ON INTUITIONISTIC FUZZY SUBSPACES

Ahmed Abd El-Kader Ramadan and Ahmed Aref Abd El-Latif

Abstract. We introduce a new concept of intuitionistic fuzzy topological subspace, which coincides with the usual concept of intuitionistic fuzzy topological subspace due to Samanta and Mondal [18] in the case that
\[\mu = \chi_A \] for \(A \subseteq X \). Also, we introduce and study some concepts such as continuity, separation axioms, compactness and connectedness in this sense.

1. Introduction and preliminaries

ˇSostak [19], introduce the fundamental concept of a fuzzy topological structure as an extension of both crisp topology and Chang’s fuzzy topology [4], in the sense that not only the object were fuzzified, but also the axiomatics. In [20, 21] ˇSostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al. [5, 6] have redefined the similar concept. In [16] Ramadan gave a similar definition namely “Smooth fuzzy topology” for lattice \(L = [0, 1] \), it has been developed in many direction [9-11]. As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was introduced by Atanassov [1-3]. By using intuitionistic fuzzy sets, Çoker and his colleague [7, 8] introduced the topology of intuitionistic fuzzy sets. Samanta and Mondal [17, 18] introduced the notion of intuitionistic fuzzy topology which is a generalization of the concepts of fuzzy topology and the topology of intuitionistic fuzzy sets. Recently, much work has been done with this concept [12-14].

Throughout this paper, let \(X \) be a nonempty set \(I = [0, 1] \), \(I_0 = (0, 1] \), \(I_1 = [0, 1) \) and \(I^X \) denote the set of all fuzzy subsets of \(X \). For \(\mu \in I^X \), we call \(A_\mu = \{ \nu \in I^X : \nu \leq \mu \} \). IF stand for intuitionistic fuzzy. For \(\alpha \in I \), \(\alpha(x) = \alpha \) for all \(x \in X \). A fuzzy point \(x_t \) for \(t \in I_0 \) is an element of \(I^X \) such that, for \(y \in X \),

\[
x_t(y) = \begin{cases} t & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}
\]
The set of all fuzzy points in X is denoted by $Pt(X)$. A fuzzy set λ is quasi-coincident with a fuzzy set μ, denoted by $\lambda\mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. Otherwise $\lambda \not\mu$ [15].

Lemma 1.1 ([22]). If $f(x_1)q\lambda[f(\mu)], \text{then} \ x_1qf^{-1}(\lambda)[\mu], \text{where} \ x_1q\lambda[\mu]$ means $t + \lambda(x) > \mu(x)$.

Definition 1.1 ([18]). An intuitionistic gradation of openness (IGO, for short) on X is an ordered pair (τ, τ^*) of mappings $\tau, \tau^*: I^X \rightarrow I$ satisfies the following conditions:

1. **(IGO1)** $\tau(\lambda) + \tau^*(\lambda) \leq 1$ for each $\lambda \in I^X$;
2. **(IGO2)** $\tau(\emptyset) = \tau(1) = 1$, $\tau^*(\emptyset) = \tau^*(1) = 0$;
3. **(IGO3)** $\tau(\lambda_1 \wedge \lambda_2) \geq \tau(\lambda_1) \wedge \tau(\lambda_2)$ and $\tau^*(\lambda_1 \wedge \lambda_2) \leq \tau^*(\lambda_1) \vee \tau^*(\lambda_2)$ for any $\lambda_1, \lambda_2 \in I^X$;
4. **(IGO4)** $\tau(\bigvee_{i \in I} \lambda_i) \leq \bigwedge_{i \in I} \tau(\lambda_i)$ and $\tau^*(\bigvee_{i \in I} \lambda_i) \leq \bigvee_{i \in I} \tau^*(\lambda_i)$ for any $\{\lambda_i : i \in I \} \subseteq I^X$.

The triplet (X, τ, τ^*) is called an intuitionistic fuzzy topological space (briefly, IFTS). τ and τ^* may be interpreted as gradation of openness and gradation of nonopenness, respectively.

Definition 1.2 ([18]). Let $f: (X, \tau, \tau^*) \rightarrow (Y, \sigma, \sigma^*)$ be a mapping from an IFTS (X, τ, τ^*) to another IFTS (Y, σ, σ^*). Then f is said to be IF-continuous if for each $\nu \in I^Y$,

$$\sigma(\nu) \leq \tau(f^{-1}(\nu)) \quad \text{and} \quad \sigma^*(\nu) \geq \tau^*(f^{-1}(\nu)).$$

2. Intuitionistic fuzzy subspaces

Definition 2.1. Let (X, τ, τ^*) be an IFTS and $\mu \in I^X$. The pair of mappings $(\tau_{\mu}, \tau^*_{\mu}): A_\mu \rightarrow I$ defined by:

$$\tau_{\mu}(\nu) = \bigvee \{\tau(\lambda) : \lambda \in I^X, \lambda \wedge \mu = \nu\}$$

$$\tau^*_{\mu}(\nu) = \bigwedge \{\tau^*(\lambda) : \lambda \in I^X, \lambda \wedge \mu = \nu\}$$

is an intuitionistic fuzzy μ-topology induced over μ by (τ, τ^*). For any $\nu \in A_\mu$, the number $\tau_{\mu}(\nu)$ is called the μ-openness degree of ν, while $\tau^*_{\mu}(\nu)$ is called μ-nonopenness degree of ν.

Remark 2.1. If $A \subseteq X$ and $\mu = \chi_A$, we have just the usual concept of intuitionistic fuzzy subspace due to Samanta and Mondal [18]. Given $(\tau_{\mu}, \tau^*_{\mu})$ and $\nu \in A_\mu$, we can define $((\tau_{\mu})_\nu, (\tau^*_{\mu})_\nu)$, the intuitionistic fuzzy ν-topology induced over ν by $(\tau_{\mu}, \tau^*_{\mu})$. We have trivially $\tau_{\nu} = (\tau_{\mu})_\nu$ and $\tau^*_{\nu} = (\tau^*_{\mu})_\nu$, that is, an intuitionistic fuzzy subspace of an intuitionistic fuzzy subspace is also an intuitionistic fuzzy subspace.

Theorem 2.1. Let (X, τ, τ^*) be an IFTS and $\mu \in I^X$. Then $(\tau_{\mu}, \tau^*_{\mu})$ verifies the following properties:

1. **(μIGO1)** $\tau_{\mu}(\nu) + \tau^*_{\mu}(\nu) \leq 1$ for each $\nu \in A_\mu$.

(µIGO2) τ_µ(0) = τ_µ(µ) = 1, τ_µ^*(0) = 0.
(µIGO3) τ_µ(ν_1 ∨ ν_2) ≥ τ_µ(ν_1) ∧ τ_µ(ν_2) and τ_µ^*(ν_1 ∨ ν_2) ≤ τ_µ^*(ν_1) ∨ τ_µ^*(ν_2) for each ν_1, ν_2 ∈ A_µ.
(µIGO4) τ_µ((\bigvee_{i \in J} ν_i) ≥ \bigwedge_{i \in J} τ_µ(ν_i) and τ_µ^*(\bigvee_{i \in J} ν_i) ≤ \bigvee_{i \in J} τ_µ^*(ν_i) for each \{ν_i : i \in J\} ⊆ A_µ.

Proof. (µIGO1) and (µIGO2) are clear.

(µIGO3) Suppose that there exist ν_1, ν_2 ∈ A_µ such that

τ_µ^*(ν_1 ∨ ν_2) ≤ τ_µ^*(ν_1) ∨ τ_µ^*(ν_2).

Then there exists s ∈ (0, 1) such that

τ_µ^*(ν_1 ∨ ν_2) ≥ s ≥ τ_µ^*(ν_1) ∨ τ_µ^*(ν_2).

Since τ_µ^*(ν_1) ≤ s and τ_µ^*(ν_2) ≤ s, there exist λ_1, λ_2 ∈ I^X with τ^*(λ_1) ≤ s and τ^*(λ_2) ≤ s such that ν_1 = λ_1 ∨ µ and ν_2 = λ_2 ∨ µ and hence ν_1 ∨ ν_2 = (λ_1 ∨ λ_2) ∨ µ.

Since τ^*(λ_1) ∨ τ^*(λ_2) ≤ s, τ_µ^*(ν_1 ∨ ν_2) ≤ s. It is a contradiction. Hence, τ_µ^*(ν_1 ∨ ν_2) ≥ τ_µ^*(ν_1) ∨ τ_µ^*(ν_2) for each ν_1, ν_2 ∈ A_µ. Similarly, we can show τ_µ(ν_1 ∨ ν_2) ≥ τ_µ(ν_1) ∧ τ_µ(ν_2) for each ν_1, ν_2 ∈ A_µ.

(µIGO4) Suppose that there exist a family \{ν_i : i \in J\} ⊆ A_µ such that

τ_µ^*(\bigvee_{i \in J} ν_i) ≤ \bigvee_{i \in J} τ_µ^*(ν_i).

Then there exists s ∈ (0, 1) such that

τ_µ^*(\bigvee_{i \in J} ν_i) > s ≥ \bigvee_{i \in J} τ_µ^*(ν_i).

Since τ_µ^*(ν_i) ≤ s for all i ∈ J, there exists λ_i ∈ I^X with τ^*(λ_i) ≤ s such that ν_i = λ_i ∨ µ. Thus \bigvee_{i \in J} ν_i = (\bigvee_{i \in J} λ_i) ∨ µ.

Since τ^*(\bigvee_{i \in J} λ_i) ≤ \bigvee_{i \in J} τ^*(λ_i) ≤ s, τ_µ^*(\bigvee_{i \in J} ν_i) ≤ s. It is a contradiction. Hence τ_µ^*(\bigvee_{i \in J} ν_i) ≥ \bigvee_{i \in J} τ_µ^*(ν_i) for each \{ν_i : i \in J\} ⊆ A_µ. Similarly we can show τ_µ(\bigvee_{i \in J} ν_i) ≥ \bigwedge_{i \in J} τ_µ(ν_i) for each \{ν_i : i \in J\} ⊆ A_µ.

Theorem 2.2. Let (X, τ, τ^*) be an IFTS and µ ∈ I^X. Define the mappings F_{τ^*}, F_{τ^*}^*: A_µ → I by: F_{τ^*}(ν) = τ^*(µ - ν) and F_{τ^*}^*(ν) = τ^*(µ - ν) for each ν ∈ A_µ. Then (F_{τ^*}, F_{τ^*}^*) satisfies the following properties:

(µGIC1) F_{τ^*}(ν) + F_{τ^*}^*(ν) ≤ 1 for each ν ∈ A_µ.
(µGIC2) F_{τ^*}(0) = F_{τ^*}(µ) = 1, F_{τ^*}^*(0) = F_{τ^*}^*(µ) = 0.
(µGIC3) F_{τ^*}(ν_1 ∨ ν_2) ≥ F_{τ^*}(ν_1) ∧ F_{τ^*}(ν_2) and F_{τ^*}^*(ν_1 ∨ ν_2) ≤ F_{τ^*}^*(ν_1) ∨ F_{τ^*}^*(ν_2) for each ν_1, ν_2 ∈ A_µ.
(µGIC4) F_{τ^*}(\bigwedge_{i \in J} ν_i) ≥ \bigvee_{i \in J} F_{τ^*}(ν_i) and F_{τ^*}^*(\bigwedge_{i \in J} ν_i) ≤ \bigvee_{i \in J} F_{τ^*}^*(ν_i) for each \{ν_i : i ∈ J\} ⊆ A_µ.

Proof. It is clear.
Definition 2.2. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\) and \(x_t \in \mu\). Then for \(r \in I_0, s \in I_1\) with \(r + s \leq 1\). We say that \(\nu \in A_\mu\) is \((r, s)\)-\(IF\mu\)-\(q\)neighborhood of \(x_t\), if there is \(\eta \in A_\mu\) with \(\tau_\mu(\eta) \geq r\) and \(\tau^*_\mu(\eta) \leq s\) such that \(x_tq\eta[\mu]\) and \(\eta \leq \nu\). We denote the family of all \((r, s)\)-\(IF\mu\)-\(q\)neighborhoods of \(x_t\) by \(Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\).

Theorem 2.3. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\) and \(x_t \in \mu\). Then for \(r \in I_0, s \in I_1\) with \(r + s \leq 1\),
\[Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s) = \{\lambda \land \mu : \lambda \in Q_{\tau_\tau^*}(x_t, r, s)\}\]
Proof. Let \(\lambda \in Q_{\tau_\tau^*}(x_t, r, s)\). Then there is \(\xi \in I^X\) with \(\tau_\xi \geq r\) and \(\tau^*_\xi \leq s\) such that \(x_tq\xi\) and \(\xi \leq \lambda\). Then, \(\xi \land \mu \leq \lambda \land \mu\). Put \(\eta = \xi \land \mu\). Then \(\tau_\mu(\eta) \geq r\) and \(\tau^*_\mu(\eta) \leq s\). Since \(x_tq\xi, t + \xi(x) > 1\) which implies that \(t + (\xi \land \mu)(x) > \mu(x)\). Then \(x_tq\eta[\mu]\). Thus there is \(\eta = \xi \land \mu \in A_\mu\) with \(\tau_\mu(\eta) \geq r, \tau^*_\mu(\eta) \leq s, x_tq\eta[\mu]\) and \(\eta \leq \lambda \land \mu\). Hence \(\lambda \land \mu \in Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\). □

Theorem 2.4. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\) and \(x_t \in \mu\). Then for \(r \in I_0, s \in I_1\) with \(r + s \leq 1\), \(Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\) satisfies the following:
\begin{enumerate}
\item[(\(\mu Q1\))] If \(\nu \in Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\), then \(x_tq\nu[\mu]\).
\item[(\(\mu Q2\))] If \(\nu_1, \nu_2 \in Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\), then \(\nu_1 \land \nu_2 \in Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\).
\item[(\(\mu Q3\))] If \(\nu \in Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\) and \(\nu^* \in A_\mu\) such that \(\nu \leq \nu^*\), then \(\nu^* \in Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\).
\item[(\(\mu Q4\))] If \(\nu \in Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\), there is \(\nu^* \in Q_{\tau_\mu, \tau^*_\mu}(x_t, r, s)\) such that \(\nu \in Q_{\tau_\mu, \tau^*_\mu}(y_m, r, s)\) for each \(y_mq\nu[\mu]\).
\end{enumerate}
Proof. It is clear. □

Theorem 2.5. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\). Then for each \(\nu \in A_\mu\) and each \(r \in I_0, s \in I_1\) with \(r + s \leq 1\), we define the operator \(C_{\tau_\mu, \tau^*_\mu} : A_\mu \times I_0 \times I_1 \rightarrow A_\mu\) as follows:
\[C_{\tau_\mu, \tau^*_\mu}(\nu, r, s) = \bigwedge \{\eta \in A_\mu : \eta \geq \nu, \tau_\mu(\mu - \eta) \geq r, \tau^*_\mu(\mu - \eta) \leq s\}\]
For each \(\nu, \nu_1, \nu_2 \in A_\mu\) and \(r \in I_0, s \in I_1\) with \(r + s \leq 1\), the operator \(C_{\tau_\mu, \tau^*_\mu}\) satisfies the following:
\begin{enumerate}
\item[(\(\mu C1\))] \(C_{\tau_\mu, \tau^*_\mu}(0, r, s) = 0\).
\item[(\(\mu C2\))] \(\nu \leq C_{\tau_\mu, \tau^*_\mu}(\nu, r, s)\).
\item[(\(\mu C3\))] \(C_{\tau_\mu, \tau^*_\mu}(\nu_1 \lor \nu_2, r, s) = C_{\tau_\mu, \tau^*_\mu}(\nu_1, r, s) \lor C_{\tau_\mu, \tau^*_\mu}(\nu_2, r, s)\).
\item[(\(\mu C4\))] \(C_{\tau_\mu, \tau^*_\mu}(\nu, r, s) \leq C_{\tau_\mu, \tau^*_\mu}(\nu, m, n)\) if \(r \leq m, s \geq n\) and \(m + n \leq 1\).
\item[(\(\mu C5\))] \(C_{\tau_\mu, \tau^*_\mu}(\nu, r, s) = C_{\tau_\mu, \tau^*_\mu}(\nu, r, s)\).
\end{enumerate}
Proof. It is straightforward. □

Theorem 2.6. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\). Then for each \(\nu \in A_\mu\) and each \(r \in I_0, s \in I_1\) with \(r + s \leq 1\), we define the operator \(I_{\tau_\mu, \tau^*_\mu} : A_\mu \times I_0 \times I_1 \rightarrow A_\mu\) as follows:
A_μ as follows:

$$I_{\tau_\mu, \tau_\mu^*}(\nu, r, s) = \bigvee \{\eta \in A_\mu : \eta \leq \nu, \tau_\mu(\eta) \geq r, \tau_\mu^*(\eta) \leq s\}. \tag{\mu1}$$

For each $\nu, \nu_1, \nu_2 \in A_\mu$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$, the operator I_{τ_μ, τ_μ^*} satisfies the following:

(i) $I_{\tau_\mu, \tau_\mu^*}(\nu, r, s) = \mu$.

(ii) $I_{\tau_\mu, \tau_\mu^*}(\nu, r, s) \leq \nu$.

(iii) $I_{\tau_\mu, \tau_\mu^*}(\nu_1 \land \nu_2, r, s) = I_{\tau_\mu, \tau_\mu^*}(\nu_1, r, s) \land I_{\tau_\mu, \tau_\mu^*}(\nu_2, r, s)$.

(iv) $I_{\tau_\mu, \tau_\mu^*}(\nu, r, s) \geq I_{\tau_\mu, \tau_\mu^*}(\nu, m, n)$ if $r \leq m$, $s \geq n$ and $m + n \leq 1$.

(v) $I_{\tau_\mu, \tau_\mu^*}(I_{\tau_\mu, \tau_\mu^*}(\nu, r, s), r, s) = I_{\tau_\mu, \tau_\mu^*}(\nu, r, s)$.

Proof. It is straightforward. \qed

Theorem 2.7. Let (X, τ, τ^*) be an IFTS and $\mu \in I^X$. For each $\nu \in A_\mu$ and each $r \in I_0$, $s \in I_1$ with $r + s \leq 1$, we have

(i) $I_{\tau_\mu, \tau_\mu^*}(\mu - \nu, r, s) = \mu - C_{\tau_\mu, \tau_\mu^*}(\nu, r, s)$.

(ii) $C_{\tau_\mu, \tau_\mu^*}(\mu - \nu, r, s) = \mu - I_{\tau_\mu, \tau_\mu^*}(\nu, r, s)$.

Proof. (i) For each $\nu \in A_\mu$ and each $r \in I_0$, $s \in I_1$ with $r + s \leq 1$, we have the following:

$$\mu - C_{\tau_\mu, \tau_\mu^*}(\nu, r, s) = \mu - \bigwedge \{\eta \in A_\mu : \nu \leq \eta, \tau_\mu(\eta) \geq r, \tau_\mu^*(\mu - \eta) \leq s\}
= \bigvee \{\mu - \eta : \mu - \eta \leq \mu - \nu, \tau_\mu(\mu - \eta) \geq r, \tau_\mu^*(\mu - \eta) \leq s\}
= I_{\tau_\mu, \tau_\mu^*}(\mu - \nu, r, s). \tag{\mu2}$$

(ii) It is similar to (i). \qed

Theorem 2.8. Let (X, τ, τ^*) be an IFTS, $\mu \in I^X$ and $x_1 \in \mu$. For $\nu \in A_\mu$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$, $x_1 \in C_{\tau_\mu, \tau_\mu^*}(\nu, r, s)$ if and only if for each $\eta \in A_\mu$ with $\tau_\mu(\eta) \geq r$, $\tau_\mu^*(\eta) \leq s$ and $x_1 \tau_\mu(\eta)$ we have $\nu \tau_\mu(\eta)$.

Proof. Let $x_1 \in C_{\tau_\mu, \tau_\mu^*}(\nu, r, s)$, $\eta \in A_\mu$, with $\tau_\mu(\eta) \geq r$, $\tau_\mu^*(\eta) \leq s$ and $x_1 \tau_\mu(\eta)$. Suppose that $\nu \not\tau_\mu(\eta)$, then $\nu \not\leq \mu - \eta$. Since $x_1 \tau_\mu(\eta)$, $\tau_\mu(\eta) > \mu(x)$. This implies $x_1 \not\in \mu - \eta$. Since $\nu \not\leq \mu - \eta$, $\tau_\mu(\mu - (\mu - \eta)) = \tau_\mu(\eta) \geq r$ and $\tau_\mu^*(\mu - (\mu - \eta)) = \tau_\mu^*(\eta) \leq s$, we have $x_1 \not\in C_{\tau_\mu, \tau_\mu^*}(\nu, r, s)$. It is a contradiction.

Conversely, let $\eta \in A_\mu$, with $\tau_\mu(\eta) \geq r$, $\tau_\mu^*(\eta) \leq s$, $x_1 \tau_\mu(\eta)$ and $\nu \tau_\mu(\eta)$. Suppose that $x_1 \not\in C_{\tau_\mu, \tau_\mu^*}(\nu, r, s)$, then there exists $\xi \in A_\mu$, with $\tau_\mu(\mu - \xi) \geq r$, $\tau_\mu^*(\mu - \xi) \leq s$, $\nu \not\leq \xi$ and $x_1 \not\in \xi$. Then $\xi(x) < t$ which implies $(\mu - \xi)(x) + t > \mu(x)$. Thus $x_1 \tau_\mu(\mu - \xi)$, then from our hypothesis $\nu \tau_\mu(\mu - \xi)$. Thus there is $y \in X$ such that $\nu(y) + (\mu - \xi)(y) > \mu(y)$. Thus $\nu(y) > \xi(y)$ which is a contradiction with $\nu \not\leq \xi$. Hence $x_1 \in C_{\tau_\mu, \tau_\mu^*}(\nu, r, s)$.
3. IFμ-continuity

Definition 3.1. Let \((X, \tau, \tau^\ast)\) and \((Y, \sigma, \sigma^\ast)\) be two IFTSs and \(\mu \in I^X\). Then the mapping \(f : (X, \tau, \tau^\ast) \rightarrow (Y, \sigma, \sigma^\ast)\) is called IFμ-continuous if \(\tau_\mu(f^{-1}(\nu) \land \mu) \geq \sigma_{f(\mu)}(\nu)\) and \(\tau^\ast_\mu(f^{-1}(\nu) \land \mu) \leq \sigma^\ast_{f(\mu)}(\nu)\) for each \(\nu \in A_f(\mu)\).

Remark 3.1. Every IF-continuous mapping is IFμ-continuous for all \(\mu\) but the converse is not true in general as the following example shows.

Example 3.1. Let \(X = I\). We define the IGO(\(\tau, \tau^\ast\)) and IGO(\(\sigma, \sigma^\ast\)) on \(X\) as follows: for each \(\lambda \in I^X\)

\[
\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = 0, 1 \\ 0.5, & \text{if } 0 < \lambda < 0.6 \\ 0, & \text{otherwise.} \end{cases} \quad \tau^\ast(\lambda) = \begin{cases} 0, & \text{if } \lambda = 0, 1 \\ 0.4, & \text{if } 0 < \lambda < 0.6 \\ 1, & \text{otherwise.} \end{cases}
\]

\[
\sigma(\lambda) = \begin{cases} 1, & \text{if } \lambda = 0, 1 \\ 0.2, & \text{if } 0 < \lambda < 0.6 \\ 0.4, & \text{if } \lambda = 0.7 \\ 0, & \text{otherwise.} \end{cases} \quad \sigma^\ast(\lambda) = \begin{cases} 0, & \text{if } \lambda = 0, 1 \\ 0.7, & \text{if } 0 < \lambda < 0.6 \\ 0.5, & \text{if } \lambda = 0.7 \\ 1, & \text{otherwise.} \end{cases}
\]

Let \(\mu = 0.5\), then

\[
\tau_\mu(\nu) = \begin{cases} 1, & \text{if } \nu = 0, \mu \\ 0.5, & \text{if } 0 < \nu < 0.5 \\ 0, & \text{otherwise.} \end{cases} \quad \tau^\ast_\mu(\nu) = \begin{cases} 0, & \text{if } \nu = 0, \mu \\ 0.4, & \text{if } 0 < \nu < 0.5 \\ 1, & \text{otherwise.} \end{cases}
\]

\[
\sigma_{f(\mu)}(\nu) = \begin{cases} 1, & \text{if } \nu = 0, f(\mu) \\ 0.2, & \text{if } 0 < \nu < 0.5 \\ 0, & \text{otherwise.} \end{cases} \quad \sigma^\ast_{f(\mu)}(\nu) = \begin{cases} 0, & \text{if } \nu = 0, f(\mu) \\ 0.7, & \text{if } 0 < \nu < 0.5 \\ 1, & \text{otherwise.} \end{cases}
\]

Then the identity mapping \(id_X : (X, \tau, \tau^\ast) \rightarrow (X, \sigma, \sigma^\ast)\) is an IFμ-continuous but not IF-continuous.

Theorem 3.1. Let \((X, \tau, \tau^\ast)\) and \((Y, \sigma, \sigma^\ast)\) be two IFTSs, \(f : X \rightarrow Y\) be a mapping and \(\{\mu_i : i \in J\} \subseteq I^X\) such that \(\bigcup_{i \in J} \mu_i = 1\). Then \(f\) is IFμ-continuous for each \(i \in J\) if and only if \(f\) is IF-continuous.

Proof. Due to Remark 3.1, it suffices to show that if \(f\) is IFμ-continuous for each \(i \in J\), then \(f\) is IF-continuous. Suppose there exists \(\lambda \in I^X\) such that

\[
\tau^\ast(f^{-1}(\lambda)) \not\leq \sigma^\ast(\lambda).
\]

Then there exists \(s \in (0, 1)\) such that

\[
\tau^\ast(f^{-1}(\lambda)) > s \geq \sigma^\ast(\lambda).
\]

Since \(\sigma^\ast(\lambda) \leq s\), \(\sigma^\ast_{f(\mu_i)}(\lambda \land f(\mu_i)) \leq s\) for each \(i \in J\). Since \(f\) is an IFμ\(_i\)-continuous for each \(i \in J\) we have

\[
\tau^\ast_{\mu_i}(f^{-1}(\lambda \land f(\mu_i)) \land \mu_i) \leq \sigma^\ast_{f(\mu_i)}(\lambda \land f(\mu_i)) \leq s
\]
but
\[f^{-1}(\lambda \wedge f(\mu_i)) \wedge \mu_i = f^{-1}(\lambda) \wedge f^{-1}(f(\mu_i)) \wedge \mu_i = f^{-1}(\lambda) \wedge \mu_i. \]

Then \(\tau_J^*(f^{-1}(\lambda) \wedge \mu_i) \leq s \) for each \(i \in J \). Then for each \(i \in J \) there exists \(\nu_i \in I^X \) with \(\tau_J^*(\nu_i) \leq s \) such that \(f^{-1}(\lambda) \wedge \mu_i = \nu_i \wedge \mu_i \). This implies that \(\bigvee_{i \in J}(f^{-1}(\lambda) \wedge \mu_i) = \bigvee_{i \in J}(\nu_i \wedge \mu_i) \), thus
\[f^{-1}(\lambda) \wedge (\bigvee_{i \in J} \mu_i) = (\bigvee_{i \in J} \nu_i) \wedge (\bigvee_{i \in J} \mu_i). \]

Since \(\bigvee_{i \in J} \mu_i = 1 \), \(f^{-1}(\lambda) = \bigvee_{i \in J} \nu_i \). Then
\[\tau_J^*(f^{-1}(\lambda)) = \tau_J^*(\bigvee_{i \in J} \nu_i) \leq \bigvee_{i \in J} \tau_J^*(\nu_i) \leq s. \]

It is a contradiction. Thus \(\tau_J^*(f^{-1}(\lambda)) \leq \sigma^*(\lambda) \) for each \(\lambda \in I^Y \). Similarly, we can show \(\tau_J^*(f^{-1}(\lambda)) \leq \sigma^*(\lambda) \) for each \(\lambda \in I^Y \). Thus \(f \) is an IF-continuous. □

Theorem 3.2. Let \((X, \tau, \sigma^*)\) and \((Y, \sigma, \sigma^*)\) be two IFTSs, \(\mu \in I^X \) and \(f : X \to Y \) be an injective mapping. For \(r \in I_0, s \in I_1 \) with \(r + s \leq 1 \), the following statements are equivalent:

(i) \(f \) is IF-continuous.

(ii) \(\mathcal{F}_{\tau_J}(f^{-1}(\lambda) \wedge \mu) \geq \mathcal{F}_{\sigma_{f(\mu)}}(\lambda) \) and \(\mathcal{F}_{\tau_J}(f^{-1}(\lambda) \wedge \mu) \leq \mathcal{F}_{\sigma_{f(\mu)}}(\lambda) \) for each \(\lambda \in \mathcal{A}_{f(\mu)} \).

(iii) \(f(C_{\tau_J}(\mu, \nu, r, s)) \leq C_{\sigma_{f(\mu)}}(\nu, r, s) \) for each \(\nu \in \mathcal{A}_\mu \).

(iv) \(C_{\tau_J}(f^{-1}(\lambda) \wedge \mu, r, s) \leq f^{-1}(C_{\sigma_{f(\mu)}}(\lambda, r, s)) \wedge \mu \) for each \(\lambda \in \mathcal{A}_{f(\mu)} \).

(v) \(f^{-1}(I_{\sigma_{f(\mu)}}(\lambda, r, s)) \wedge \mu \leq I_{\tau_J}(f^{-1}(\lambda) \wedge \mu, r, s) \) for each \(\lambda \in \mathcal{A}_{f(\mu)} \).

(vi) For each \(x_t \in \mu \) and \(\lambda \in \mathcal{A}_{f(\mu)} \) with \(\sigma_{f(\mu)}(\lambda) \geq r, \sigma_{f(\mu)}(\lambda) \leq s \) and \(f(x_t)q\lambda[f(\mu)] \), there is \(\nu \in \mathcal{A}_\mu \) with \(\tau_J(\nu) \geq r, \tau_J(\nu) \leq s \) such that \(x_tq\nu[f(\mu)] \) and \(f(\nu) \leq \lambda \).

(vii) For each \(x_t \in \mu \) and each \(\lambda \in Q_{\sigma_{f(\mu)}}(f(x_t), r, s) \), there exists \(\nu \in Q_{\sigma_{f(\mu)}}(f(x_t), r, s) \) such that \(f(\nu) \leq \lambda \).

(viii) For each \(x_t \in \mu \) and each \(\lambda \in Q_{\sigma_{f(\mu)}}(f(x_t), r, s) \),
\[f^{-1}(\lambda) \in Q_{\tau_J}(x_t, r, s). \]

Proof. (i)⇒ (ii) For each \(\lambda \in \mathcal{A}_{f(\mu)} \), we have
\[\mathcal{F}_{\sigma_{f(\mu)}}(\lambda) = \sigma_{f(\mu)}(f(\mu) - \lambda) \geq \tau_J^*(f^{-1}(f(\mu) - \lambda) \wedge \mu) \]
\[= \tau_J^*(f^{-1}(f(\mu) - f^{-1}(\lambda)) \wedge \mu) \]
\[= \tau_J^*(\mu - f^{-1}(\lambda) \wedge \mu) = \mathcal{F}_{\tau_J}(f^{-1}(\lambda) \wedge \mu). \]

Similarly, we can show \(\mathcal{F}_{\sigma_{f(\mu)}}(\lambda) \leq \mathcal{F}_{\tau_J}(f^{-1}(\lambda) \wedge \mu) \) for each \(\lambda \in \mathcal{A}_{f(\mu)} \).
(ii)⇒(iii) For each $\nu \in \mathcal{A}_1$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$, we have
\[
\begin{align*}
&f^{-1}(C_{\sigma^*(\nu), \sigma^*(\mu)}(f(\nu), r, s)) \\
= &f^{-1}(\bigwedge \{ \lambda \in \mathcal{A}_1 : f(\nu) \leq \lambda, \sigma \lambda \leq r, \sigma^*(\mu) \leq s \}) \\
= &\bigwedge \{ f^{-1}(\lambda) : \nu \leq f^{-1}(\lambda), \mathcal{F}_\sigma(\lambda) \geq r, \mathcal{F}_{\sigma^*(\mu)}(\lambda) \leq s \} \\
\geq &\bigwedge \{ f^{-1}(\lambda) \land \mu \in \mathcal{A}_1 : \nu \leq f^{-1}(\lambda) \land \mu, \mathcal{F}_{\sigma^*(\mu)}(f^{-1}(\lambda) \land \mu) \geq r, \\
&\mathcal{F}_{\sigma^*(\mu)}(f^{-1}(\lambda) \land \mu) \leq s \} \\
= &C_{\tau^*_\mu}(\nu, r, s).
\end{align*}
\]

This implies that $f(C_{\tau^*_\mu}(\nu, r, s)) \leq C_{\sigma^*(\nu), \sigma^*(\mu)}(f(\nu), r, s)$.

(iii)⇒(iv) For each $\lambda \in \mathcal{A}_1$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$, we have
\[
\begin{align*}
f(C_{\tau^*_\mu}(f^{-1}(\lambda) \land \mu, r, s)) &\leq C_{\sigma^*(\lambda), \sigma^*(\mu)}(f(f^{-1}(\lambda) \land \mu), r, s) \\
&\leq C_{\sigma^*(\lambda), \sigma^*(\mu)}(\lambda, r, s).
\end{align*}
\]

Thus
\[
C_{\tau^*_\mu}(f^{-1}(\lambda) \land \mu, r, s) \leq f^{-1}(C_{\sigma^*(\lambda), \sigma^*(\mu)}(\lambda, r, s)) \land \mu.
\]

(iv)⇒(v) It is clear from Theorem 2.7.

(v)⇒(i) Suppose that there exist $\lambda \in \mathcal{A}_1$ and $r_0 \in I_0$, $s_0 \in I_1$ with $r_0 + s_0 \leq 1$ such that
\[
\tau^*_\mu(f^{-1}(\lambda) \land \mu) < r_0 \leq \sigma^*(\lambda) \quad \text{and} \quad \tau^*_\mu(f^{-1}(\lambda) \land \mu) > s_0 \geq \sigma^*(\lambda).
\]

Since $\sigma^*(\lambda) \geq r_0$ and $\sigma^*(\lambda) \leq s_0$, $\lambda = I_{\sigma^*(\lambda), \sigma^*(\lambda)}(r_0, s_0)$. By (v) we have
\[
f^{-1}(\lambda) \land \mu = f^{-1}(I_{\sigma^*(\lambda), \sigma^*(\lambda)}(r_0, s_0)) \land \mu \leq I_{\tau^*_\mu, \tau^*_\mu}(f^{-1}(\lambda) \land \mu, r_0, s_0).
\]

Thus
\[
f^{-1}(\lambda) \land \mu = I_{\tau^*_\mu, \tau^*_\mu}(f^{-1}(\lambda) \land \mu, r_0, s_0).
\]

This meaning, $\tau^*_\mu(f^{-1}(\lambda) \land \mu) \geq r_0$ and $\tau^*_\mu(f^{-1}(\lambda) \land \mu) \leq s_0$. It is a contradiction. Then $\tau^*_\mu(f^{-1}(\lambda) \land \mu) \geq \sigma(\lambda)$ and $\tau^*_\mu(f^{-1}(\lambda) \land \mu) \leq \sigma^*(\lambda)$ for each $\lambda \in \mathcal{A}_1$. Hence f is $IF\mu$-continuous.

(i)⇒(vi) Let $x_1 \in \mu$, $\lambda \in \mathcal{A}_1$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$ such that $\sigma(\lambda) \geq r$, $\sigma^*(\lambda) \leq s$ and $f(x_1) \notin \sigma(\mu)$. Since f is $IF\mu$-continuous we have
\[
\tau^*_\mu(f^{-1}(\lambda) \land \mu) \geq \sigma(\lambda) \geq r
\]
and
\[
\tau^*_\mu(f^{-1}(\lambda) \land \mu) \leq \sigma^*(\lambda) \leq s.
\]
Since $f(x_t)q\lambda[f(\mu)]$ and by Lemma 1.1, we have $x_tqf^{-1}(\lambda)[\mu]$. Since f is injective, $f^{-1}(\lambda) \leq \mu$ and hence $x_tqf^{-1}(\lambda) \land \mu[\mu]$. Then there exists $\nu = f^{-1}(\lambda) \land \mu \in A_\mu$ with $\tau_\mu(\nu) \geq r$, $\tau_\mu^*(\nu) \leq s$ and $x_tq\nu[\mu]$. Also,

$$f(\nu) = f(f^{-1}(\lambda) \land \mu) \leq f(f^{-1}(\lambda)) \land f(\mu) \leq \lambda \land f(\mu) = \lambda.$$

(vi)\Rightarrow(iii) Let $\nu \in A_\mu$, $x_t \in C_{\tau_\mu,\tau_\mu^*}(\nu, r, s)$ and $\lambda \in A_{f(\mu)}$ with $\sigma_{f(\mu)}(\lambda) \geq r$ and $\sigma_{f(\mu)}^*(\lambda) \leq s$ such that $f(x_t)q\lambda[f(\mu)]$. By (vi), there exists $\eta \in A_\mu$ with $\tau_\mu(\eta) \geq r$, $\tau_\mu^*(\eta) \leq s$ such that $x_tq\eta[\mu]$ and $f(\eta) \leq \lambda$. Since $x_t \in C_{\tau_\mu,\tau_\mu^*}(\nu, r, s)$, $\tau_\mu(\eta) \geq r$, $\tau_\mu^*(\eta) \leq s$ and $x_tq\eta[\mu]$, then by using Theorem 2.8, we have $\nu\eta[\mu]$ which implies that $f(\nu)q\eta[f(\mu)]$ and hence $f(\nu)q\lambda[f(\mu)]$. Thus $f(x_t) \in C_{\sigma_{f(\mu)},\sigma_{f(\mu)}^*}(f(\nu), r, s)$. Then

$$C_{\tau_\mu,\tau_\mu^*}(\nu, r, s) \leq f^{-1}(C_{\sigma_{f(\mu)},\sigma_{f(\mu)}^*}(f(\nu), r, s)).$$

Hence

$$f(C_{\tau_\mu,\tau_\mu^*}(\nu, r, s)) \leq C_{\sigma_{f(\mu)},\sigma_{f(\mu)}^*}(f(\nu), r, s).$$

(vii)\Rightarrow(viii) Let $x_t \in \mu$ and $\lambda \in Q_{\sigma_{f(\mu)},\sigma_{f(\mu)}^*}(f(x_t), r, s)$. Then there exists $\eta \in A_\mu$ with $\sigma_{f(\mu)}(\eta) \geq r$, $\sigma_{f(\mu)}^*(\eta) \leq s$ such that $f(x_t)q\eta[f(\mu)]$ and $\eta \leq \lambda$. By (vii), there exists $\nu \in A_\mu$ with $\tau_\mu(\nu) \geq r$, $\tau_\mu^*(\nu) \leq s$ such that $x_tq\nu[\mu]$ and $f(\nu) \leq \eta \leq \lambda$. Hence $\nu \in Q_{\tau_\mu,\tau_\mu^*}(x_t, r, s)$ and $f(\nu) \leq \lambda$.

(viii)\Rightarrow(vi) Let $x_t \in \mu$ and $\lambda \in A_{f(\mu)}$ with $\sigma_{f(\mu)}(\lambda) \geq r$, $\sigma_{f(\mu)}^*(\lambda) \leq s$ and $f(x_t)q\lambda[f(\mu)]$. Then $\lambda \in Q_{\sigma_{f(\mu)},\sigma_{f(\mu)}^*}(f(x_t), r, s)$. By (viii), we have $f^{-1}(\lambda) \in Q_{\tau_\mu,\tau_\mu^*}(x_t, r, s)$ and hence there is $\nu \in A_\mu$ with $\tau_\mu(\nu) \geq r$, $\tau_\mu^*(\nu) \leq s$ such that $x_tq\nu[\mu]$ and $\nu \leq f^{-1}(\lambda)$, so $f(\nu) \leq \lambda$.

Theorem 3.3. Let (X, τ, τ^*), (Y, σ, σ^*) and (Z, δ, δ^*) be IFTSs, $\mu \in I^X$, $f : X \rightarrow Y$ and $g : Y \rightarrow Z$. If f is IF-continuous and g is IF-continuous, then $g \circ f$ is IF-continuous.

Proof. For each $\lambda \in A_{(g \circ f)(\mu)}$ we have

$$\delta_{g(f(\mu))}^*(\lambda) \leq \tau_\mu((g \circ f)^{-1}(\lambda) \land \mu).$$

Similarly, $\delta_{g(f(\mu))}^*(\lambda) \leq \tau_\mu((g \circ f)^{-1}(\lambda) \land \mu)$. Thus $g \circ f$ is IF-continuous.

Definition 3.2. Let (X, τ, τ^*) be an IFTS and $\mu \in I^X$. For $r \in I_0$, $s \in I_1$ with $r + s \leq 1$, $\nu \in A_\mu$ is called:
(i) \((r, s) \)-IF\(\mu \)-regular open set if \(I_{\tau, \tau^*}(C_{\tau^*, \tau^*}(\nu, r, s), r, s) = \nu \).
(ii) \((r, s) \)-IF\(\mu \)-regular closed set if \(C_{\tau^*, \tau^*}(I_{\tau, \tau^*}(\nu, r, s), r, s) = \nu \).

Definition 3.3. Let \((X, \tau, \tau^*)\), \((Y, \sigma, \sigma^*)\) be two IFTSs and \(\mu \in I^X \). Then the mapping \(f : X \rightarrow Y \) is called IF\(\mu \)-almost continuous if \(\tau^*_\mu(f^{-1}(\nu) \land \mu) \geq r \) and \(\tau^*_\mu(f^{-1}(\nu) \land \mu) \leq s \) for each \((r, s)\)-IF\(\mu \)-regular open set \(\nu \) in \(A_f(\mu) \).

Remark 3.2. Every IF\(\mu \)-continuous mapping is also IF\(\mu \)-almost continuous but the converse is not true in general, as the following example shows.

Example 3.2. Consider Example 3.1, and put

\[
\sigma(\lambda) = \begin{cases}
1, & \text{if } \lambda = 0.1 \\
0.5, & \text{if } \lambda = 0.5 \\
0.6, & \text{if } \lambda = 2.5 \\
0, & \text{otherwise.}
\end{cases}
\]

\[
\sigma^*(\lambda) = \begin{cases}
0, & \text{if } \lambda = 0.1 \\
0.5, & \text{if } \lambda = 0.5 \\
2.2, & \text{if } \lambda = 2.5 \\
1, & \text{otherwise.}
\end{cases}
\]

Since \(\mu = 0.5 \), we have

\[
\sigma_f(\mu)(\nu) = \begin{cases}
1, & \text{if } \nu = 0, f(\mu) \\
0.6, & \text{if } \nu = 2.5 \\
0, & \text{otherwise.}
\end{cases}
\]

\[
\sigma^*_f(\mu)(\nu) = \begin{cases}
0, & \text{if } \nu = 0, f(\mu) \\
0.2, & \text{if } \nu = 2.5 \\
1, & \text{otherwise.}
\end{cases}
\]

Then, the identity mapping \(id_X : (X, \tau, \tau^*) \rightarrow (X, \sigma, \sigma^*) \) is IF\(\mu \)-almost continuous but not IF\(\mu \)-continuous.

Theorem 3.4. Let \((X, \tau, \tau^*)\) and \((Y, \sigma, \sigma^*)\) be two IFTSs, \(\mu \in I^X \) and \(f : X \rightarrow Y \) be an injective mapping. For \(r \in I_0, s \in I_1 \) such that \(r + s \leq 1 \) the following statements are equivalent:

(i) \(f \) is IF\(\mu \)-almost continuous.
(ii) \(F_{\tau^*}(f^{-1}(\lambda) \land \mu) \geq r \) and \(F_{\tau^*}^*(f^{-1}(\lambda) \land \mu) \leq s \) for each \((r, s)\)-IF\(\mu \)-regular closed set \(\lambda \) in \(A_f(\mu) \).
(iii) \(f^{-1}(\lambda) \land \mu \leq I_{\tau, \tau^*}(f^{-1}(C_{\sigma(\mu), \sigma^*}(\lambda, r, s) \land \mu), r, s) \) for each \(\lambda \in A_f(\mu) \) with \(\sigma_f(\mu)(\lambda) \geq r \) and \(\sigma^*_f(\mu)(\lambda) \leq s \).
(iv) \(f^{-1}(\lambda) \land \mu \geq C_{\tau^*, \tau^*}(f^{-1}(C_{\sigma(\mu), \sigma^*}(I_{\sigma_f(\mu), \sigma^*}(\lambda, r, s) \land \mu), r, s)) \) for each \(\lambda \in A_f(\mu) \) with \(\sigma_f(\mu)(f(\mu) - \lambda) \geq r \) and \(\sigma^*_f(\mu)(f(\mu) - \lambda) \leq s \).
(v) For each \(x_t \in \mu \) and \(\lambda \in A_f(\mu) \) with \(\sigma_f(\mu)(\lambda) \geq r \), \(\sigma^*_f(\mu)(\lambda) \leq s \) and \(f(x_t) \in \lambda \), there is \(\nu \in A_\mu \) with \(\tau_\mu(\nu) \geq r, \tau^*_\mu(\nu) \leq s \) such that \(f(\nu) \leq I_{\sigma_f(\mu), \sigma^*_f(\mu)}(C_{\sigma(\mu), \sigma^*}(\lambda, r, s), r, s) \).
(vi) For each \(x_t \in \mu \) and \(\lambda \in Q_{\sigma_f(\mu), \sigma^*}(f(\nu), r, s), \) there exists \(\nu \in Q_{\tau^*, \tau^*}(x_t, r, s) \) such that \(f(\nu) \leq I_{\sigma_f(\mu), \sigma^*_f(\mu)}(C_{\sigma(\mu), \sigma^*}(\lambda, r, s), r, s) \).
(vii) For each \(x_t \in \mu \) and each \(\lambda \in Q_{\sigma_f(\mu), \sigma^*}(f(\nu), r, s) \) we have

\[
f^{-1}(I_{\sigma_f(\mu), \sigma^*_f(\mu)}(C_{\sigma(\mu), \sigma^*}(\lambda, r, s), r, s)) \in Q_{\tau^*, \tau^*}(x_t, r, s).
\]
Proof. (i)⇒ (ii) Let \(\lambda \) be \((r, s)\)-IF\(\mu \)-regular closed set in \(A_{f(\mu)} \). Then \(f(\mu) - \lambda \) is \((r, s)\)-IF\(\mu \)-regular open set. Since \(f \) is IF\(\mu \)-almost continuous we have
\[
\tau_\mu(f^{-1}(f(\mu) - \lambda) \land \mu) \geq r \quad \text{and} \quad \tau_\mu^*(f^{-1}(f(\mu) - \lambda) \land \mu) \leq s.
\]
Since \(f \) is injective, \(\tau_\mu((\mu - f^{-1}(\lambda)) \land \mu) \geq r \) and \(\tau_\mu^*((\mu - f^{-1}(\lambda)) \land \mu) \leq s \). Let \(\nu = \mu - (f^{-1}(\lambda) \land \mu) \). Then
\[
\nu(x) = \mu(x) - (f^{-1}(\lambda) \land \mu)(x) = \mu(x) - \min\{f^{-1}(\lambda)(x), \mu(x)\}.
\]
If \(\mu(x) \leq f^{-1}(\lambda)(x) \), then \(\nu(x) = \mu(x) - \mu(x) = 0 \). Then
\[
F_\nu(f^{-1}(\lambda) \land \mu) = \tau_\mu((\mu - (f^{-1}(\lambda) \land \mu)) = \tau_\mu(\nu) = \tau_\mu(1) = 1 \geq r.
\]
and
\[
F_\nu^*(f^{-1}(\lambda) \land \mu) = \tau_\mu^*((\mu - (f^{-1}(\lambda) \land \mu)) = \tau_\mu^*(\nu) = \tau_\mu^*(0) = 0 \leq s.
\]
If \(\mu(x) > f^{-1}(\lambda)(x) \), then
\[
\nu = \mu - f^{-1}(\lambda) = (\mu - f^{-1}(\lambda)) \land \mu.
\]
Then
\[
\tau_\mu(\nu) = \tau_\mu((\mu - f^{-1}(\lambda)) \land \mu) \geq r \quad \text{and} \quad \tau_\mu^*(\nu) = \tau_\mu^*((\mu - f^{-1}(\lambda)) \land \mu) \leq s.
\]
Thus
\[
F_\nu(f^{-1}(\lambda) \land \mu) = \tau_\mu(\nu) \geq r \quad \text{and} \quad F_\nu^*(f^{-1}(\lambda) \land \mu) = \tau_\mu^*(\nu) \leq s.
\]
(iii)⇒ (i) It is clear.

(iii)⇒ (ii) Let \(\lambda \in A_{f(\mu)} \) and \(r \in I_0, s \in I_1 \) with \(r + s \leq 1 \) such that \(\sigma_{f(\mu)}(\lambda) \geq r, \sigma_{f(\mu)}^*(\lambda) \leq s \). Then \(\lambda \leq I_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}(C_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}((\lambda, r, s), r, s)) \) is \((r, s)\)-IF\(\mu \)-regular open and \(f \) is IF\(\mu \)-almost continuous,
\[
\tau_\mu(f^{-1}(I_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}(C_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}((\lambda, r, s), r, s)) \land \mu) \geq r
\]
and
\[
\tau_\mu^*(f^{-1}(I_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}(C_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}((\lambda, r, s), r, s)) \land \mu, r, s) \leq s.
\]
So,
\[
f^{-1}(\lambda) \land \mu \leq f^{-1}(I_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}(C_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}((\lambda, r, s), r, s)) \land \mu
\]
\[
= I_{\tau_\mu, \tau_\mu^*}(f^{-1}(I_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}(C_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}((\lambda, r, s), r, s)) \land \mu, r, s).
\]
(iv)⇒ (i) It follows from Theorem 2.7, (iv)⇒ (ii) Let \(\lambda \in A_{f(\mu)} \) and \(r \in I_0, s \in I_1 \) such that \(\sigma_{f(\mu)}(\lambda) \geq r, \sigma_{f(\mu)}^*(\lambda) \leq s \). By (iv) we have,
\[
f^{-1}(\lambda) \land \mu \geq C_{\tau_\mu, \tau_\mu^*}(f^{-1}(C_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}(I_{\sigma_{f(\mu)}, \sigma_{f(\mu)}^*}((\lambda, r, s), r, s) \land \mu), r, s)
\]
\[
= C_{\tau_\mu, \tau_\mu^*}(f^{-1}(\lambda) \land \mu, r, s).
\]
Thus $f^{-1}(\lambda) \wedge \mu = C_{\tau, \tau}(f^{-1}(\lambda) \wedge \mu, r, s)$. By Theorem 2.5, we have

$$F_{\tau}(f^{-1}(\lambda) \wedge \mu) = \tau_{\mu}(\mu - f^{-1}(\lambda) \wedge \mu) \geq r$$

and

$$F_{\tau}(f^{-1}(\lambda) \wedge \mu) = \tau_{\mu}(\mu - f^{-1}(\lambda) \wedge \mu) \leq s.$$

(i)\Rightarrow(vi) and (vi)\Rightarrow(vii) are similar to that of Theorem 3.2. \qed

4. $IF\mu$-separation axioms

Definition 4.1. Let (X, τ, τ^*) be an IFTS, $\mu \in I^X$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$. μ is said to be (r, s)-$IF\mu T_2$-space if for each $x_\alpha, y_\beta(x \neq y) \in \mu$, there are $\nu_1, \nu_2 \in A_\mu$ with $\tau_{\mu}(\nu_1) \geq r$, $\tau_{\mu}(\nu_2) \geq r$, $\tau_{\mu}^*(\nu_1) \leq s$ and $\tau_{\mu}^*(\nu_2) \leq s$ such that $x_\alpha \in \nu_1$, $y_\beta \in \nu_2$ and $\nu_1 \not\in \nu_2[\mu]$.

Theorem 4.1. Let (X, τ, τ^*) be an IFTS, $\mu \in I^X$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$. μ is (r, s)-$IF\mu T_2$-space if and only if for each $x_\alpha, y_\beta(x \neq y) \in \mu$, we have

$$y_\beta \not\in \{C_{\tau, \tau}(r, r, s) : \tau_{\mu}(\nu) \geq r, \tau_{\mu}^*(\nu) \leq s, x_\alpha \in \nu\}.$$

Proof. Let $x_\alpha, y_\beta(x \neq y) \in \mu$ and $m = \mu(y) - \beta$. Then $x_\alpha, y_m(x \neq y) \in \mu$. Since μ is (r, s)-$IF\mu T_2$-space, there are $\nu_1, \nu_2 \in A_\mu$ with $\tau_{\mu}(\nu_1) \geq r$, $\tau_{\mu}(\nu_2) \geq r$, $\tau_{\mu}^*(\nu_1) \leq s$ and $\tau_{\mu}^*(\nu_2) \leq s$ such that $x_\alpha \in \nu_1$, $y_m \in \nu_2$ and $\nu_1 \not\in \nu_2[\mu]$. Thus $\nu_1 \leq \mu - \nu_2$, $\tau(\mu - (\mu - \nu_2)) \geq r$ and $\tau^*(\mu - (\mu - \nu_2)) \leq s$ which implies, $C_{\tau, \tau}(\nu_1, r, s) \leq \mu - \nu_2$. Since $y_m \in \nu_2$,

$$\beta = \mu(y) - m > \mu(y) - \nu_2(y) \geq (C_{\tau, \tau}(\nu_1, r, s))(y)$$

and hence $y_\beta \not\in \{C_{\tau, \tau}(r, r, s) : \tau_{\mu}(\nu) \geq r, \tau_{\mu}^*(\nu) \leq s, x_\alpha \in \nu\}$.

Conversely, let $x_\alpha, y_\beta(x \neq y) \in \mu$. Then, $x_\alpha, y_{m(y) - \beta}(x \neq y) \in \mu$. By hypothesis, there is $\nu_1 \in A_\mu$ with $\tau_{\mu}(\nu_1) \geq r$, $\tau_{\mu}^*(\nu_1) \leq s$ such that $x_\alpha \in \nu_1$ and $y_{\mu(y) - \beta} \not\in C_{\tau, \tau}(\nu_1, r, s)$ and hence, $\mu(y) - \beta > (C_{\tau, \tau}(\nu_1, r, s))(y)$ which implies $y_\beta \in \mu - C_{\tau, \tau}(\nu_1, r, s) = \nu_2$ and $\tau_{\mu}(\nu_2) \geq r$, $\tau_{\mu}^*(\nu_2) \leq s$. Since $\nu_2 = \mu - C_{\tau, \tau}(\nu_1, r, s) \leq \mu - \nu_1$, $\nu_1 \not\in \nu_2[\mu]$. Hence μ is (r, s)-$IF\mu T_2$-space. \qed

Definition 4.2. Let (X, τ, τ^*) be an IFTS, $\mu \in I^X$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$. μ is said to be (r, s)-$IF\mu$-regular space if for each $\xi \in A_\mu$ with $\tau_{\mu}(\mu - \xi) \geq r$, $\tau_{\mu}^*(\mu - \xi) \leq s$ and for each fuzzy point $x_\mu \in \mu$ with $x_\mu \not\in \mu[\mu]$, there are $\nu, \eta \in A_\mu$ with $\tau_{\mu}(\nu) \geq r$, $\tau_{\mu}(\eta) \geq r$, $\tau_{\mu}(\nu) \leq s$ and $\tau_{\mu}^*(\eta) \leq s$ such that $x_\mu \in \nu, \xi \leq \eta$ and $\nu \not\in \eta[\mu]$.

Theorem 4.2. Let (X, τ, τ^*) be an IFTS, $\mu \in I^X$ and $r \in I_0$, $s \in I_1$ with $r + s \leq 1$. Then the following are equivalent:

(i) μ is (r, s)-$IF\mu$-regular.
(ii) For each fuzzy point \(x_t \in \mu\) and each \(\nu \in A_\mu\) with \(x_t \in \nu, \tau_\mu(\nu) \geq r, \tau_\nu^*(\nu) \leq s\) there is a \(\eta \in A_\mu\) with \(\tau_\mu(\eta) \geq r, \tau_\nu^*(\eta) \leq s\) such that \(x_t \in \eta \leq C_{\tau_\nu^*}(r, r, s) \leq \nu\).

(iii) For each fuzzy point \(x_t \in \mu\) and each \(\xi \in A_\mu\) with \(\tau_\mu(\mu - \xi) \geq r\) and \(\tau_\nu^*(\mu - \xi) \leq s\) there is \(\nu, \eta \in A_\mu\) with \(\tau_\mu(\nu) \geq r, \tau_\nu^*(\nu) \leq s\) and \(\tau_\eta^*(\eta) \leq s\) such that \(x_t \in \nu, \xi \leq \eta \) and \(C_{\tau_\nu^*}(r, r, s) \leq \nu\).

Proof. (i)\(\Rightarrow\) (ii) Let \(x_t \in \mu\) be a fuzzy point, \(r \in I_0, s \in I_1\) with \(r + s \leq 1\) and \(\nu \in A_\mu\) with \(\tau_\mu(\nu) \geq r, \tau_\nu^*(\nu) \leq s\) and \(x_t \in \nu\). Then \(\tau_\mu(\mu - \nu) \geq r, \tau_\nu^*(\mu - \nu) \leq s\) and \(x_t \in \eta \leq \eta \leq \nu\). By (i), there are \(\eta, \nu \in A_\mu\) with \(\tau_\mu(\eta) \geq r, \tau_\nu^*(\eta) \leq s\) and \(\tau_\eta^*(\eta) \leq s\) such that \(x_t \in \eta, \mu - \nu \leq \nu\) and \(\eta \leq \eta \leq \nu\). Since \(\eta \leq \eta \leq \nu\), \(\eta \leq \mu - \nu \leq \nu\) and hence \(C_{\tau_\nu^*}(r, r, s) \leq \nu\). Thus \(x_t \in \eta \leq \nu \leq C_{\tau_\nu^*}(r, r, s) \leq \nu\).

(ii)\(\Rightarrow\) (iii) Let \(x_t \in \mu\) be a fuzzy point, \(r \in I_0, s \in I_1\) with \(r + s \leq 1\) and \(\xi \in A_\mu\) with \(\tau_\mu(\mu - \xi) \geq r, \tau_\nu^*(\mu - \xi) \leq s\) and \(x_t \in \nu\). Then \(x_t \in \mu - \xi\). By (ii), there is \(\eta \in A_\mu\) with \(\tau_\mu(\eta) \geq r, \tau_\nu^*(\eta) \leq s\) such that \(x_t \leq \eta \leq \eta \leq \nu\). Then \(x_t \in \eta \leq \eta \leq \nu\). By (ii) again, there is \(\nu \in A_\mu\) with \(\tau_\nu(\nu) \geq r\) and \(\tau_\nu^*(\nu) \leq s\) such that

\[
x_t \in \nu \leq C_{\tau_\nu^*}(r, r, s) \leq \eta \leq C_{\tau_\nu^*}(r, r, s) \leq \mu - \xi.
\]

Put \(\eta = \mu - C_{\tau_\nu^*}(r, r, s)\). Hence there are \(\eta, \nu \in A_\mu\) with \(\tau_\mu(\nu) \geq r, \tau_\mu(\eta) \geq r, \tau_\nu^*(\nu) \leq s\) and \(\tau_\nu^*(\eta) \leq s\) such that \(x_t \in \nu, \xi \leq \eta \) and \(C_{\tau_\nu^*}(r, r, s) \leq \nu\).

(iii)\(\Rightarrow\) (i) It is clear. \(\square\)

5. \(IF\mu\)-compactness

Definition 5.1. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\) and \(r \in I_0, s \in I_1\) with \(r + s \leq 1\). \(\mu\) is said to be \((r, s)\)-\(IF\mu\)-compact if for every family \(\{\nu_i : i \in I\}\) in \(\{\nu : \nu \in A_\mu, \tau_\mu(\nu) \geq r, \tau_\nu^*(\nu) \leq s\}\) such that \((\bigwedge_{i \in I} \nu_i)(x) = \mu(x)\) for each \(x \in X\), there exists a finite subset \(J_0\) of \(J\) such that \((\bigvee_{i \in J_0} \nu_i)(x) = \mu(x)\).

Definition 5.2. Let \(X\) be a non-empty set and \(\mu \in I^X\). A collection \(\beta \subseteq A_\mu\) is said to form a fuzzy \(\mu\)-filterbasis if for each finite subcollection \(\{\nu_1, \nu_2, \ldots, \nu_n\}\) of \(\beta\), \((\bigwedge_{i=1}^n \nu_i)(x) > 0\) for some \(x \in X\).

Theorem 5.1. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\) and \(r \in I_0, s \in I_1\) with \(r + s \leq 1\). \(\mu\) is \((r, s)\)-\(IF\mu\)-compact if and only if for each fuzzy \(\mu\)-filterbasis \(\beta \subseteq A_\mu\), \((\bigwedge_{\nu \in \beta} C_{\tau_\nu^*}(r, r, s))(x) > 0\) for some \(x \in X\).

Proof. Let \(\{\nu_i : i \in I\}\) be a family in \(\Lambda = \{\nu : \nu \in A_\mu, \tau_\mu(\nu) \geq r, \tau_\nu^*(\nu) \leq s\}\) such that \((\bigwedge_{i \in I} \nu_i)(x) = \mu(x)\). Suppose that there is no finite subset \(J_0\) of \(J\) such that \((\bigvee_{i \in J_0} \nu_i)(x) = \mu(x)\). Then for each finite subcollection \(\{\nu_1, \nu_2, \ldots, \nu_n\}\) of \(\Lambda\), there exists \(x \in X\) such that \(\nu_i(x) < \mu(x)\) for each \(i = 1, 2, \ldots, n\). Then \(\mu(x) - \nu_i(x) \geq 0\) for each \(i = 1, 2, \ldots, n\). So, \(\bigwedge_{i=1}^n (\mu - \nu_i)(x) > 0\) and hence \(\beta = \{\mu - \nu_i : \nu_i \in \Lambda, i \in I\}\) forms a fuzzy \(\mu\)-filterbasis.
Since \((\bigvee_{i \in J} \nu_i)(x) = \mu(x)\) for each \(x \in X\) and \(\tau^*_\mu(\nu_i) \geq r, \tau^*_\mu(\nu_i) \leq s\) for each \(i \in J\) we have
\[
(\bigwedge_{i \in J} C_{\tau^*_\mu}(\mu - \nu_i, r, s))(x) = (\bigwedge_{i \in J} (\mu - \nu_i))(x) = (\mu - \bigvee_{i \in J} \nu_i)(x) = 0
\]
for each \(x \in X\). It is a contradiction. Thus there exists a finite subset \(J_0\) of \(J\) such that \((\bigvee_{i \in J_0} \nu_i)(x) = \mu(x)\) for all \(x \in X\). Thus \(\mu\) is \((r, s)\)-IF\(\mu\)-compact.

Conversely, Suppose that there exists fuzzy \(\mu\)-filterbasis \(\beta\) such that
\[
(\bigwedge_{\nu \in \beta} C_{\tau^*_\mu}(\nu, r, s))(x) = 0
\]
for each \(x \in X\). Then
\[
(\bigvee_{\nu \in \beta} (\mu - C_{\tau^*_\mu}(\nu, r, s)))(x) = \mu(x) \quad \text{for each} \quad x \in X.
\]
Since \(\tau^*_\mu(\mu - C_{\tau^*_\mu}(\nu, r, s)) \geq r\) and \(\tau^*_\mu(\mu - C_{\tau^*_\mu}(\nu, r, s)) \leq s\) and \(\mu\) is \((r, s)\)-IF\(\mu\)-compact, there exists a finite subcollection \(\{\mu - C_{\tau^*_\mu}(\nu_i, r, s) : i = 1, 2, \ldots, n\}\) of \(\{\mu - C_{\tau^*_\mu}(\nu_i, r, s) : \nu \in \beta\}\) such that
\[
(\bigvee_{i=1}^{n} (\mu - C_{\tau^*_\mu}(\nu_i, r, s)))(x) = \mu(x) \quad \text{for each} \quad x \in X.
\]
Since \(\nu_i(x) \leq C_{\tau^*_\mu}(\nu_i, r, s)(x)\) for each \(x \in X\) we have
\[
(\bigvee_{i=1}^{n} (\mu - \nu_i))(x) \geq (\bigvee_{i=1}^{n} (\mu - C_{\tau^*_\mu}(\nu_i, r, s)))(x) = \mu(x) \quad \text{for each} \quad x \in X.
\]
Then \((\bigvee_{i=1}^{n} (\mu - \nu_i))(x) = \mu(x)\) for each \(x \in X\). Thus \((\bigwedge_{\nu \in \beta} C_{\tau^*_\mu}(\nu, r, s))(x) > 0\) for some \(x \in X\). It is a contradiction. Hence \((\bigwedge_{\nu \in \beta} C_{\tau^*_\mu}(\nu, r, s))(x) > 0\) for some \(x \in X\).

\(\square\)

Theorem 5.2. Let \((X, r, \tau^*)\), \((Y, \sigma, \sigma^*)\) be two IFTSs, \(f : X \to Y\) an IF\(\mu\)-continuous bijective mapping. For \(r \in I_0, s \in I_1\) with \(r + s \leq 1\), if \(\mu\) is \((r, s)\)-IF\(\mu\)-compact, then \(f(\mu)\) is \((r, s)\)-IF\(f(\mu)\)-compact.

Proof. Let \((\lambda_i : i \in J)\) be a family in \(\{\lambda : \lambda \in A_{f(\mu)}, \sigma_{f(\mu)}(\lambda) \geq r, \sigma^*_{f(\mu)}(\lambda) \leq s\}\) such that \((\bigvee_{i \in J} \lambda_i)(y) = (f(\mu))(y)\) for all \(y \in Y\). Since \(f\) is IF\(\mu\)-continuous for each \(i \in J\) we have,
\[
\tau_\mu(f^{-1}(\lambda_i) \wedge \mu) \geq \sigma_{f(\mu)}(\lambda_i) \geq r,
\]
\[
\tau^*_\mu(f^{-1}(\lambda_i) \wedge \mu) \leq \sigma^*_{f(\mu)}(\lambda_i) \leq s.
\]
Since \(f\) is injective,
\[
\bigvee_{i \in J} (f^{-1}(\lambda_i) \wedge \mu) = f^{-1}(\bigvee_{i \in J} \lambda_i) \wedge \mu = f^{-1}(f(\mu)) \wedge \mu = \mu.
\]
Since \(\mu\) is \((r, s)\)-IF\(\mu\)-compact, there exists a finite subset \(J_0\) of \(J\) such that \((\bigvee_{i \in J_0} f^{-1}(\lambda_i))(x) = \mu(x)\) for all \(x \in X\). This implies that
Let \(\iota \) since \(-\), all \(y \) Then \(\eta \eta \) \((\ast)\). Since \(\iota \) let \((\ast)\). Then \(\eta \eta \) \((\ast)\).

Thus \((\ast)\) for all \(y \in Y \). Hence \(f(\mu) \) is \((r, s)\)-IFT-compact.

6. IF\(\mu\)-connected sets

Definition 6.1. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\) and \(r \in I_0\), \(s \in I_1\) with \(r + s \leq 1\). Then \(\nu, \eta \in \mathcal{A}_\mu\) are said to be \((r, s)\)-IFT\(\mu\)-separated if \(\nu \not{\mathcal{A}} r, s (\ast)\eta \not{\mathcal{A}} (\ast)\nu \not{\mathcal{A}} \mu\).

Theorem 6.1. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in I^X\) and \(r \in I_0\), \(s \in I_1\) with \(r + s \leq 1\). Then for \(\nu, \eta \in \mathcal{A}_\mu\),

(i) If \(\nu, \eta \in \mathcal{A}_\mu\) such that \(\nu \neq \eta \leq \mu\), then \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\) are \((r, s)\)-IFT\(\mu\)-separated.

(ii) If \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\) and either \(\tau_\mu(\nu) \geq r\), \(\tau_\mu(\eta) \geq r\), \(\tau_\mu(\nu) \leq s\) or \(\tau_\mu(\mu - \nu) \geq r\), \(\tau_\mu(\mu - \eta) \geq r\), \(\tau_\mu(\mu - \nu) \leq s\) and \(\tau_\mu(\mu - \eta) \leq s\), then \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\) are \((r, s)\)-IFT\(\mu\)-separated.

(iii) If \(\tau_\mu(\nu) \geq r\), \(\tau_\mu(\eta) \geq r\), \(\tau_\mu(\nu) \leq s\) or \(\tau_\mu(\mu - \nu) \geq r\), \(\tau_\mu(\mu - \eta) \geq r\), \(\tau_\mu(\mu - \nu) \leq s\) and \(\tau_\mu(\mu - \eta) \leq s\), then \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\) are \((r, s)\)-IFT\(\mu\)-separated.

Proof. (i) Since \(\nu_1 \leq \nu\), \(C_{\tau_\mu, \tau_\mu^*}(\nu_1, r, s) \leq C_{\tau_\mu, \tau_\mu^*}(\nu, r, s)\). Since \(\nu, \eta \in \mathcal{A}_\mu\), \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} (\ast)\mu\) are \((r, s)\)-IFT\(\mu\)-separated. Then \(\eta \not{\mathcal{A}} C_{\tau_\mu, \tau_\mu^*}(\nu_1, r, s)[\mu]\). Thus \(\eta \leq \mu \leq \mu - C_{\tau_\mu, \tau_\mu^*}(\nu, r, s) \leq \mu - C_{\tau_\mu, \tau_\mu^*}(\nu_1, r, s)\).

Then \(\eta \not{\mathcal{A}} C_{\tau_\mu, \tau_\mu^*}(\nu_1, r, s)[\mu]\). Similarly, \(\nu_1 \not{\mathcal{A}} C_{\tau_\mu, \tau_\mu^*}(\eta_1, r, s)[\mu]\). Hence \(\nu_1\) and \(\eta_1\) are \((r, s)\)-IFT\(\mu\)-separated.

(ii) Let \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\), \(\tau_\mu(\nu) \geq r\), \(\tau_\mu(\eta) \geq r\), \(\tau_\mu(\nu) \leq s\) and \(\tau_\mu(\eta) \leq s\). Since \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\), \(\nu \leq \mu - \eta\). Thus

\(C_{\tau_\mu, \tau_\mu^*}(\nu, r, s) \leq C_{\tau_\mu, \tau_\mu^*}(\mu - \eta, r, s) = \mu - \eta\).

Then \(C_{\tau_\mu, \tau_\mu^*}(\nu, r, s) \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\). Similarly, \(C_{\tau_\mu, \tau_\mu^*}(\eta, r, s) \not{\mathcal{A}} \nu \not{\mathcal{A}} \mu\). Then \(\nu, \eta \in \mathcal{A}_\mu\) are \((r, s)\)-IFT\(\mu\)-separated. Let \(\tau_\mu(\mu - \nu) \geq r\), \(\tau_\mu(\mu - \eta) \geq r\), \(\tau_\mu(\mu - \nu) \leq s\) and \(\tau_\mu(\mu - \eta) \leq s\). By Theorem 2.5, \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\) and \(\eta \not{\mathcal{A}} \nu \not{\mathcal{A}} \mu\). Since \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\) we have, \(C_{\tau_\mu, \tau_\mu^*}(\nu, r, s) \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\) and \(C_{\tau_\mu, \tau_\mu^*}(\eta, r, s) \not{\mathcal{A}} \nu \not{\mathcal{A}} \mu\). Then \(\nu, \eta \in \mathcal{A}_\mu\) are \((r, s)\)-IFT\(\mu\)-separated.

(iii) Let \(\tau_\mu(\nu) \geq r\), \(\tau_\mu(\eta) \geq r\), \(\tau_\mu(\nu) \leq s\) and \(\tau_\mu(\eta) \leq s\). Since \(\nu \not{\mathcal{A}} \eta \not{\mathcal{A}} \mu\), \(\tau_\mu(\nu \wedge (\mu - \eta), r, s) \leq C_{\tau_\mu, \tau_\mu^*}(\nu \wedge (\mu - \eta), r, s) = \mu - \eta\).

Then

\(\eta \leq \mu - C_{\tau_\mu, \tau_\mu^*}(\nu \wedge (\mu - \eta), r, s)\).

Since \(\eta \not{\mathcal{A}} \mu - \nu \not{\mathcal{A}} \eta\),

\(\eta \wedge (\mu - \nu) \leq \mu - C_{\tau_\mu, \tau_\mu^*}(\nu \wedge (\mu - \eta), r, s)\).
Let \(\nu \), \(\tau \), and \(\rho \) be \((r, s)\)-\(IFTS \) with \(r + s \leq 1 \). Then \(\nu \) and \(\rho \) are \((r, s)\)-\(IFTS \)-separated if and only if there exist \(\nu_1, \rho_1 \in \mathcal{A}_\mu \) with \(\tau_\mu(\nu_1) \geq r \), \(\tau_\mu(\rho_1) \geq r \), \(\tau_\mu^*(\nu_1) \leq s \) and \(\tau_\mu^*(\rho_1) \leq s \) such that \(\nu \leq \nu_1 \), \(\rho \leq \rho_1 \), \(\nu \not\sim \rho \mu \), \(\rho \not\sim \nu \mu \), and \(\nu \not\sim \rho \mu \). Hence, \(\nu \) and \(\rho \) are \((r, s)\)-\(IFTS \)-separated.

Theorem 6.2. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in \mathcal{I}_X \) and \(r, s \in I_0 \), \(s \in I_1 \) with \(r + s \leq 1 \). Then \(\nu \), \(\eta \in \mathcal{A}_\mu \) are \((r, s)\)-\(IFTS \)-separated if and only if there exist \(\nu_1, \eta_1 \in \mathcal{A}_\mu \) with \(\tau_\mu(\nu_1) \geq r \), \(\tau_\mu(\eta_1) \geq r \), \(\tau_\mu^*(\nu_1) \leq s \) and \(\tau_\mu^*(\eta_1) \leq s \) such that \(\nu \leq \nu_1 \), \(\eta \leq \eta_1 \), \(\nu \not\sim \eta \mu \), \(\eta \not\sim \nu \mu \), and \(\nu \not\sim \eta \mu \). Hence, \(\nu \) and \(\eta \) are \((r, s)\)-\(IFTS \)-separated.

Definition 6.2. Let \((X, \tau, \tau^*)\) be an IFTS, \(\mu \in \mathcal{I}_X \) and \(r, s \in I_0 \), \(s \in I_1 \) with \(r + s \leq 1 \). Then \(\nu \in \mathcal{A}_\mu \) is said to be \((r, s)\)-\(IFTS \)-connected if it can’t be expressed as the union of two \((r, s)\)-\(IFTS \)-separated sets.

Theorem 6.3. Let \((X, \tau, \tau^*)\) and \((Y, \sigma, \sigma^*)\) be IFTS, \(\mu \in \mathcal{I}_X \) and \(f : X \to Y \) be \(IFTS \)-continuous injective mapping. For \(r, s \in I_0 \), \(s \in I_1 \) with \(r + s \leq 1 \), if \(\lambda \) is \((r, s)\)-\(IFTS \)-connected, then \(f(\lambda) \) is \((r, s)\)-\(IFTS \)-connected.

Proof. Suppose that \(f(\lambda) \) is not \((r, s)\)-\(IFTS \)-connected. Then there exist two \((r, s)\)-\(IFTS \)-separated sets \(\nu, \eta \in \mathcal{A}_f(\mu) \) such that \(\nu \not\sim \eta \mu \). By Theorem 6.2, there exist \(\nu_1, \eta_1 \in \mathcal{A}_f(\mu) \) with \(\sigma_f(\nu_1) \geq r \), \(\sigma_f(\eta_1) \geq r \), \(\sigma_f^*(\nu_1) \leq s \) and \(\sigma_f^*(\eta_1) \leq s \) such that \(\nu \leq \nu_1 \), \(\eta \leq \eta_1 \), \(\nu \not\sim \eta_1 \mu \), \(\eta \not\sim \nu_1 \mu \), and \(\nu \not\sim \eta_1 \mu \).
η \not\subseteq \mu_1[f(\mu)]. Since \(f\) is injective and \(\nu_1 \leq f(\mu)\), \(f^{-1}(\nu_1) \leq f^{-1}(f(\mu)) = \mu\) and hence \(f^{-1}(\nu) \leq f^{-1}(\nu_1) \wedge \mu\). Similarly, \(f^{-1}(\eta) \leq f^{-1}(\eta_1) \wedge \mu\). Since \(f\) is \(IF\mu\)-continuous, we have

\[
\tau_\mu(f^{-1}(\nu_1) \wedge \mu) \geq \sigma_{f(\mu)}(\nu_1) \geq r \quad \text{and} \quad \tau_\mu(f^{-1}(\eta_1) \wedge \mu) \leq \sigma_{f(\mu)}(\eta_1) \leq s.
\]

Similarly, \(\tau_\mu(f^{-1}(\eta_1) \wedge \mu) \geq r\), \(\tau_\mu(f^{-1}(\nu_1) \wedge \mu) \leq s\). Since \(f\) is injective,

\[
\begin{align*}
 f^{-1}(\nu)(x) + (f^{-1}(\eta_1) \wedge \mu)(x) &= f^{-1}(\nu)(x) + f^{-1}(\eta_1)(x) \\
 &= \nu(f(x)) + \eta_1(f(x)) \\
 &= \nu(y) + \eta_1(y) \leq f(\mu)(y) = \mu(x)
\end{align*}
\]

and hence \(f^{-1}(\nu) \not\subseteq (f^{-1}(\eta_1) \wedge \mu)[\mu]\). Similarly, \(f^{-1}(\eta) \not\subseteq (f^{-1}(\nu_1) \wedge \mu)[\mu]\). Then by Theorem 6.2, \(f^{-1}(\nu)\) and \(f^{-1}(\eta)\) are \((r, s)-IF\mu\)-separated. Since \(f\) is injective,

\[
\lambda = f^{-1}(f(\lambda)) = f^{-1}(\nu \lor \eta) = f^{-1}(\nu) \lor f^{-1}(\eta).
\]

It is a contradiction with \(\lambda\) is \((r, s)-IF\mu\)-connected. Hence \(f(\lambda) = (r, s)-IF\mu\)-connected. \(\square\)

References

Ahmed Abd El-Kader Ramadan
Department of Mathematics
Faculty of Science
Beni-Suef University, Egypt
E-mail address: aramadan58@yahoo.com

Ahmed Aref Abd El-Latif
Department of Mathematics
Faculty of Science
Beni-Suef University, Egypt
E-mail address: ahmeda73@yahoo.com