide ends of G into two classes as follows:

An end E of G is called p-hyperbolic if

$$\text{Cap}_p(\partial E, \infty, E) = \inf_u I_p(u, E) > 0,$$

where the infimum is taken over all finitely supported function u on $E \cup \partial E$ such that $u = 1$ on ∂E. Otherwise, the end is called p-parabolic.

From the definition of a p-hyperbolic end, we have the following lemma:

Lemma 3.1. If E is a p-hyperbolic end, then there exists a p-harmonic function u_E on E, called a p-harmonic measure of E, with the following properties:

(i) $0 \leq u_E \leq 1$ on E;

(ii) $u_E = 0$ on ∂E;

(iii) $\limsup_{x \in E} u_E(x) = 1$;

(iv) u_E has finite p-Dirichlet sum over E.

Let us denote P_G to be the family of all non-self-intersecting infinite paths lying in $V_G \setminus N_{r_1}(o)$ starting from a vertex in $\delta N_{r_1}(o)$ for some large $r_1 \in \mathbb{N}$. For each end E of G, let us denote $P_E \subset P_G$ to be the family of all paths lying in $E \setminus N_{r_1}(o)$ starting from a vertex in $\delta N_{r_1}(o) \cap E$. We say that a real valued function u on V_G is asymptotically constant for p-almost every path in E if there exists a constant c such that

$$u(x) = c \text{ for } p\text{-almost every path } x \in P_E,$$

where $u(x) = \lim u(x)$ as x goes to ∞ along vertices on x.

Lemma 3.2. Let E be a p-hyperbolic end of a graph G and u be a nonconstant function in $\mathcal{HBD}_p(G)$ such that $0 \leq u \leq 1$. Suppose that u is asymptotically constant for p-almost every path in E. If $\limsup_{x \to \infty, x \in E} u = 1$, then $u(x) = 1$ for p-almost every path $x \in P_E$.

Proof. Suppose the lemma is not true. Then by assumption, there exists a constant c such that $u(x) = c$ for p-almost every path $x \in P_E$ and $0 \leq c < 1$. Since u is nonconstant, there exists a proper subset Ω of E such that $\Omega = \{ x \in E : u(x) > 1 - \epsilon \}$, where ϵ is a positive constant so small that $1 - \epsilon > c$. Clearly, Ω is a D_p-massive subset. By (4), there exists a subfamily P_{Ω} of P_E such that $\lambda_p(P_{\Omega}) < \infty$. But from the definition of Ω, one can conclude that $u(x) > c$ for all paths $x \in P_{\Omega}$. This contradicts the fact that $u(x) = c$ for p-almost every path $x \in P_E$. This completes the proof. \Box

Proof of Theorem 1.1. For each $i = 1, 2, \ldots, l$, extend u_{E_i} to be zero outside E_i and then construct a sequence of real valued functions $\{u_{r,i} \}_{r > r_0}$ on V_G such that

$$\begin{cases}
\Delta_p u_{r,i} = 0 \text{ on } N_r(o); \\
u_{r,i} = u_{E_i} \text{ on } V_G \setminus N_r(o),
\end{cases}$$

where u_{E_i} is a p-harmonic measure of E_i constructed in Lemma 3.1 for each i. By the comparison principle, $u_{E_i} \leq u_{r,i} \leq 1$ on $N_r(o)$ for each i. Thus there exists a convergent subsequence, and its limit function u_i satisfies that

$$\begin{cases}
\Delta_p u_i = 0 \text{ on } V_G; \\
0 \leq u_i \leq 1; \\
\limsup_{x \to \infty, x \in E_i} u_i = 1.
\end{cases}$$

By the minimizing property of p-harmonic functions, u_i is energy finite for each i.

Without loss of generality, we may assume that $0 < a_1 \leq a_2 \leq \cdots \leq a_l \leq 2a_1$. Let us construct a sequence of real valued functions $\{v_r \}_{r > r_0}$ such that

$$\begin{cases}
\Delta_p v_r = 0 \text{ on } N_r(o); \\
v_r = a_i \text{ on } E_i \setminus N_r(o); \\
v_r = 0 \text{ on } V_G \setminus (\bigcup_{k=1}^l E_k \cup N_r(o)),
\end{cases}$$
where $i = 1, 2, \ldots, l$. Then
\[a_i u_i \leq v_r \leq a_i(2 - u_i) \text{ on } (\delta N_{r_0}(o) \cup \partial N_r(o)) \cap E_i, \]
where u_i is the p-harmonic function constructed above. Hence by the comparison principle, we conclude that
\[a_i u_i \leq v_r \leq a_i(2 - u_i) \text{ on } N_r(o) \cap E_i. \]
There exists a subsequence, denoted by $\{v_{r_m}\}$, converging to a p-harmonic function v on V_G. By Lemma 3.2, $u_i(x) = 1$ for p-almost every path $x \in P_{E_i}$ for each i. Hence v satisfies (1). By the minimizing property of p-harmonic function, v has finite p-Dirichlet sum.

Suppose that there exists a p-harmonic function $w \in \mathcal{HBD}_p(G)$ satisfying (1). Put $P_{E_i} = P_{i,v,1} \cup P_{i,v,2}$ for each i, where
\[P_{i,v,1} = \{x \in P_{E_i} : v(x) = a_i\} \text{ and } P_{i,v,2} = \{x \in P_{E_i} : v(x) \neq a_i\}. \]
Then we have $\lambda_p(P_{i,v,1}) < \infty$ and $\lambda_p(P_{i,v,2}) = \infty$ for each i. Similarly, let us set $P_{E_i} = P_{i,v,1} \cup P_{i,v,2}$ for each i, where
\[P_{i,v,1} = \{x \in P_{E_i} : v(x) = a_i\} \text{ and } P_{i,v,2} = \{x \in P_{E_i} : v(x) \neq a_i\}. \]
Then we have $\lambda_p(P_{i,v,1}) < \infty$ and $\lambda_p(P_{i,v,2}) = \infty$ for each i. From Proposition 2.2 and Proposition 2.3, we conclude that
\[\lambda_p(P_{E_i} \setminus (P_{i,v,1} \cap P_{i,v,2})) = \lambda_p((P_{E_i} \setminus P_{i,v,1}) \cup (P_{E_i} \setminus P_{i,v,1})) \geq 1/(\lambda_p(P_{E_i} \setminus P_{i,v,1})^{-1} + \lambda_p(P_{E_i} \setminus P_{i,v,1})^{-1}) = \infty \]
for each i. This implies that
\[(v - w)(x) = 0 \text{ for } p\text{-almost every path } x \in P_{E_i}, \]
for each $i = 1, 2, \ldots, l$. On the other hand, since $\lambda_p(P_G \setminus \bigcup_{i=1}^l P_{E_i}) = \infty$, we have
\[(v - w)(x) = 0 \text{ for } p\text{-almost every path } x \in P_G. \]
Consequently, by Proposition 2.3, we conclude that $v - w \in BD_{p,0}(G)$. Thus there exists a sequence of finitely supported functions converging to $v - w$ in $BD_p(G)$. By this fact together with the Hölder inequality, since v and w are p-harmonic functions on V_G, it is easy to see that
\[\sum_{x \in V_G} \sum_{y \in N_x} |v(y) - v(x)|^{p-2}(v(y) - v(x))((v - w)(y) - (v - w)(x)) = 0 \]
and
\[\sum_{x \in V_G} \sum_{y \in N_x} |w(y) - w(x)|^{p-2}(w(y) - w(x))((v - w)(y) - (v - w)(x)) = 0. \]
Thus by (2), we conclude that $v - w$ is constant function on N_x for all points $x \in V_G$. Since V_G is connected, by (5), we conclude that $v \equiv w$ on V_G. \qed
4. Asymptotically constant for p-almost every path and rough isometries

We begin with introducing rough isometries between metric spaces. A map $\varphi : X \to Y$ is called a rough isometry between metric spaces X and Y if it satisfies the following condition:

\[(R) \quad \text{for some constant } \tau > 0, \text{ the } \tau\text{-neighborhood of the image } \varphi(X) \text{ covers } Y;\]
\[\text{there exist constants } a \geq 1 \text{ and } b \geq 0 \text{ such that }\]
\[a^{-1}d(x_1, x_2) - b \leq d(\varphi(x_1), \varphi(x_2)) \leq ad(x_1, x_2) + b\]
\[\text{for all points } x_1, x_2 \in X, \text{ where } d \text{ denotes the distances of } X \text{ and } Y\]
induced from their metrics, respectively.

If such a map exists, then X is said to be roughly isometric to Y. Being roughly isometric is an equivalent relation. (See [2].) In particular, if $\varphi : X \to Y$ is a rough isometry satisfying (R), then for any point $y \in Y$, there exists at least one point $x \in X$ such that $d(\varphi(x), y) < \tau$. If we set $\varphi^{-1}(y) = x$, then φ^- satisfies (R) with constants τ', a' and b', where $\tau' = a(b + \tau), a' = a$ and $b' = a(b + 2\tau)$.

On the other hand, since the vertex set of each graph is a metric space, we can define rough isometries between the vertex sets of graphs similarly as above. Let $G = (V_G, E_G)$ and $G' = (V_{G'}, E_{G'})$ be graphs, and $\varphi : V_{G'} \to V_G$ be a rough isometry. For convenience' sake, we prefer to write the rough isometry $\varphi : G' \to G$ rather than $\varphi : V_{G'} \to V_G$.

Slightly modifying the proof of [5, 3], the number of ends of a graph is a rough isometric invariant. In fact, the rough isometry between graphs gives a one to one correspondence between ends of the graphs and, furthermore, it induces the rough isometry between each end and its corresponding end. On the other hand, the p-parabolicity of ends is preserved under rough isometries between ends. Also, we can prove that the property of asymptotically constant for p-almost every path is invariant under rough isometries between ends as follows:

Theorem 4.1. Let G and G' be graphs with finitely many ends and roughly isometric to each other. Suppose that every p-harmonic function in $\mathcal{HBD}_p(G)$ is asymptotically constant for p-almost every path in each p-hyperbolic end of G. Then every p-harmonic function in $\mathcal{HBD}_p(G')$ is asymptotically constant for p-almost every path in each p-hyperbolic end of G'.

To prove Theorem 4.1, we need the following lemmas:

Lemma 4.2. Let G and G' be graphs with finitely many ends, and $\varphi : G' \to G$ be a rough isometry. Suppose that every p-harmonic function in $\mathcal{HBD}_p(G)$ is asymptotically constant for p-almost every path in each p-hyperbolic end of G. Then for each $u \in \mathcal{HBD}_p(G')$, $u \circ \varphi^-$ is asymptotically constant for p-almost every path in each p-hyperbolic end of G.
Proof. For each \(u \in \mathcal{HBD}_p(G') \), it is easy to check that \(u \circ \varphi^- \in \mathcal{BD}_p(G) \). So, by Proposition 2.1, there exist unique \(h \in \mathcal{HBD}_p(G) \) and \(g \in \mathcal{D}_{p,0}(G) \) such that
\[
u \circ \varphi^- = h + g.
\]
By the assumption, \(h \) is asymptotically constant for \(p \)-almost every path in each \(p \)-hyperbolic end of \(G \). On the other hand, by Proposition 2.3, \(g \) is asymptotically constant \(0 \) for \(p \)-almost every path in each \(p \)-hyperbolic end of \(G \).

Let \(E_1, E_2, \ldots, E_l \) be \(p \)-hyperbolic ends of \(G \). Then there exist constants \(c_1, c_2, \ldots, c_l \) such that
\[
 h(y) = c_i \quad \text{for \(p \)-almost every path} \quad y \in P_{E_i}
\]
for each \(i = 1, 2, \ldots, l \). Put \(P_{E_i} = P_{i,h,1} \cup P_{i,h,2} \) for each \(i \), where
\[
P_{i,h,1} = \{ y \in P_{E_i} : h(y) = c_i \} \quad \text{and} \quad P_{i,h,2} = \{ y \in P_{E_i} : h(y) \neq c_i \}.
\]
Then we have \(\lambda_p(P_{i,h,1}) < \infty \) and \(\lambda_p(P_{i,h,2}) = \infty \) for each \(i \). Similarly, let us set \(P_{E_i} = P_{i,g,1} \cup P_{i,g,2} \) for each \(i \), where
\[
P_{i,g,1} = \{ y \in P_{E_i} : g(y) = 0 \} \quad \text{and} \quad P_{i,g,2} = \{ y \in P_{E_i} : g(y) \neq 0 \}.
\]
Then, by our claim, we have \(\lambda_p(P_{i,g,1}) < \infty \) and \(\lambda_p(P_{i,g,2}) = \infty \) for each \(i \).

Arguing similarly as in the proof of Theorem 1.1, we have
\[
 \lambda_p(P_{E_i} \setminus (P_{i,h,1} \cap P_{i,g,1})) = \infty
\]
for each \(i \). Hence \(u \circ \varphi^- \) is asymptotically constant \(c_i \) at infinity of \(E_i \) for \(p \)-almost every path \(y \in P_{E_i} \) for each \(i \). This completes the proof. \(\square \)

Lemma 4.3. Let \(G \) and \(G' \) be graphs with finitely many ends and \(\varphi : G' \to G \) be a rough isometry. Let \(u \in \mathcal{HBD}_p(G') \). Suppose that \(u \circ \varphi^- \) is asymptotically constant for \(p \)-almost every path in each \(p \)-hyperbolic end of \(G \). Then \(u \) is asymptotically constant for \(p \)-almost every path in each \(p \)-hyperbolic end of \(G' \).

Proof. Let \(E \) be a \(p \)-hyperbolic end of \(G \) and \(E' \) be the corresponding end of \(G' \) under \(\varphi \). Since \(u \in \mathcal{HBD}_p(G') \), by Proposition 2.3,
\[
u(x) \text{ exists and finite for } p \text{-almost every path} \ x \in P_o.
\]
Put \(P_{E'} = P_1 \cup P_2 \cup P_3 \), where \(P_1 = \{ x \in P_{E'} : u(x) = c \} \), \(P_2 = \{ x \in P_{E'} : u(x) \neq c \} \) and \(P_3 = \{ x \in P_{E'} : u(x) \text{ does not exists.} \} \). Since \(\lambda_p(P_3) = \infty \), we have only to show that \(\lambda_p(P_2) = \infty \).

For each path \(x \in P_2 \), we will assign a suitable path \(y \in P_{2,\varphi^-} \), where \(P_{2,\varphi^-} = \{ y \in P_G : (u \circ \varphi^-)(y) \neq c \} \). Let us choose any path \(x \in P_2 \). We may assume that \(x = (o, x_1, x_2, \ldots, x_n, \ldots) \). By definition of the inverse rough isometry \(\varphi^- \), there exists a point \(y_n \in E \) such that \(d(x_n, \varphi^-(y_n)) < a(b + \tau) \) for each positive integer \(n \). Let us choose a positive constant \(\rho \) in such a way that \(d(y_n, y_{n+1}) \leq \rho \) and \(d(\varphi^-(y_n), \varphi^-(y_{n+1})) \leq \rho \).

For each positive integer \(n \), we can choose a minimal path \((z^n_0, z^n_1, \ldots, z^n_m, \ldots) \) in such a way that \(z^n_0 = y_n, z^n_m = y_{n+1} \), and \(m_n \leq \rho \). It follows that there exists an infinite path \(y = (o', t_1, t_2, \ldots, t_j, \ldots) \in P_E \) and a nondecreasing sequence of
subscripts \(j(n) \to \infty \) as \(n \to \infty \) such that \(t_{j(n)} = y_n \) and \(j(n + 1) - j(n) \leq \rho \). One can choose a minimal path \((v^0_0, v^1_1, \ldots, v^n_{l_n})\) in such a way that \(s^n_0 = x_n, \ s^n_{l_n} = \varphi^-(t_{j(n)}) \) and \(l_n \leq a(b + \tau) \). Let us observe that

\[
|u(x_n) - u(\varphi^-(t_{j(n)}))| \leq a(b + \tau) \sum_{i=1}^{l_n} |u(s^n_i) - u(s^n_{i-1})| \\
\leq C \sum_{x' \in N_{a(b+\tau)}(x_n)} |Du|(x').
\]

Since \(u \in BD_{p}(E') \), we conclude that

\[
|u(x_n) - u(\varphi^-(t_{j(n)}))|^p \leq C \sum_{x' \in N_{a(b+\tau)}(x_n)} |Du|^p(x') \to 0 \text{ as } n \to \infty.
\]

This implies that \((u \circ \varphi^-)(t_{j(n)}) \to u(y) \neq c \) as \(n \to \infty \). On the other hand, we have

\[
|u(\varphi^-(t_j)) - u(\varphi^-(t_{j(n)}))| \leq \rho \sum_{i=1}^{m_n} |u(\varphi^-(z^n_i)) - u(\varphi^-(z^n_{i-1}))| \\
\leq C \sum_{x' \in N_{a}(x_n)} |Du|(x')
\]

for each subscript \(j \in [j(n), j(n+1)] \). Hence we have

\[
|u(\varphi^-(t_j)) - u(\varphi^-(t_{j(n)}))|^p \leq C \sum_{x' \in N_{a}(x_n)} |Du|^p(x') \to 0 \text{ as } n \to \infty.
\]

Thus \((u \circ \varphi^-)(t_j) \to u(x) \neq c \) as \(j \to \infty \). Hence \(y \) belongs to \(P_{2, \varphi^-} \).

Since \(\lambda_p(P_{2, \varphi^-}) = \infty \), by the equivalent condition for a family of paths to have infinite \(p \)-extremal length \([4]\), there exists a nonnegative function \(w \) on the edge set \(E_E \) of \(E \) such that \(\sum_{\hat{e} \in E_E} w^p(\hat{e}) = E_p(w) < \infty \) and \(\sum_{\hat{e} \in E(y)} w(\hat{e}) = \infty \) for all paths \(y \in P_{2, \varphi^-} \). For each positive integer \(\zeta \) and each edge \(e = [z_1, z_2] \in E_{E'} \), let us define a set \(U(e, \zeta) = \{ \hat{e} = [a_1, a_2] \in E_E : d(z_i, \varphi^-(a_j)) \leq \zeta \text{ for some } i, j = 1, 2 \} \). Let us define a function \(w^* \) on \(E_{E'} \) in the following way: \(w^*(e) = \sup_{\hat{e} \in U(e, \zeta)} w(\hat{e}) \) for all edges \(e \in E_{E'} \). Since \(w^{*\zeta}(e) \leq \sum_{\hat{e} \in U(e, \zeta)} w^{*\zeta}(\hat{e}) \) for each edge \(e \in E_{E'} \), we have

\[
E_p(w^*) \leq C \sum_{\hat{e} \in E_E} w^p(\hat{e}) < \infty,
\]

where \(C \) is a positive constant depending on \(\zeta \). Let us fix a positive integer \(\kappa \) such that \([t_{j-1}, t_j] \in U([x_n, x_{n+1}], \kappa) \) for all \(j(n) \leq j \leq j(n+1) \), where \(y = (o', t_1, t_2, \ldots, t_j, \ldots) \) is a path in \(P_{2, \varphi^-} \) and \(x = (o, x_1, x_2, \ldots, x_n, \ldots) \) is a path in \(P_2 \) which are given above. Then for each path \(x \in P_2 \),

\[
\sum_{e \in E(x)} w^*(e) \geq \frac{1}{\rho} \sum_{\hat{e} \in E(y)} w(\hat{e}) = \infty.
\]
Therefore, we have $\lambda_p(P_2) = \infty$. This completes the proof.

We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. Let u be a p-harmonic function in $\mathcal{HD}_p(G')$. By Lemma 4.2, the function $u \circ \phi^-$ is asymptotically constant for p-almost every path in each p-hyperbolic end of G. Then, by Lemma 4.3, the function u is asymptotically constant for p-almost every path in each p-hyperbolic end of G'. This completes the proof.

Combining Theorem 1.1 and Theorem 4.1, we get Theorem 1.2.

References

Seok Woo Kim
Department of Mathematics Education
Konkuk University
Seoul 143-701, Korea
E-mail address: swkim@konkuk.ac.kr

Yong Hah Lee
Department of Mathematics Education
Ewha Womans University
Seoul 120-750, Korea
E-mail address: yonghah@ewha.ac.kr