ON MINIMAL SEMICONTINUOUS FUNCTIONS

Won Keun Min

Abstract. In this paper, we introduce the notions of minimal semicontinuity, strongly \(m \)-semiclosed graph, \(m \)-semiclosed graph, \(m \)-semi-\(T_2 \), \(m \)-semicompact and investigate some properties for such notions.

1. Introduction

In [4], Popa and Noiri introduced the notion of minimal structure which is a generalization of a topology on a given nonempty set. And they introduced the notion of \(m \)-continuous function [3] as a function defined between a minimal structure and a topological space. They showed that the \(m \)-continuous functions have properties similar to those of continuous functions between topological spaces. We introduced and studied the notions of \(m \)-semiopen sets, \(m \)-semi-interior and \(m \)-semi-closure operators [2] on a space with a minimal structure. In this paper, we introduce and study the notion of \(m \)-semicontinuous function defined between a minimal structure and a topological space. We also introduce the notions of strongly \(m \)-semiclosed graph, \(m \)-semiclosed graph, \(m \)-semi-\(T_2 \), \(m \)-semicompact and investigate some properties for such notions.

2. Preliminaries

Let \(X \) be a topological space and \(A \subseteq X \). The closure of \(A \) and the interior of \(A \) are denoted by \(\overline{A} \) and \(\text{int}(A) \), respectively. A subfamily \(m_X \) of the power set \(P(X) \) of a nonempty set \(X \) is called a minimal structure [4] on \(X \) if \(\emptyset \in m_X \) and \(X \in m_X \). By \((X, m_X) \), we denote a nonempty set \(X \) with a minimal structure \(m_X \) on \(X \). Simply we call \((X, m_X) \) a space with a minimal structure \(m_X \) on \(X \). Let \((X, m_X) \) be a space with a minimal structure \(m_X \) on \(X \). For a subset \(A \) of \(X \), the closure of \(A \) and the interior of \(A \) are defined as the following [4]:

\[
\begin{align*}
\text{mInt}(A) &= \bigcup \{ U : U \subseteq A, U \in m_X \}; \\
\text{mCl}(A) &= \bigcap \{ F : A \subseteq F, X - F \in m_X \}.
\end{align*}
\]

Received December 28, 2009; Revised March 8, 2011.
2010 Mathematics Subject Classification. 54C08.
Key words and phrases. \(m \)-semiopen sets, \(m \)-continuous, \(m \)-semicontinuous, strongly \(m \)-semiclosed graph, \(m \)-semiclosed graph, \(m \)-semi-\(T_2 \), \(m \)-semicompact.

©2012 The Korean Mathematical Society

341
A subset \(A \) of \(X \) is called an \textit{m-semiopen set} [2] if \(A \subseteq msCl(mInt(A)) \). The complement of an m-semiopen set is called an \textit{m-semiclosed set}. In [2], we showed that any union of m-semiopen sets is m-semiopen.

For a subset \(A \) of \(X \), the m-semi-closure of \(A \) and the m-semi-interior of \(A \), denoted by \(msCl(A) \) and \(msInt(A) \), respectively, are defined as the following:

\[
msCl(A) = \cap \{ F : A \subseteq F, F \text{ is m-semiclosed in } X \};
\]

\[
msInt(A) = \cup \{ U : U \subseteq A, U \text{ is m-semiopen in } X \}.
\]

Theorem 2.1 ([2]). Let \((X, m_X)\) be a space with a minimal structure \(m_X \) on \(X \) and \(A \subseteq X \). Then

1. \(msInt(A) \subseteq A \subseteq msCl(A) \).
2. If \(A \subseteq B \), then \(msInt(A) \subseteq msInt(B) \) and \(msCl(A) \subseteq msCl(B) \).
3. \(A \) is m-semiopen if and only if \(msInt(A) = A \).
4. \(F \) is m-semiclosed if and only if \(msCl(F) = F \).
5. \(msInt(msInt(A)) = msInt(A) \) and \(msCl(msCl(A)) = msCl(A) \).
6. \(msCl(X - A) = X - msInt(A) \) and \(msInt(X - A) = X - msCl(A) \).

Let \(f : (X, m_X) \rightarrow (Y, \tau) \) be a function between a space \((X, m_X)\) with minimal structure \(m_X \) and a topological space \((Y, \tau)\). Then \(f \) is said to be \textit{m-continuous} [3] if for each \(x \) and each open set \(V \) containing \(f(x) \), there exists an m-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \).

3. Minimal semicontinuous functions

Definition 3.1. Let \(f : (X, m_X) \rightarrow (Y, \tau) \) be a function between a space \(X \) with a minimal structure \(m_X \) and a topological space \(Y \). Then \(f \) is said to be \textit{minimal semicontinuous} (briefly \textit{m-semicontinuous}) if for each \(x \) and each open set \(V \) containing \(f(x) \), there exists an m-semiopen set \(U \) containing \(x \) such that \(f(U) \subseteq V \).

\[m - \text{continuity} \Rightarrow m - \text{semicontinuity} \]

In the above diagram, the converse may not be true.

Example 3.2. Let \(X = \{a, b, c\} \). Consider a minimal structure \(m_X = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \) and a topology \(\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\} \). Let \(f : (X, m_X) \rightarrow (X, \tau) \) be the identity function. Then \(f \) is m-semicontinuous but not m-continuous.

Theorem 3.3. Let \(f : (X, m_X) \rightarrow (Y, \tau) \) be a function between a space \(X \) with a minimal structure \(m_X \) and a topological space \((Y, \tau)\). Then the following statements are equivalent:

1. \(f \) is m-semicontinuous.
2. For each open set \(V \) in \(Y \), \(f^{-1}(V) \) is m-semiopen.
3. For each closed set \(B \) in \(Y \), \(f^{-1}(B) \) is m-semiclosed.
4. \(f(msCl(A)) \subseteq cl(f(A)) \) for \(A \subseteq X \).
5. \(msCl(f^{-1}(B)) \subseteq f^{-1}(cl(B)) \) for \(B \subseteq Y \).
6. \(f^{-1}(int(B)) \subseteq msInt(f^{-1}(B)) \) for \(B \subseteq Y \).
Proof. (1) ⇒ (2) Let V be an open set in Y and $x \in f^{-1}(V)$. By hypothesis, there exists an m-semiopen set U containing x such that $f(U) \subseteq V$. So we have $x \in U \subseteq f^{-1}(V)$ for all $x \in f^{-1}(V)$. Hence $f^{-1}(V)$ is m-semiopen.

(2) ⇒ (3) Obvious.

(3) ⇒ (4) For $A \subseteq X$,

\[
f^{-1}(\text{cl}(f(A))) = f^{-1}(\cap\{F \subseteq Y : f(A) \subseteq F \text{ and } F \text{ is closed}\})
\]

\[
= \cap \{f^{-1}(F) \subseteq X : A \subseteq f^{-1}(F) \text{ and } f^{-1}(F) \text{ is } m\text{-semiclosed}\}
\]

\[
\supseteq \cap \{K \subseteq X : A \subseteq K \text{ and } K \text{ is } m\text{-semiclosed}\}
\]

\[
= m\text{Cl}(A).
\]

Hence $f(m\text{Cl}(A)) \subseteq \text{cl}(f(A))$.

(4) ⇒ (5) Obvious.

(5) ⇒ (6) It follows from Theorem 2.1(6).

(6) ⇒ (1) Let $x \in X$ and V an open set containing $f(x)$. Then from (6), it follows $x \in f^{-1}(V) = f^{-1}(\text{int}(V)) \subseteq m\text{Int}(f^{-1}(V))$. So there exists an m-semiopen set U containing x such that $x \in U \subseteq f^{-1}(V)$. Hence this implies f is m-semicontinuous. □

Lemma 3.4 ([2]). Let (X, m_X) be a space with a minimal structure m_X on X and $A \subseteq X$. Then

1. $m\text{Int}(m\text{Cl}(A)) \subseteq m\text{Int}(m\text{Cl}(m\text{Cl}(A))) \subseteq m\text{Cl}(A)$.
2. $m\text{Int}(A) \subseteq m\text{Cl}(m\text{Int}(m\text{Int}(A))) \subseteq m\text{Int}(m\text{Cl}(A))$.
3. A is m-semiclosed if and only if $m\text{Int}(m\text{Cl}(A)) \subseteq A$.

From Theorem 3.3 and Lemma 3.4, we have the next theorem.

Theorem 3.5. Let $f : (X, m_X) \to (Y, \tau)$ be a function between a space X with a minimal structure m_X and a topological space (Y, τ). Then the following statements are equivalent:

1. f is m-semicontinuous.
2. $f^{-1}(V) \subseteq m\text{Cl}(m\text{Int}(f^{-1}(V)))$ for each open set V in Y.
3. $m\text{Int}(m\text{Cl}(m\text{Int}(f^{-1}(F)))) \subseteq f^{-1}(F)$ for each closed set F in Y.
4. $f(m\text{Int}(m\text{Cl}(A))) \subseteq \text{cl}(f(A))$ for $A \subseteq X$.
5. $m\text{Int}(m\text{Cl}(f^{-1}(B))) \subseteq f^{-1}(\text{cl}(B))$ for $B \subseteq Y$.
6. $f^{-1}(\text{int}(B)) \subseteq m\text{Cl}(m\text{Int}(f^{-1}(B)))$ for $B \subseteq Y$.

Definition 3.6. Let $f : (X, m_X) \to (Y, \tau)$ be a function between a space (X, m_X) with a minimal structure m_X and a topological space (Y, τ). Then f has a strongly m-semiclosed graph (resp., an m-semiclosed graph) if for each $(x, y) \in (X \times Y) - G(f)$, there exist an m-semiopen set U containing x and an open set V containing y such that $(U \times \text{cl}(V)) \cap G(f) = \emptyset$ (resp., $(U \times V) \cap G(f) = \emptyset$).
Theorem 3.12. Let \(f : (X, m_X) \to (Y, \tau) \) be a function between a space \((X, m_X)\) with a minimal structure \(m_X\) and a topological space \((Y, \tau)\). Then \(f \) has a strongly \(m\)-semi-closed graph (resp., an \(m\)-semi-closed graph) if and only if for each \((x, y) \in (X \times Y) - G(f)\), there exist an \(m\)-semiopen set \(U\) containing \(x\) and an open set \(V\) containing \(y\) such that \(f(U) \cap cl(V) = \emptyset\) (resp., \(f(U) \cap V = \emptyset\)).

Theorem 3.8. Let \(f : (X, m_X) \to (Y, \tau) \) be a function between a space \((X, m_X)\) with a minimal structure \(m_X\) and a topological space \((Y, \tau)\). If \(f \) is \(m\)-semi-continuous and \((Y, \tau)\) is T2, then \(f \) has a strongly \(m\)-semi-closed graph.

Proof. Let \((x, y) \in (X \times Y) - G(f)\); then \(f(x) \neq y\). Since \(Y\) is T2, there are disjoint open sets \(U, V\) such that \(f(x) \in U\), \(y \in V\). This implies \(cl(V) \cap U = \emptyset\).

And for \(f(x) \in U\), from \(m\)-semi-continuity of \(f\), there exists an \(m\)-semiopen set \(G\) containing \(x\) such that \(f(G) \subseteq U\). Consequently, we can say that there exist an open set \(V\) and \(m\)-semiopen set \(G\) containing \(y, x\), respectively, such that \(f(G) \cap cl(V) = \emptyset\) and so by Lemma 3.7, \(f \) has a strongly \(m\)-semi-closed graph. \(\square\)

Corollary 3.9. Let \(f : (X, m_X) \to (Y, \tau) \) be a function between a space \((X, m_X)\) with a minimal structure \(m_X\) and a topological space \((Y, \tau)\). If \(f \) is \(m\)-semi-continuous and \((Y, \tau)\) is T2, then \(f \) has an \(m\)-semi-closed graph.

Theorem 3.10. Let \(f : (X, m_X) \to (Y, \tau) \) be a function between a space \((X, m_X)\) with a minimal structure \(m_X\) and a topological space \((Y, \tau)\). If \(f \) is a surjective function with a strongly \(m\)-semi-closed graph, then \(Y \) is T2.

Proof. Let \(y \) and \(z \) be any distinct points of \(Y \). Then there is \(x \in X \) such that \(f(x) = y \). Thus \((x, z) \in (X \times Y) - G(f)\). Since \(f \) has a strongly \(m\)-semi-closed graph, there exist an \(m\)-semiopen set \(U\) containing \(x\) and an open set \(V\) containing \(z\) such that \(f(U) \cap cl(V) = \emptyset\). So since \(f(x) = y \in f(U) \subseteq Y - cl(V)\), there exists an open set \(G\) containing \(y\) such that \(G \cap V = \emptyset\). Hence \(Y \) is T2. \(\square\)

Definition 3.11. Let \((X, m_X)\) be a space with a minimal structure \(m_X\). Then \(X \) is said to be \(m\)-semi-T2 if for any distinct points \(x\) and \(y\) of \(X\), there exist disjoint \(m\)-semiopen sets \(U, V\) such that \(x \in U\) and \(y \in V\).

Theorem 3.12. Let \(f : (X, m_X) \to (Y, \tau) \) be a function between a space \((X, m_X)\) with a minimal structure \(m_X\) and a topological space \((Y, \tau)\). If \(f \) is an injective \(m\)-semi-continuous function and \(Y \) is T2, then \(X \) is \(m\)-semi-T2.

Proof. Obvious. \(\square\)

Theorem 3.13. Let \(f : (X, m_X) \to (Y, \tau) \) be a function between a space \((X, m_X)\) with a minimal structure \(m_X\) and a topological space \((Y, \tau)\). If \(f \) is an injective \(m\)-semi-continuous function with an \(m\)-semi-closed graph, then \(X \) is \(m\)-semi-T2.
Proof. Let x_1 and x_2 be any distinct points of X. Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) - G(f)$. Since f has an m-semiclosed graph, there exist an m-semiopen set U containing x_1 and $V \in \tau$ containing $f(x_2)$ such that $f(U) \cap V = \emptyset$. Since f is m-semicontinuous, $f^{-1}(V)$ is an m-semiopen set containing x_2 such that $U \cap f^{-1}(V) = \emptyset$. Hence X is m-semi-T_2. □

Corollary 3.14. Let $f : (X, m_X) \to (Y, \tau)$ be a function between a space (X, m_X) with a minimal structure m_X and a topological space (Y, τ). If f is an injective m-semicontinuous function with a strongly m-semiclosed graph, then X is m-semi-T_2.

Definition 3.15. A subset A of a space (X, m_X) with a minimal structure m_X is called minimal semicompact (briefly m-semicompact) relative to A if every collection $\{U_i : i \in J\}$ of m-semiopen subsets of X such that $A \subseteq \bigcup \{U_i : i \in J\}$, there exists a finite subset J_0 of J such that $A \subseteq \bigcup \{U_i : i \in J_0\}$. A subset A of a minimal structure (X, m_X) is said to be m-semicompact if A is m-semicompact as a subspace of X.

Theorem 3.16. Let $f : (X, m_X) \to (Y, \tau)$ be an m-semicontinuous function between a space (X, m_X) with a minimal structure m_X and a topological space (Y, τ). If A is an m-semicompact set, then $f(A)$ is compact.

Proof. Let $\{U_i : i \in J\}$ be an open cover of $f(A)$ in Y. Then since f is an m-semicontinuous function, $\{f^{-1}(U_i) : i \in J\}$ is an m-semiopen cover of A in X. By m-semicompactness, there exists $J_0 = \{j_1, j_2, \ldots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{j \in J_0} f^{-1}(U_j)$. Hence $f(A) \subseteq f(\bigcup_{j \in J_0} f^{-1}(U_j)) \subseteq \bigcup_{j \in J_0} U_j$. Thus $f(A)$ is compact. □

References

Department of Mathematics
Kangwon National University
Chunchon 200-701, Korea
E-mail address: wkmin@kangwon.ac.kr