MIXED VECTOR FQ-IMPLICIT VARIATIONAL INEQUALITY WITH LOCAL NON-POSITIVITY

BYUNG-SOO LEE

Abstract. This paper introduces a local non-positivity of two set-valued mappings (F, Q) and considers the existences and properties of solutions for set-valued mixed vector FQ-implicit variational inequality problems and set-valued mixed vector FQ-complementarity problems in the neighborhood of a point belonging to an underlined domain K of the set-valued mappings, where the neighborhood is contained in K.

This paper generalizes and extends many results in [1, 3-7].

1. Introduction

F-complementarity problem (F-CP): finding $x \in K$ such that
\[
\langle Tx, x \rangle + F(x) = 0 \text{ and } \langle Tx, y \rangle + F(y) \geq 0 \text{ for all } y \in K,
\]
and corresponding variational inequality problem;

finding $x \in K$ such that
\[
\langle Tx, y - x \rangle + F(y) - F(x) \geq 0 \text{ for all } y \in K,
\]
where K is a nonempty closed and convex cone of a real Banach space X with its dual X^*, $T : K \to X^*$ is a mapping and $F : K \to (-\infty, +\infty)$ is a positively homogeneous and convex function, were firstly considered in [7].

In 2003, Fang and Huang [1] considered a vector F-complementarity problem with demi-pseudomonotone mappings in Banach spaces by considering the solvability of the problems. Huang and Li [3] studied a scalar F-implicit variational inequality problem and another F-implicit complementarity problem in Banach spaces in 2004. Recently, the result of the scalar case in [3] was extended and generalized to the vector case by Li and Huang [6]. The equivalence between the F-implicit variational inequality problem and F-implicit complementarity problem was presented and some new existence theorems of solutions for F-implicit variational inequality problems were also proved.

Received December 23, 2008.
2000 Mathematics Subject Classification. 90C33, 49J40.
Key words and phrases. mixed vector FQ-implicit complementarity problem, mixed vector FQ-implicit variational inequality problem, positively homogeneous mapping, convex cone, upper semicontinuity, lower semicontinuity, locally non-positive.

Recently, the following mixed vector FQ-implicit variational inequality problem (FQ-VI) and corresponding mixed vector FQ-implicit complementarity problems (FQ-CP) for set-valued mappings were considered in [4];

\begin{align*}
(FQ-VI): & \text{find } x \in K \text{ such that } p - s + w - z \in P(x) \text{ for any } p \in Q(x, g(y)), \\
& \hspace{1cm} s \in Q(x, h(x)), \ w \in F(g(y)), \text{ and } z \in F(h(x)), \text{ where } y \in K. \\
(FQ-CP): & \text{find } x \in K \text{ such that } \\
& \hspace{1cm} (a) \ p + w \in P(x) \text{ for any } p \in Q(x, g(y)) \text{ and } w \in F(g(y)), \text{ where } y \in K, \\
& \hspace{1cm} \text{and} \\
& \hspace{1cm} (b) \ s + z = 0 \text{ for any } s \in Q(x, h(x)) \text{ and } z \in F(h(x)), \text{ where } K \text{ is a nonempty closed convex cone of a real Banach space } X \text{ and } \{P(x) : x \in K\} \text{ is a family of nonempty pointed closed convex cones with the apex at the origin in a real Banach space } Y. \text{ Mappings } g, h : K \to K \text{ are single-valued, } F : K \to 2^Y \text{ and } Q : K \times K \to 2^Y \text{ are set-valued.}
\end{align*}

The following Theorem A and Theorem B in [4] show the equivalence between (FQ-VI) and (FQ-CP) and some existence theorems of solutions for them under some suitable assumptions without monotonicity, respectively.

Theorem A. Assume that a set-valued mapping $F : K \to 2^Y$ is positively homogeneous, a set-valued mapping $Q : K \times K \to 2^Y$ is also positively homogeneous in the second argument and $g : K \to K$ is surjective. Then (FQ-VI) is equivalent to (FQ-CP).

Theorem B. Let K be a nonempty closed convex subset of X and $P : K \to 2^Y$ be upper semicontinuous on K. Assume that

\begin{enumerate}
\item[(a)] $g, h : K \to K$ are continuous, $F : K \to 2^Y$ is lower semicontinuous and $Q : K \times K \to 2^Y$ is lower semicontinuous in two arguments,
\item[(b)] there exists a single-valued mapping $T : K \times K \to Y$ satisfying
\begin{enumerate}
\item[(b1)] for $x \in K$, $T(x, x) \in P(x)$,
\item[(b2)] for $x, y \in K$,
$$a - b + c - d - T(x, y) \in P(x)$$
for any $a \in Q(x, g(y))$, $b \in Q(x, h(x))$, $c \in F(g(y))$ and $d \in F(h(x))$,
\item[(b3)] for $x \in K$ the set \{ $y \in K : T(x, y) \notin P(x)$ \} is convex,
\end{enumerate}
\end{enumerate}
(c) there exists a nonempty compact convex subset \(D \) of \(K \) such that for all \(x \in K \setminus D \) there exists a \(y \in D \) satisfying \(a - b + c - d \notin P(x) \) for some \(a \in Q(x, g(y)), b \in Q(x, h(x)), c \in F(g(y)) \) and \(d \in F(h(x)) \).

Then \((FQ-VI)\) has a solution. Furthermore, the solution set of \((FQ-VI)\) is closed.

This paper introduces a local non-positivity of set-valued mappings \((F, Q)\) and considers the existences and properties of solutions for \((FQ-VI)\) and \((FQ-CP)\) in the neighborhood of a point belonging to an underlined domain \(K \) of the set-valued mappings, where the neighborhood is contained in \(K \).

This paper generalizes and extends many results in [1, 3-7].

2. Preliminaries

Remark that \(P(x), x \in K \) is a closed set such that
(i) \(\lambda P(x) \subset P(x), \lambda > 0, x \in K \),
(ii) \(P(x) + P(x) \subset P(x), x \in K \),
(iii) \(P(x) \cap (-P(x)) = \{0\}, x \in K \).

An ordered Banach space \((Y, P(x))\) is a real Banach space with an ordering defined by a closed cone \(P(x) \subset Y \) as for any \(y, z \in Y \),
\[
y \geq z \quad \text{if and only if} \quad y - z \in P(x),
\]
\[
y \not\geq z \quad \text{if and only if} \quad y - z \notin P(x).
\]

Remark that
\[
z \leq 0 \quad \text{if and only if} \quad z \in -P(x),
\]
\[
z \not\leq 0 \quad \text{if and only if} \quad z \notin -P(x),
\]
\[
z \geq 0 \quad \text{if and only if} \quad z \in P(x),
\]
\[
z \not\geq 0 \quad \text{if and only if} \quad z \notin P(x).
\]

Lemma 2.1 ([1]). Let \((Y, P)\) be an ordered Banach space induced by a pointed closed cone \(P \). Then \(x + y \in P \) for \(x, y \in P \).

Definition 2.1 ([4]). Let \(X, Y \) be two vector spaces and \(K \) be a cone of \(X \). A set-valued mapping \(F : K \to 2^Y \) is said to be positively homogeneous if \(F(\alpha x) = \alpha F(x) \) for all \(x \in K \) and \(\alpha \geq 0 \). \(F \) is said to be linear if \(F(\alpha x + \beta y) = \alpha F(x) + \beta F(y) \) for \(x, y \in K \), \(\alpha + \beta = 1 \), \(\alpha, \beta \geq 0 \).

Definition 2.2. A set-valued mapping \(W : K \subset X \to 2^Y \) is upper semicontinuous at \(x_0 \in K \) if every open set \(V \) containing \(W(x_0) \) there exists an open set \(U \) containing \(x_0 \) such that \(W(U) \subset V \). \(W \) is lower semicontinuous at \(x_0 \in K \) if every open set \(V \) intersecting \(W(x_0) \) there exists an open set \(U \) containing \(x_0 \) such that \(W(x) \cap V \neq \emptyset \) for every \(x \in U \). \(W \) is upper semicontinuous (lower semicontinuous) on \(K \) if it is upper semicontinuous (lower semicontinuous) at every point of \(K \). \(W \) is continuous on \(K \) if it is both upper semicontinuous and lower semicontinuous on \(K \).
Lemma 2.2. Let $W : X \to 2^Y$ be a set-valued mapping and $x_0 \in X$.

(i) W is upper semicontinuous at x_0 if and only if for any net $\{x_{\alpha}\} \subset X$ with $x_{\alpha} \to x_0$ and for any net $\{y_{\alpha}\}$ in Y with $y_{\alpha} \in W(x_{\alpha})$ such that $y_{\alpha} \to y_0$ in Y, we have $y_0 \in W(x_0)$.

(ii) W is lower semicontinuous at x_0 if and only if for any net $\{x_{\alpha}\} \subset X$ with $x_{\alpha} \to x_0$, and for any $y_0 \in W(x_0)$, there exists a net $\{y_{\alpha}\}$ such that $y_{\alpha} \in W(x_{\alpha})$ and $y_{\alpha} \to y_0$.

Lemma 2.3 ([2]). Let $W : X \to 2^Y$ be a set-valued mapping. If for any $x \in X$, $W(x)$ is compact, then W is upper semicontinuous at x_0 if and only if for any net $\{x_{\alpha}\} \subset X$ such that $x_{\alpha} \to x_0$ and for every $y_0 \in W(x_0)$, there exists $y_0 \in W(x_\alpha)$ and a subnet $\{y_{\alpha,\beta}\}$ of $\{y_{\alpha}\}$ such that $y_{\alpha,\beta} \to y_0$.

3. Main results

Unless otherwise specified, we assume that K is a nonempty closed convex cone of a real Banach space X and $\{P(x) : x \in K\}$ is a family of nonempty pointed closed convex cones with the apex at the origin in a real Banach space Y.

Definition 3.1. Let $g, h : K \to K$ be single-valued mappings and $F : K \to 2^Y$, $Q : K \times K \to 2^Y$ set-valued mappings. Let $P : K \to 2^Y$ be a set-valued mapping with nonempty pointed closed convex cones with the apex at the origin in Y. (F,Q) is said to be locally non-positive at $x_0 \in K$ with respect to (g,h) if there exist a neighborhood $N(x_0)$ of x_0 and $z_0 \in K \cap \text{Int}N(x_0)$ such that $a-b+c-d \not\in P(x)$ for any $a \in Q(x,g(z_0))$, $b \in Q(x,h(x))$, $c \in F(g(z_0))$ and $d \in F(h(x))$ for $x \in K \cap \partial N(x_0)$, the boundary of $N(x_0)$.

Example 3.1. Let $X = Y = \mathbb{R}$, $K = [0, \infty)$ and $P(x) = [0, \infty)$ for all $x \in K$. Define mappings $g, h : K \to K$ by $g(x) = 2x$ and $h(x) = 2x$, set-valued mappings $F : K \to 2^\mathbb{R}$ by $F(x) = \left[\frac{1}{2}x, x\right]$, $Q : K \times K \to 2^\mathbb{R}$ by $Q(x,y) = \left[\frac{1}{2}(x+y), x+y\right]$, then (F,Q) is locally non-positive at $x_0 = 0 \in K$ with respect to (g,h). If we take a neighborhood $N(0) = (-\frac{1}{4}, \frac{1}{4})$ of $x_0 = 0$ and $z_0 = \frac{1}{4} \in K \cap \text{Int}N(0) = [0, \frac{1}{2})$, then for the unique element $x = \frac{1}{2}$ of $K \cap \partial N(0) = \left\{\frac{1}{2}\right\}$, we have for any $a \in Q\left(\frac{1}{2}, g\left(\frac{1}{4}\right)\right)$, $b \in Q\left(\frac{1}{2}, h\left(\frac{1}{4}\right)\right)$, $c \in F\left(g\left(\frac{1}{4}\right)\right)$ and $d \in F\left(h\left(\frac{1}{4}\right)\right)$,

$$a-b+c-d \not\in -K.$$

In fact, $Q\left(\frac{1}{2}, g\left(\frac{1}{4}\right)\right) = Q\left(\frac{1}{2}, \frac{1}{2}\right) = \left[\frac{1}{2}, 1\right]$, $Q\left(\frac{1}{2}, h\left(\frac{1}{4}\right)\right) = Q\left(\frac{1}{2}, 1\right) = [1, \frac{3}{2}]$,

$$F\left(g\left(\frac{1}{4}\right)\right) = F\left(\frac{1}{4}\right) = \left[\frac{1}{4}, \frac{1}{2}\right], F\left(h\left(\frac{1}{4}\right)\right) = F(1) = \left[\frac{1}{2}, 1\right],$$

thus

$$1 - 1 + \frac{1}{2} - \frac{1}{2} = 0 \in -K.$$

Theorem 3.1. Let K be a nonempty closed and convex subset of X. Let $P : K \to 2^Y$ be a set-valued mapping with nonempty pointed closed convex cones with the apex at the origin in Y. Assume that
(a) single-valued mappings $g, h : K \to K$ are continuous and set-valued mappings $F : K \to 2^V$, $Q : K \times K \to 2^Y$ are continuous and P is upper semicontinuous,

(b) a single-valued mapping $T : K \times K \to Y$ satisfies

(b1) for $x \in K$, $T(x, x) \in P(x)$,

(b2) for $x, y \in K$,

$$a - b + c - d - T(x, y) \in P(x)$$

for any $a \in Q(x, g(y))$, $b \in Q(x, h(x))$, $c \in F(g(y))$ and $d \in F(h(x))$,

(b3) for $x \in K$ the set $\{y \in K : T(x, y) \notin P(x)\}$ is convex,

(c) (F, Q) is locally non-positive at $x_0 \in K$ with respect to (g, h) and there exists a nonempty compact convex subset D of $K \cap N(x_0)$ such that for all $x \in (K \cap N(x_0)) \setminus D$ there exists $y \in D$ satisfying

$$a - b + c - d \notin P(x)$$

for any $a \in Q(x, g(y))$, $b \in Q(x, h(x))$, $c \in F(g(y))$ and $d \in F(h(x))$,

(d) g, h and F are linear and Q is linear in the second argument.

Then $(FQ\text{-VI})$ has a solution in the neighborhood of x_0, that is, there exists $x^* \in K \cap N(x_0)$ such that, for $y \in K$,

$$a^* - b^* + c - d^* \notin P(x^*)$$

for any $a^* \in Q(x^*, g(y))$, $b^* \in Q(x^*, h(x^*))$, $c \in F(g(y))$ and $d^* \in F(h(x^*))$.

Proof. Since (F, Q) is locally non-positive at $x_0 \in K$ with respect to (g, h), we can assume that $N(x_0)$ is a closed and convex set without loss of generality. Since $K \cap N(x_0)$ is also closed and convex, from Theorem B, $(FQ\text{-VI})$ has a solution $x^* \in K \cap N(x_0)$ such that, for $y \in K \cap N(x_0)$

\begin{equation}
(3.1)
 a^* - b^* + c - d^* \notin P(x^*)
\end{equation}

for any $a^* \in Q(x^*, g(y))$, $b^* \in Q(x^*, h(x^*))$, $c \in F(g(y))$ and $d^* \in F(h(x^*))$.

Now we show that for $y \in K$, (3.1) also holds.

(i) If $x^* \in K \cap \text{Int}N(x_0)$, then $N(x_0) \setminus \{x^*\}$ is a neighborhood of the origin and so it is absorbing. For any $y \in K$, there exists $t \in (0, 1)$ such that $t(y - x^*) \in N(x_0) \setminus \{x^*\}$ and so $y_t := ty + (1 - t)x^* \in K \cap N(x_0)$. Hence

\begin{equation}
(3.2)
 a^*_t - b^*_t + c_t - d^*_t \notin P(x^*)
\end{equation}

for any $a^*_t \in Q(x^*, g(y_t))$, $b^*_t \in Q(x^*, h(x^*))$, $c \in F(g(y_t))$ and $d^*_t \in F(h(x^*))$.

On the other hand, the following set

$$A = \{y \in K : a - b + c - d \in P(x) \text{ for any } a \in Q(x, g(y)), b \in Q(x, h(x))$$

$$c \in F(g(y)) \text{ and } d \in F(h(x))\},$$

is convex for all $x \in K$. In fact, if $y_1, y_2 \in A$, then for $x \in K$,

$$a_1 - b + c_1 - d \in P(x)$$
for any \(a_1 \in Q(x, g(y_1)), b \in Q(x, h(x)), c_1 \in F(g(y_1)) \) and \(d \in F(h(x)) \) and
\[
a_2 - b + c_2 - d \in P(x)
\]
for any \(a_2 \in Q(x, g(y_2)), b \in Q(x, h(x)), c_2 \in F(g(y_2)) \) and \(d \in F(h(x)) \).
Hence for \(t \in (0, 1) \), from the condition (d), we have, for \(x \in K \)
\[
ta_1 + (1 - t)a_2 - b + tc_1 + (1 - t)c_2 - d \in P(x)
\]
for any \(ta_1 + (1 - t)a_2 \in tQ(x, g(y_1)) + (1 - t)Q(x, g(y_2)) = Q(x, g(ty_1 + (1 - t)y_2)), \)
\[
b \in Q(x, h(x)),
\]
\[
tc_1 + (1 - t)c_2 \in tF(g(y_1)) + (1 - t)F(g(y_2)) = F(g(ty_1 + (1 - t)y_2)), \)
\[
d \in F(h(x)).
\]
Hence \(ty_1 + (1 - t)y_2 \in A \), which shows that \(A \) is convex. Thus by the continuities of \(g, h, F \) and \(Q \) from (3.2) we have for \(y \in K \)
\[
a^* - b^* + c - d^* \in P(x^*)
\]
for any \(a^* \in Q(x^*, g(y)), b^* \in Q(x^*, h(x^*)), c \in F(g(y)) \) and \(d^* \in F(h(x^*)) \).
(ii) Since \((F, Q)\) is locally non-positive at \(x_0 \in K \) with respect to \((g, h)\), for \(x^* \in K \cap \partial N(x_0) \) there exists \(z_0 \in K \cap \text{Int}N(x_0) \) such that
\[
a_0 - b^* + c_0 - d^* \in -P(x^*)
\]
for any \(a_0 \in Q(x^*, g(z_0)), b^* \in Q(x^*, h(x^*)), c_0 \in F(g(z_0)) \) and \(d^* \in F(h(x^*)) \).
By a similar method, for any \(y \in K \), there exists a \(t \in (0, 1) \) such that
\(t(y - z_0) \in N(x_0) \setminus \{z_0\} \), so \(z_t := ty + (1 - t)z_0 \in K \cap N(x_0) \). Hence it follows from (3.1)
\[
a_t - b^* + c_t - d^* \in P(x^*)
\]
for any \(a_t \in Q(x^*, g(z_t)), b^* \in Q(x^*, h(x^*)), c_t \in F(g(z_t)) \) and \(d^* \in F(h(x^*)) \).
Letting \(t \to 0 \) in (3.4), we obtain
\[
a_0 - b^* + c_0 - d^* \in P(x^*)
\]
for any \(a_0 \in Q(x^*, g(z_0)), b^* \in Q(x^*, h(x^*)), c_0 \in F(g(z_0)) \) and \(d^* \in F(h(x^*)) \).
Thus by (3.3) and (3.5),
\[
a_0 - b^* + c_0 - d^* = 0
\]
for any \(a_0 \in Q(x^*, g(z_0)), b^* \in Q(x^*, h(x^*)), c_0 \in F(g(z_0)) \) and \(d^* \in F(h(x^*)) \).
Thus by (3.4) and (3.6), we have
\[
ta^*_0 + (1 - t)b^* - a_0 + tc_t + (1 - t)d^* - c_0 \in P(x^*)
\]
for any \(a^*_0 \in Q(x^*, g(z_0)), b^* \in Q(x^*, h(x^*)), a_0 \in Q(x^*, g(z_0)), c_t \in F(g(z_t)), d^* \in F(h(x^*)) \) and \(c_0 \in F(g(z_0)) \).
Hence by (3.6) and (3.7)
\[
a^*_0 - b^* + c_t - d^* \in P(x^*)
\]
for any \(a \in Q(x^*, g(z)) \), \(b \in Q(x^*, h(x^*)) \), \(c \in F(g(z)) \), and \(d \in F(h(x^*)) \).

Letting \(t \to 1 \) in (3.8), by the condition (d) we have

\[
a^\ast - b^\ast + c - d^\ast \in P(x^*)
\]

for any \(a^\ast \in Q(x^*, g(y)) \), \(b^\ast \in Q(x^*, h(x^*)) \), \(c \in F(g(y)) \) and \(d \in F(h(x^*)) \).

Hence by (i) and (ii), the proof is completed. \(\square \)

Letting \(D = K \) in the condition (c) of Theorem 3.1, we have the following result as a corollary.

Theorem 3.2. Let \(K \) be a nonempty compact and convex subset of a real Banach space \(X \), and assume that the condition (a), (b) and (d) of Theorem 3.1 hold with the following condition (c)' instead of (c) of Theorem 3.1:

(c)' the mappings \((F, Q) \) is locally non-positive at \(x_0 \in K \) with respect to \((g, h) \).

Then (FQ-VI) has a solution in the neighborhood of \(x_0 \), that is, there exists \(x^* \in K \cap N(x_0) \) such that, for \(y \in K \)

\[
a^\ast - b^\ast + c - d^\ast \in P(x^*)
\]

for any \(a^\ast \in Q(x^*, g(y)) \), \(b^\ast \in Q(x^*, h(x^*)) \), \(c \in F(g(y)) \) and \(d \in F(h(x^*)) \).

Theorem 3.3. Assume that

(a) \(g, h : K \to K \) are continuous and surjective, set-valued mappings

\(F : K \to 2^Y \) and \(Q : K \times K \to 2^Y \) are continuous and \(P \) is upper semicontinuous,

(b) a single-valued mapping \(T : K \times K \to Y \) satisfies

(b1) for \(x \in K \), \(T(x, x) \in P(x) \),

(b2) for \(x, y \in K \),

\[
a - b + c - d - T(x, y) \in P(x)
\]

for any \(a \in Q(x, g(y)) \), \(b \in Q(x, h(x)) \), \(c \in F(g(y)) \) and \(d \in F(h(x)) \),

(b3) for \(x \in K \) the set \(\{ y \in K : T(x, y) \notin P(x) \} \) is convex,

(c) \((F, Q) \) is locally non-positive at \(x_0 \in K \) with respect to \((g, h) \), and there exists a nonempty compact and convex subset \(D \) of \(K \cap N(x_0) \) such that for all \(x \in K \cap N(x_0) \setminus D \) there exists \(y \in D \) satisfying

\[
a - b + c - d \notin P(x)
\]

for any \(a \in Q(x, g(y)) \), \(b \in Q(x, h(x)) \), \(c \in F(g(y)) \) and \(d \in F(h(x)) \).

(d) \(g \) and \(F \) are linear and \(Q \) is linear in the second argument.

Then (FQ-CP) has a solution in the neighborhood of \(x_0 \), that is, there exists \(x^* \in K \cap N(x_0) \) such that,

\[
a^\ast + b^\ast = 0 \text{ for any } a^\ast \in Q(x^*, h(x^*)) \text{ and } b^\ast \in F(h(x^*))
\]
and for $y \in K$,

$$a^*_y + c \in P(x^*) \quad \text{for any } a^*_y \in Q(x^*, g(y)) \text{ and } c \in F(g(y)).$$

Proof. The conclusion follows directly from Theorem A and Theorem 3.1. □

Remark 3.1. Though Theorem A is used to prove Theorem 3.3 and Theorem B is used to prove Theorem 3.1 and Theorem 3.2, Theorem 3.1, 3.2 and 3.3 extend and generalize Theorems A and B.

References

Department of Mathematics

Kyungsung University

Busan 608-736, Korea

E-mail address: bsolee@ks.ac.kr