A NOTE ON THE FIRST LAYERS OF \mathbb{Z}_p-EXTENSIONS

JANGHEON OH

ABSTRACT. In this paper we explicitly compute a Minkowski unit of a real abelian field and give a criterion when the first layer of anti-cyclotomic \mathbb{Z}_3-extension of an imaginary quadratic field is unramified everywhere.

1. Introduction

For each prime number p, a \mathbb{Z}_p-extension of a number field k is an extension $k = k_0 \subset k_1 \subset \cdots \subset k_\infty$ with $Gal(k_\infty/k) \simeq \mathbb{Z}_p$, the additive group of p-adic integers. Let k be an imaginary quadratic field, and K an abelian extension of k. The number field K is called an anti-cyclotomic extension of k if it is Galois over \mathbb{Q}, and $Gal(k/\mathbb{Q})$ acts on $Gal(K/k)$ by -1. The explicit construction of the first layer k_1^α of the anti-cyclotomic \mathbb{Z}_p-extension of k is given in [2, 3, 4].

In this paper, we prove two theorems (Theorem 1 and Theorem 2 in this paper) on questions raised from our previous paper [2, 3, 4]. First it is about the explicit construction of a Minkowski unit which plays a very important role in [4]. Let L be a finite real Galois extension of \mathbb{Q}. It is well-known that there exists a unit in L such that the set of units $\{c^\sigma|\sigma \neq 1, \sigma \in Gal(L/\mathbb{Q})\}$ is multiplicative independent and generates a subgroup of finite index in the full group of units. Such a unit is called a Minkowski unit. Theorem 1 gives an explicit construction of a Minkowski unit.

The first layer of anti-cyclotomic \mathbb{Z}_p-extension of an imaginary quadratic field k may be or may not be contained in the Hilbert class field of k. Hence it is a natural question when the compositum K of the \mathbb{Z}_p-extensions of a number field k and Hilbert class field of k are linearly disjoint over k. Theorem 2 gives an answer for this question when k is an imaginary quadratic field and $p = 3$.

Let $n \equiv 2 \mod 4$, and let $n = \prod_{i=1}^s p_i^{\ell_i}$ be its prime factorization. Let I run through all subsets of $\{1, \ldots, s\}$, except $\{1, \ldots, s\}$, and let $n_I = \prod_{i \in I} p_i^{\ell_i}$. For

Received January 30, 2008.
2000 Mathematics Subject Classification. 11R23.
Key words and phrases. Minkowski unit, anti-cyclotomic extension, \mathbb{Z}_p-extension.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-314-C00004).

©2009 The Korean Mathematical Society
integer $a, (a, n) = 1$, define (see [5, Theorem 8.3])

$$\xi_a = \zeta_n^{d_a} \prod_l \frac{1 - \zeta_n^{an_l}}{1 - \zeta_n^{n_l}}, \quad d_a = \frac{1}{2} (1 - a) \sum_l n_l,$$

where ζ_n is a primitive n-th root of unity.

Theorem 1. Let $n \not\equiv 2 \mod 4$, and

$$(Z/n)^x/\{\pm 1\} = \langle t_1 \rangle \times \langle t_2 \rangle \times \cdots \times \langle t_m \rangle.$$

Then

$$\xi^{(n)} := \xi_{t_1} \xi_{t_2} \cdots \xi_{t_m}$$

is a Minkowski unit for $\mathbb{Q}(\zeta_n)^+$

Let K be the compositum of all \mathbb{Z}_3-extensions of k, H_k the 3-part of Hilbert class field of a number field k and A_k the 3-part of the ideal class group of k. Then we have the following theorem.

Theorem 2. Let $d \not\equiv 3 \mod 9$ be a positive integer and $k = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field. Then

$$H_k \cap K = k \iff \text{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{-d})} = \text{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{-d})}.$$

Remark 1. It is well-known that

$$\text{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{-d})} \leq \text{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{-d})} \leq \text{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{-d})} + 1.$$

2. **Proof of theorems**

First we prove Theorem 1. To prove Theorem 1 we need lemmas.

Lemma 3. For integers a, b relatively prime to $n \not\equiv 2 \mod 4$, we have

$$\xi_a^{\sigma_b} \xi_b = \xi_{ab}, \quad \xi_a = \pm \xi_{-a},$$

where σ_b is the Frobenius map.

Proof. The proof comes directly from simple computations. \qed

Lemma 4. Let notations be as above and χ be a nontrivial even character mod n. Then

$$S_\chi := \sum_{(b, n) = 1}^{n} \chi^{-1}(b) \left(\sum_l \log |1 - \zeta_n^{bn_l}| \right) \neq 0.$$

Proof. In fact $S_\chi = \frac{1}{2} \tau(\chi^{-1}) L(1, \chi) \prod_{p_i \mid f_\chi} (\phi(p_\chi^{e_i}) + 1 - \chi^{-1}(p_i))$. See [5, Theorem 8.3] for details. \qed

Now we are ready to prove Theorem 1. It suffices to prove that

$$e_\chi \log |\xi^{(n)}| \neq 0,$$
for any nontrivial even character mod n. We may assume that the real number \(\xi_a \) is positive for any integer \(a \) relatively prime to \(n \). First let us compute

\[
e_\chi \log \xi_a = \frac{2}{\phi(n)} \sum_{(b, n) = 1, b \leq \frac{n}{2}} \chi^{-1}(b) \sigma_b \log \xi_a
\]

\[
= \frac{2}{\phi(n)} \sum_{(b, n) = 1, b \leq \frac{n}{2}} \chi^{-1}(b) \log \xi_a \sigma_b
\]

\[
= \frac{2}{\phi(n)} \sum_{(b, n) = 1, b \leq \frac{n}{2}} \chi^{-1}(b) \log \xi_a \sigma_b
\]

\[
= \frac{2}{\phi(n)} (\chi(a) - 1) \sum_{(b, n) = 1, b \leq \frac{n}{2}} \chi^{-1}(b) \log \xi_b
\]

\[
= \frac{1}{\phi(n)} (\chi(a) - 1) S_X.
\]

Therefore

\[
e_\chi \log |\xi_{(n)}| = \sum_{i=1}^{m} e_\chi \log \xi_{t_i}
\]

\[
= \sum_{i=1}^{m} \frac{1}{\phi(n)} (\chi(t_i) - 1) S_X = \frac{2}{\phi(n)} (\sum_{i=1}^{m} \chi(t_i) - m) S_X.
\]

Note that \(\left(\sum_{i=1}^{m} \chi(t_i) - m \right) \neq 0 \) since \(\chi \) is a nontrivial even character mod \(n \). By Lemma 4, \(S_X \neq 0 \). This completes the proof of Theorem 1.

Corollary 5. Let \(L \) be a real abelian field contained in \(\mathbb{Q}(\zeta_n + \zeta_n^{-1}) \). Then \(N_{\mathbb{Q}(\zeta_n + \zeta_n^{-1})/L}(\xi_{t_1} \cdots \xi_{t_m}) \) is a Minkowski unit of \(L \).

Proof. This directly comes from the finiteness of the index

\[
[E_L : N_{\mathbb{Q}(\zeta_n + \zeta_n^{-1})/L}(E_{\mathbb{Q}(\zeta_n + \zeta_n^{-1})})]
\]

and Theorem 1. \(\square \)

Now we will prove Theorem 2. We assume that \(p = 3 \). For \(d \neq 3 \) mod 9, let \(k = \mathbb{Q}(\sqrt{-d}) \) be an imaginary quadratic field, \(F = \mathbb{Q}(\sqrt{-d}, \sqrt{-3}) \) a biquadratic field, \(M_F \) and \(M_k \) the maximal abelian \(p \)-extension of \(F \) and \(k \) unramified outside above \(p \), respectively.

Let \(X_F := \text{Gal}(M_F/F)/(p \text{Gal}(M_F/F)) \) and \(X_{F, \chi} \) be the \(\chi \)-component of \(X_F \) for the nontrivial character \(\chi \) of \(\text{Gal}(k/\mathbb{Q}) \). Let \(S \) be a subset of \(F^\times/(F^\times)^3 \) corresponding to the \(X_F \). Then, by Kummer theory, we have a perfect pairing \(S_{\chi \omega} \times X_{F, \chi} \to \mu_p \), where \(\omega \) is the nontrivial character of \(\text{Gal}(\mathbb{Q}(\sqrt{-3})/\mathbb{Q}) \) and \(S_{\chi \omega} \) is the \(\chi \omega \)-component of \(S \). Note that

\[
X_{F, \chi} \simeq X_{k, \chi}.
\]

By [1, Proposition 6.B], \(S \simeq E_F/E_F^p \times A_F/A_F^p \times (p)/(p)^p \), where \(E_F \) is the group of units of \(F \) and \(A_F \) is the \(p \)-part of the ideal class group of \(F \). Since the
ω-component $E_{F,\omega}$ of the group of units E_F is the group of the units of the real quadratic subfield $F^+ \left(= \mathbb{Q}(\sqrt{3d})\right)$ of F, the rank of E_F/E_F^+ is equal to 1. Therefore

$$H_k \cap K = k \iff \text{rank}_{\mathbb{Z}/p}[X_{k,\omega}] = 1 + \text{rank}_{\mathbb{Z}/p}[A_K]$$

$$\iff \text{rank}_{\mathbb{Z}/p}[X_{F,\omega}] = 1 + \text{rank}_{\mathbb{Z}/p}[A_K]$$

$$\iff \text{rank}_{\mathbb{Z}/p}[S_{\omega}] = 1 + \text{rank}_{\mathbb{Z}/p}[A_K]$$

$$\iff \text{rank}_{\mathbb{Z}/p}[A_F/A_F^+] = \text{rank}_{\mathbb{Z}/p}[A_K]$$

$$\iff \text{rank}_{\mathbb{Z}/p}[A_{F,\omega}] = \text{rank}_{\mathbb{Z}/p}[A_K]$$

$$\iff \text{rank}_{\mathbb{Z}/p}[A_{\mathbb{Q}(\sqrt{d})}] = \text{rank}_{\mathbb{Z}/p}[A_{\mathbb{Q}(\sqrt{-d})}]$$.

This completes the proof of Theorem 2.

References

DEPARTMENT OF APPLIED MATHEMATICS
SEOJONG UNIVERSITY
SEOUL 143-747, KOREA
E-mail address: oh@sejong.ac.kr