EXTENDED CESÀRO OPERATORS FROM $F(p,q,s)$ SPACES TO BLOCH-TYPE SPACES IN THE UNIT BALL

XIAOFEN LV AND XIAOMIN TANG

Abstract. In this paper, we characterize the boundedness and compactness of the extended Cesàro operators from general function spaces $F(p,q,s)$ to Bloch-type spaces B_μ, where μ is normal function on $[0,1)$.

1. Introduction

Let B be the open unit ball of \mathbb{C}^n, and let ∂B be its boundary. $H(B)$ denotes the family of all holomorphic functions on B. For $a \in B$, let $h(z,a) = \log \frac{1}{|\varphi_a(z)|}$ be the Green’s function for B with logarithmic singularity at a, where φ_a is the Möbius transformation of B, satisfying $\varphi_a(0) = a$, $\varphi_a(a) = 0$ and $\varphi_a = \varphi_a^{-1}$. For $0 < p, s < \infty$, $-n - 1 < q < \infty$, we say $f \in F(p,q,s)$ provided that $f \in H(B)$ and

$$
\|f\|_{F(p,q,s)}^p = |f(0)|^p + \sup_{a \in \partial B} \int_{\partial B} \left| \Re f(z) \right|^p (1 - |z|^2)^q h^s(z, a) d\nu(z) < \infty.
$$

In one variable, the spaces $F(p,q,s)$ were first introduced by Zhao [12]. We call $F(p,q,s)$ general function space because we can get many function spaces, such as Hardy space, Bergman space, Q_p space, BMOA space, Besov space and α-Bloch space, if we take some special parameters of p, q and s, see [7]. Notice that $F(p,q,s)$ is the space of constant functions if $q + s \leq -1$.

A positive continuous function μ on $[0, 1)$ is called normal if there are three constants $0 \leq \delta < 1$ and $0 < a < b$ such that

$$
(P_1) \quad \frac{\mu(r)}{(1 - r)^a} \text{ is decreasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{\mu(r)}{(1 - r)^a} = 0;
$$

$$
(P_2) \quad \frac{\mu(r)}{(1 - r)^b} \text{ is increasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{\mu(r)}{(1 - r)^b} = \infty.
$$
We extend it to B by $\mu(z) = \mu(|z|)$. A function $f \in H(B)$ is said to belong to the Bloch-type space B_μ if
\[
\|f\|_{B_\mu} = \sup_{z \in B} \mu(z)|\nabla f(z)| < \infty,
\]
and it is said to belong to the little Bloch-type space $B_{\mu,0}$ if
\[
\lim_{|z| \to 1} \mu(z)|\nabla f(z)| = 0.
\]
Here $\nabla f(z) = \left(\frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \right)$ is the complex gradient of f. It is clear that both B_μ and $B_{\mu,0}$ are Banach spaces with the norm $\|f\|_{B_\mu} = |f(0)| + \|f\|_{\mu}$, and $B_{\mu,0}$ is a closed subspace of B_μ. When $\mu(r) = 1 - r^2$, the induced space B_μ is the classic Bloch space.

In the unit ball, given $g \in H(B)$, we define the extended Cesàro operator to be
\[
T_g f(z) = \int_0^1 f(tz)\Re g(tz) \frac{dt}{t}, \quad z \in B,
\]
where $\Re f(z)$ is the radial derivative of f. Hu got the characterization on g for which the operator T_g is bounded or compact on the Bergman space in [2]. Stević [8] considered the boundedness of T_g on α-Bloch space. Xiao [10] obtained the property on g such that T_g is bounded or compact on α-Bloch space and little α-Bloch space. Recently, Li discussed the boundedness of T_g from $F(p, q, s)$ to α-Bloch spaces for some restricted p, q, s and α in [9]. The purpose of this work is to obtain the boundedness and compactness of T_g from $F(p, q, s)$ to B_μ (or $B_{\mu,0}$) for all $0 < p, s < \infty, -n - 1 < q < \infty$. Our work will generalize [3] and [8].

In what follows we always suppose $0 < p, s < \infty, -n - 1 < q < \infty, q + s > -1$. C will stand for positive constants whose value may change from line to line but not depend on the functions in $H(B)$. The expression $A \simeq B$ means $C^{-1}A \leq B \leq CA$.

2. Some preliminary results

Lemma 2.1 ([11]). Suppose $f \in F(p, q, s)$. Then $f \in B_{\frac{n+1+s}{1-r^2}}$ and
\[
\|f\|_{B_{\frac{n+1+s}{1-r^2}}} \leq C\|f\|_{F(p, q, s)}.
\]

Lemma 2.2 ([9]). Let μ be normal and $f \in H(B)$. Then
(i) $f \in B_\mu$ if and only if $\sup_{z \in B} \mu(z)|\Re f(z)| < \infty$. Moreover,
\[
\|f\|_{B_\mu} \simeq |f(0)| + \sup_{z \in B} \mu(z)|\Re f(z)|.
\]
(ii) $f \in B_{\mu,0}$ if and only if $\lim_{|z| \to 1} \mu(z)|\Re f(z)| = 0$.
Lemma 2.3 ([8]). For $0 < \alpha < \infty$, if $f \in \mathcal{B}_{(1-r^2)^\alpha}$, then for any $z \in \mathcal{B}$,
\[
|f(z)| \leq \begin{cases}
C \|f\|_{\mathcal{B}_{(1-r^2)^\alpha}}, & 0 < \alpha < 1; \\
C \|f\|_{\mathcal{B}_{(1-r^2)^\alpha}} \log \frac{1}{|z|}, & \alpha = 1; \\
C(1 - \|z\|^2)^{-\alpha} \|f\|_{\mathcal{B}_{(1-r^2)^\alpha}}, & \alpha > 1.
\end{cases}
\]

Lemma 2.4 ([5]). For $s > 1$, $r, t \geq 0$ and $r + t - s > n + 1$, then
\[
\int_{\mathcal{B}} \frac{(1 - \|z\|^2)^s}{|1 - w, a|^r |1 - w, z|^t} dv(z)
\leq \begin{cases}
\frac{C}{|1 - w, a|^r \log \frac{1}{|z|}}, & \text{if } r - s, t - s < n + 1; \\
\frac{C}{(1 - |a|^2)^{r - s - 1} |1 - w, a|^t}, & \text{if } t - s < n + 1 < r - s.
\end{cases}
\]

Lemma 2.5. Let $p = n + 1 + q$. Suppose that for each $w \in \mathcal{B}$, z-variable functions g_w satisfy $|g_w(z)| \leq \frac{C}{|1 - z, w|}$, then
\[
\int_{\mathcal{B}} |g_w(z)|^p (1 - \|z\|^2)^q h^s(z, a) dv(z) \leq C.
\]

Proof. If $0 < s < n + 1 + q$, Lemma 2.4 implies
\[
(1 - |a|^2)^{s} \int_{\mathcal{B}} (1 - \|z\|^2)^{q + s} \frac{dv(z)}{|1 - w, a|^r |1 - a, z|^t} \leq \frac{C(1 - |a|^2)^{s}}{|1 - w, a|^r \log \frac{1}{|z|}} \leq C.
\]

If $s > n + 1 + q$, we have
\[
(1 - |a|^2)^{s} \int_{\mathcal{B}} (1 - \|z\|^2)^{q + s} \frac{dv(z)}{|1 - w, a|^r |1 - a, z|^t} \leq \frac{C}{(1 - |a|^2)^{s - n - 1 - q} |1 - w, a|^r} \leq C.
\]

If $s = n + 1 + q$, choose $s_1 = \frac{n}{2}$, $s_2 = 2s$, $x = \frac{s_2 - s_1}{s_2 - s}$. By the fact $q + s > -1$, we know
\[
0 < s_1 < n + 1 + q < s_2, q + s_2 > q + s_1 > -1 \text{ and } x > 1.
\]

Take $t_1 = \frac{s_2 + s_1}{x}$, $t_2 = \frac{s_1}{x}$, $\frac{t_1}{s} = x = 1$. By (2.1), (2.2) and Hölder inequality,
\[
\int_{\mathcal{B}} \frac{(1 - |a|^2)^{s} (1 - \|z\|^2)^{q + s}}{|1 - w, a|^r |1 - a, z|^t} dv(z)
\leq \left\{ \int_{\mathcal{B}} \frac{(1 - |a|^2)^{s_1} (1 - \|z\|^2)^{q + s_1}}{|1 - w, a|^r |1 - a, z|^t} dv(z) \right\}^{\frac{1}{2}}
\times \left\{ \int_{\mathcal{B}} \frac{(1 - |a|^2)^{s_2} (1 - \|z\|^2)^{q + s_2}}{|1 - w, a|^r |1 - a, z|^t} dv(z) \right\}^{\frac{1}{2}}
\leq C \frac{(1 - |a|^2)^{s_1}}{|1 - w, a|^r} \frac{|1 - |a|^2|^{s_1}}{|1 - w, a|^r} \leq C.
\]
Given any \(a \in \mathcal{B} \), let \(x = 1 - |\varphi_a(z)|^2 \), we have

\[
h(z, a) = -\frac{1}{2} \log(1-x) \leq \frac{x}{2} \left[\frac{3}{4} + \left(\frac{3}{4}\right)^2 + \cdots \right] = 2x \quad \text{for} \quad \frac{1}{2} < |\varphi_a(z)| < 1.\]

Notice that

\[
1 - |\varphi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - < a, z >|^2}.
\]

Hence, (2.1), (2.2), and (2.3) yield, for \(p = n + 1 + q \),

\[
\int_{\frac{1}{2} < |\varphi_a(z)| < 1} |g_w(z)|^p (1 - |z|^2)^q h^s(z, a) dv(z)
\]

\[
\leq C \int_{\frac{1}{2} < |\varphi_a(z)| < 1} \frac{(1 - |a|^2)^s (1 - |z|^2)^q}{|1 - < z, w >|^{n+1+q}|1 - < a, z >|^{2s}} dv(z)
\]

\[
\leq C \int_{\mathcal{B}} \frac{(1 - |a|^2)^s (1 - |z|^2)^q}{|1 - < z, w >|^{n+1+q}|1 - < a, z >|^{2s}} dv(z) \leq C.
\]

At the same time,

\[
\int_{|\varphi_a(z)| \leq \frac{1}{2}} |g_w(z)|^p (1 - |z|^2)^q h^s(z, a) dv(z)
\]

\[
\leq C \int_{|\varphi_a(z)| \leq \frac{1}{2}} \frac{(1 - |z|^2)^q}{|1 - < z, w >|^{p}} h^s(z, a) dv(z)
\]

\[
= C \int_{|u| \leq \frac{1}{2}} \frac{(1 - |\varphi_a(u)|)^q}{|1 - < \varphi_a(u), w >|^{n+1+q}} \cdot \frac{(1 - |a|^2)^{n+1}}{|1 - < u, a >|^{2n+2}} \cdot \log^s \frac{1}{|u|} dv(u)
\]

\[
\leq C \int_{|u| \leq \frac{1}{2}} \frac{(1 - |a|^2)^{n+1+q}(1 - |u|^2)^q}{(1 - |\varphi_a(u)|)^{n+1+q}|1 - < u, a >|^{2n+2+2q}} \log^s \frac{1}{|u|} dv(u)
\]

\[
= C \int_{|u| \leq \frac{1}{2}} \frac{1}{(1 - |u|^2)^{n+1}} \log^s \frac{1}{|u|} dv(u)
\]

\[
\leq C \int_{|u| \leq \frac{1}{2}} \log^s \frac{1}{|u|} dv(u) = C \int_0^1 2nx^{2n-1} \log^s \frac{1}{r} dr \int_{\partial \mathcal{B}} d\sigma(\xi) \leq C,
\]

where \(u = \varphi_a(z) \). This, together with (2.4), means

\[
\int_{\mathcal{B}} |g_w(z)|^p (1 - |z|^2)^q h^s(z, a) dv(z)
\]

\[
= \left(\int_{\frac{1}{2} < |\varphi_a(z)| < 1} + \int_{|\varphi_a(z)| \leq \frac{1}{2}} \right) |g_w(z)|^p (1 - |z|^2)^q h^s(z, a) dv(z) \leq C.
\]

The proof is completed. \(\square \)

Lemma 2.6. Let \(\mu \) be normal and \(g \in H(\mathcal{B}) \). Suppose \(T_g : F(p, q, s) \to \mathcal{B}_\mu \) is bounded. Then \(T_g : F(p, q, s) \to \mathcal{B}_\mu \) is compact if and only if for any bounded
sequence \(\{f_j\} \subseteq F(p, q, s) \) which converges to 0 uniformly on any compact subset of \(B \), we have \(\lim_{j \to \infty} \|T_g f_j\|_{\mathcal{B}_\mu} = 0. \)

Proof. It can be proved by Lemma 2.1, Lemma 2.3 and the Montel Theorem. The details are omitted here. \(\square \)

To characterize the compactness of \(T_g \) from \(F(p, q, s) \) to \(\mathcal{B}_{\mu, 0} \), we give the following lemma, whose proof is similar to that of Lemma 1 in [4].

Lemma 2.7. Let \(\mu \) be a normal function. A closed subset \(E \) in \(\mathcal{B}_{\mu, 0} \) is compact if and only if it is bounded and satisfying

\[
\lim_{|z| \to 1} \sup_{f \in E} \mu(z)|\Re f(z)| = 0.
\]

3. Main results

Theorem 3.1. Let \(\mu \) be normal, \(g \in H(B) \), \(n + 1 + q \geq p \). Then \(T_g : F(p, q, s) \to \mathcal{B}_\mu \) is bounded if and only if

(i) for \(n + 1 + q > p \),

\[
\sup_{z \in B} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+q}{p}} < \infty.
\]

In this case,

\[
\|T_g\| \simeq \sup_{z \in B} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+q}{p}}.
\]

(ii) for \(n + 1 + q = p \),

\[
\sup_{z \in B} \mu(z)|\Re g(z)| \log \frac{2}{1 - |z|^2} < \infty.
\]

In this case,

\[
\|T_g\| \simeq \sup_{z \in B} \mu(z)|\Re g(z)| \log \frac{2}{1 - |z|^2}.
\]

Proof. (i) First, for \(f, g \in H(B) \), direct calculation shows

\[
\Re(T_g f)(z) = f(z)\Re g(z).
\]

Suppose \(n + 1 + q > p \), \(f \in F(p, q, s) \), by Lemmas 2.1, 2.2 and 2.3, we obtain

\[
\|T_g f\|_{\mathcal{B}_\mu} \simeq |T_g f(0)| + \sup_{z \in B} \mu(z)|f(z)||\Re g(z)|
\]

\[
\leq C\|f\|_{B_{(1-r)^{\frac{n+1+q}{p}}}} \sup_{z \in B} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+q}{p}}
\]

\[
\leq C\|f\|_{F(p, q, s)} \sup_{z \in B} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+q}{p}}.
\]

Hence, (3.1) implies that \(T_g : F(p, q, s) \to \mathcal{B}_\mu \) is bounded.

Conversely, suppose \(T_g : F(p, q, s) \to \mathcal{B}_\mu \) is bounded. For any \(w \in B \), set

\[
f_w(z) = \frac{1 - |w|^2}{(1 - z, w)^{\frac{n+1+q}{p}}}, \quad z \in B.
\]
Then \(\|f_w\|_{F(p,q,s)} \leq C \) by [11]. Hence,
\[
\mu(w)|\Re g(w)|(1 - |w|^2)^{1 - \frac{n+1+i}{p}} = \mu(w)|\Re g(w)||f_w(w)| \leq C\|T_g f_w\|_{\mathcal{B}_\mu} \leq C\|T_g\|.
\]
Therefore,
\[
(3.4) \quad \sup_{z \in \mathbb{B}} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+i}{p}} \leq C\|T_g\| < \infty.
\]

Moreover, (3.3) and (3.4) yield
\[
\|T_g\| \simeq \sup_{z \in \mathbb{B}} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+i}{p}}.
\]

(ii) If \(n + 1 + q = p \), by Lemma 2.1, \(F(p,q,s) \subseteq B_{1-r^2} \). For \(f \in F(p,q,s) \), combining Lemma 2.2 and Lemma 2.3, we get
\[
\|T_g f\|_{\mathcal{B}_\mu} \simeq |T_g f(0)| + \sup_{z \in \mathbb{B}} |\mu(z)||f(z)||\Re g(z)|
\]
\[
\leq C\|f\|_{B_{1-r^2}} \sup_{z \in \mathbb{B}} \mu(z)|\Re g(z)| \log \frac{2}{1 - |z|^2}
\]
\[
\leq C\|f\|_{F(p,q,s)} \sup_{z \in \mathbb{B}} \mu(z)|\Re g(z)| \log \frac{2}{1 - |z|^2}.
\]
Thus, (3.2) yields that \(T_g : F(p,q,s) \to B_{\mu} \) is bounded.

Conversely, suppose \(T_g : F(p,q,s) \to B_{\mu} \) is bounded. Given any \(w \in \mathbb{B} \), set
\[
f_w(z) = \log \frac{2}{1 - \langle z, w \rangle}, \quad z \in \mathbb{B}.
\]
Then \(|\Re f_w(z)| \leq \frac{C}{1 - |z|^2} \), by Lemma 2.5
\[
\|f_w\|_{F(p,q,s)} \leq C.
\]
By the boundedness of \(T_g \), we have
\[
\mu(w)|\Re g(w)| \log \frac{2}{1 - |w|^2} = \mu(w)|\Re g(w)||f_w(w)| \leq C\|T_g f_w\|_{\mathcal{B}_\mu} \leq C\|T_g\|.
\]
This means
\[
(3.6) \quad \sup_{z \in \mathbb{B}} \mu(z)|\Re g(z)| \log \frac{2}{1 - |z|^2} \leq C\|T_g\| < \infty.
\]

Furthermore, (3.5) and (3.6) imply
\[
\|T_g\| \simeq \sup_{z \in \mathbb{B}} \mu(z)|\Re g(z)| \log \frac{2}{1 - |z|^2}.
\]
The proof is completed.

Remark. Set \(\mu(z) = (1 - |z|^2)^\alpha \), when \(n + 1 + q \leq p\alpha \) in (i) and \(\alpha \geq 1 \), \(s > n \) in (ii), respectively. Theorem 3.1 is just the main results in [3], which are Theorem 2.4 and Theorem 2.10.
Theorem 3.2. Let μ be normal, g ∈ H(B), n + 1 + q ≥ p. Then the following statements are equivalent:

(A) $T_g : F(p, q, s) \to B_\mu$ is compact;

(B) $T_g : F(p, q, s) \to B_{\mu, 0}$ is compact;

(C) (i) for $n + 1 + q > p$,

$$\lim_{|z| \to 1} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+q}{p}} = 0;$$

(ii) for $n + 1 + q = p$,

$$\lim_{|z| \to 1} \mu(z)|\Re g(z)| \log \frac{2}{1 - |z|^2} = 0.$$

Proof. The implication (B)⇒(A) is trivial.

(C)⇒(B) Suppose (3.7) holds for the case of $n + 1 + q > p$. For $f \in F(p, q, s)$, by Lemmas 2.1 and 2.3, we obtain

$$\mu(z)|f(z)||\Re g(z)| \leq C\|f\|_{F(p, q, s)} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+q}{p}} \leq C\|f\|_{F(p, q, s)} \mu(z)|\Re g(z)|(1 - |z|^2)^{1 - \frac{n+1+q}{p}}.$$

Thus, (3.7) shows

$$\lim_{|z| \to 1} \sup_{\|f\|_{F(p, q, s)} \leq 1} \mu(z)|\Re(T_g f)(z)| = 0.$$

Similarly, we can obtain

$$\lim_{|z| \to 1} \sup_{\|f\|_{F(p, q, s)} \leq 1} \mu(z)|\Re(T_g f)(z)| = 0$$

for the case of $n + 1 + q = p$ by (3.8). Therefore, $T_g : F(p, q, s) \to B_{\mu, 0}$ is compact by Lemma 2.7.

(A)⇒(C) First, we deal with the case of $n + 1 + q > p$. Suppose (3.7) did not hold. Then there would be some $\varepsilon_0 > 0$ and some sequence $\{z^j\} \subseteq B$ satisfying $\lim_{j \to \infty} |z^j| = 1$, but for each j,

$$\mu(z^j)|\Re g(z^j)|(1 - |z^j|^2)^{1 - \frac{n+1+q}{p}} \geq \varepsilon_0.$$

Set

$$f_j(z) = \frac{1 - |z|^2}{(1 - <z, z^j>|^\frac{n+1+q}{p}}, \quad z \in B.$$

Then $\|f_j\|_{F(p, q, s)} \leq C$, and $\{f_j\}$ converges to 0 uniformly on any compact subset of B. By Lemma 2.6 and (A),

$$\|T_g f_j\|_{B_\mu} \to 0 \quad (j \to \infty).$$
On the other hand, (3.9) implies
\[
\|Tg f_j\|_{\mathcal{B}_n} \sim |Tg f_j(0)| + \sup_{z \in \mathcal{B}} |f_j(z)\Re g(z)| \\
\geq \mu(z^j)|f_j(z^j)\Re g(z^j)| \\
= \mu(z^j)|\Re g(z^j)|(1 - |z^j|^2)^{1 - n + q + n \over p} \geq \varepsilon_0.
\]
This is a contradiction to (3.11). If \(n + 1 + q = p\), suppose (3.8) did not hold. Then there would be some \(\varepsilon_0 > 0\) and some sequence \(\{z^j\} \subseteq \mathcal{B}\) satisfying \(\lim_{j \to \infty} |z^j| = 1\), but for each \(j\),
\[
(3.12) \quad \mu(z^j)|\Re g(z^j)| \log \frac{2}{1 - |z^j|^2} \geq \varepsilon_0.
\]
Take the test function
\[
f_j(z) = \left(\frac{\log \frac{1 - |z|}{1 - |z^j|^2}}{\log \frac{1 - |z|}{1 - |z^j|^2}}\right)^2, \quad z \in \mathcal{B}.
\]
Then
\[
|\Re f_j(z)| &= \left| \frac{2 < z, z^j > \log \frac{2}{1 - |z^j|^2}}{(1 - < z, z^j >) \log \frac{2}{1 - |z^j|^2}} \right| \\
&\leq 2 \left| \frac{\log \frac{2}{1 - |z|}}{\log \frac{2}{1 - |z^j|^2}} \right| \frac{1}{|1 - < z, z^j >|} \\
&\leq 2 \pi + \log \frac{1 - |z|}{1 - |z^j|^2} \cdot \frac{1}{|1 - < z, z^j >|} \leq C.
\]
Then \(\|f_j\|_{F(p,q,s)} \leq C\) by Lemma 2.5, and \(\{f_j\}\) converges to 0 uniformly on any compact subset of \(\mathcal{B}\). By Lemma 2.6 and (A), we have
\[
(3.13) \quad \|Tg f_j\|_{\mathcal{B}_n} \to 0 \quad \text{as} \quad j \to \infty.
\]
However, (3.12) yields
\[
\|Tg f_j\|_{\mathcal{B}_n} \sim |Tg f_j(0)| + \sup_{z \in \mathcal{B}} |f_j(z)\Re g(z)| \\
\geq \mu(z^j)|f_j(z^j)\Re g(z^j)| \\
= \mu(z^j)|\Re g(z^j)| \log \frac{2}{1 - |z^j|^2} \geq \varepsilon_0.
\]
This is a contradiction to (3.13). The proof is completed. \(\square\)

Theorem 3.3. Let \(\mu\) be normal, \(g \in H(\mathcal{B})\), \(n + 1 + q < p\). Then the following statements are equivalent:

(A) \(Tg: F(p,q,s) \to \mathcal{B}_\mu\) is bounded;

(B) \(Tg: F(p,q,s) \to \mathcal{B}_\mu\) is compact;

(C) \(g \in \mathcal{B}_\mu\).

In this case,
\[
\|Tg\| \simeq \|g - g(0)\|_{\mathcal{B}_n}.
\]
Proof. The implication (B)⇒(A) is trivial.

(A)⇒(C) Suppose $T_g: F(p, q, s) \rightarrow \mathcal{B}_\mu$ is bounded. By the fact that $g(z) = g(0) + T_g(1)(z)$, we know $g \in \mathcal{B}_\mu$. Moreover,

$$\|g - g(0)\|_{\mathcal{B}_\mu} = \|T_g(1)\|_{\mathcal{B}_\mu} \leq C\|T_g\| < \infty.$$ \hfill (3.14)

(C)⇒(B) Suppose $\{f_j\} \subseteq F(p, q, s)$ is any bounded sequence converging to 0 uniformly on any compact subset of \mathcal{B}. By Lemma 2.1 and [9, Lemma 4.2],

$$\lim_{j \to \infty} \sup_{z \in \mathcal{B}} |f_j(z)| = 0.$$

Hence,

$$\|T_g f_j\|_{\mathcal{B}_\mu} \simeq |T_g f_j(0)| + \sup_{z \in \mathcal{B}} \mu(z)|f_j(z)\Re g(z)| \leq C\|g\|_{\mathcal{B}_\mu} \sup_{z \in \mathcal{B}} |f_j(z)| \to 0 \quad (j \to \infty).$$

This means $T_g: F(p, q, s) \rightarrow \mathcal{B}_\mu$ is compact.

Furthermore, for any $f \in F(p, q, s)$, Lemmas 2.1 and 2.3 yield

$$\|T_g f\|_{\mathcal{B}_\mu} \simeq |T_g f(0)| + \sup_{z \in \mathcal{B}} \mu(z)|f(z)\Re g(z)| \leq C\|g - g(0)\|_{\mathcal{B}_\mu} \|f\|_{(1-r^2)^{\frac{n+1+q}{p}}(1-r^2)} \leq C\|g - g(0)\|_{\mathcal{B}_\mu} \|f\|_{F(p, q, s)}.$$

This, combining with (3.14), shows

$$\|T_g\| \simeq \|g - g(0)\|_{\mathcal{B}_\mu}.$$

The proof is completed. \hfill \Box

Theorem 3.4. Let μ be normal, $g \in H(\mathcal{B})$, $n + 1 + q < p$. Then the following statements are equivalent:

(A) $T_g: F(p, q, s) \rightarrow \mathcal{B}_{\mu,0}$ is bounded;

(B) $T_g: F(p, q, s) \rightarrow \mathcal{B}_{\mu,0}$ is compact;

(C) $g \in \mathcal{B}_{\mu,0}$.

Proof. The implication (B)⇒(A) is trivial.

(A)⇒(C) It is trivial from the fact that $g(z) = g(0) + T_g(1)(z)$.

(C)⇒(B) By Theorem 3.3, the condition (C) implies that T_g is compact from the $F(p, q, s)$ space to Bloch-type space \mathcal{B}_{μ}. We claim that $T_g(F(p, q, s)) \subseteq \mathcal{B}_{\mu,0}$. In fact, for any $f \in F(p, q, s) \subseteq \mathcal{B}_{(1-r^2)^{\frac{n+1+q}{p}}(1-r^2)}$, Lemmas 2.2 and 2.3 imply

$$0 \leq \mu(z)|\Re g(z)||f(z)| \leq C\|f\|_{\mathcal{B}_{(1-r^2)^{\frac{n+1+q}{p}}(1-r^2)}} \mu(z)|\Re g(z)| \to 0 \quad \text{as} \quad |z| \to 1.$$

The proof is completed. \hfill \Box

Acknowledgement. The authors would like to express thanks to Prof. Zhangjian Hu and Prof. Xuejun Zhang, for their useful suggestions.
References

XIAOFEN LV
DEPARTMENT OF MATHEMATICS
HUZHOU TEACHERS COLLEGE
HUZHOU, ZHEJIANG, 313000, P. R. CHINA
E-mail address: lvxf@hutc.zj.cn

XIAOMIN TANG
DEPARTMENT OF MATHEMATICS
HUZHOU TEACHERS COLLEGE
HUZHOU, ZHEJIANG, 313000, P. R. CHINA
E-mail address: txm@hutc.zj.cn