R(g, g')-CONTINUITY ON GENERALIZED TOPOLOGICAL SPACES

YOUNG KEY KIM AND WON KEUN MIN

Abstract. We introduce the notion of R(g, g')-continuity on generalized topological spaces, which is a strong form of (g, g')-continuity. We investigate some properties and relationships among R(g, g')-continuity, (g, g')-continuity and some strong forms of (g, g')-continuity.

1. Introduction

Császár [1] introduced the notion of generalized topological spaces. He also introduced the notions of continuous functions and associated interior and closure operators on generalized topological spaces. Characterizations for the generalized continuous (= (g, g')-continuous) function were investigated in [1, 3]. In [5], we introduced and investigated the notions of super (g, g')-continuous functions and strongly θ(g, g')-continuous functions on generalized topological spaces. The purpose of this paper is to introduce the notion of R(g, g')-continuity on generalized topological spaces, which is a strong form of (g, g')-continuity. We investigate some properties and relationships among R(g, g')-continuity (g, g')-continuity and some strong forms of (g, g')-continuity.

2. Preliminaries

We recall some notions and notations defined in [1]. Let X be a nonempty set and g be a collection of subsets of X. Then g is called a generalized topology (simply GT) on X if and only if ∅ ∈ g and \(G_i \in g \) for \(i \in I \neq \emptyset \) implies \(G = \bigcup_{i \in I} G_i \in g \). We call the pair \((X, g)\) a generalized topological space on X. We denote \(M_g = \bigcup\{ A \subseteq X : A \in g \} \). A generalized topology g on X is called strong [2] if \(X \in g \). The elements of g are called g-open sets and the complements are called g-closed sets. The generalized-closure of a subset \(S \) of \(X \), denoted by \(c_g(S) \), is the intersection of generalized closed sets including \(S \).

Received March 16, 2011.
2010 Mathematics Subject Classification. 54A05.
Key words and phrases. (g, g')-continuous, super (g, g')-continuous, strongly θ(g, g')-continuous, R(g, g')-continuous, G-regular.

©2012 The Korean Mathematical Society

809
And the interior of S, denoted by $i_g(S)$, the union of generalized open sets included in S.

Let g and g' be generalized topologies on X and Y, respectively. Then a function $f : (X, g) \to (Y, g')$ is said to be

(1) *(g, g')-continuous* [1] if $G \in g'$ implies that $f^{-1}(G) \in g$;

(2) *super (g, g')-continuous* [5] if for each $x \in X$ and each g'-open set V containing $f(x)$, there exists a g-open set U containing x such that $f(i_g(c_g(U))) \subseteq V$;

(3) *strongly $\theta(g, g')$-continuous* [5] if for each $x \in X$ and each g'-open set V of $f(x)$, there exists a g-open set U of x such that $f(c_g(U)) \subseteq V$.

3. $R(g, g')$-continuous functions

Definition 3.1. Let (X, g) and (Y, g') be generalized topological spaces. Then a function $f : X \to Y$ is said to be $R(g, g')$-continuous if for each $x \in X$ and each g'-open set V containing $f(x)$, there is a g-open set U containing x such that $c_g(f(U)) \subseteq V$.

Theorem 3.2. Let $f : X \to Y$ be a $R(g, g')$-continuous function on GTS's (X, g) and (Y, g'). Then if $f(M_g) \subseteq M_{g'}$, then $f(c_g(U)) \subseteq c_{g'}(f(U))$ for every g-open set $U \subseteq X$.

Proof. Let U be a g-open set in X. For each $x \in c_g(U)$, let V be any g'-open set containing $f(x)$. Since f is $R(g, g')$-continuous, there exists a g-open set G containing x such that $c_g(f(G)) \cap M_{g'} \subseteq V$. Furthermore, since $x \in c_g(U)$ and a g-open set G contains x, $U \cap G \neq \emptyset$. From $f(M_g) \subseteq M_{g'}$, it follows

\[
\emptyset \neq f(U \cap G) \subseteq f(U) \cap f(G) \subseteq f(U) \cap c_{g'}(f(G)) = (f(U) \cap M_{g'}) \cap c_{g'}(f(G)) \subseteq f(U) \cap V.
\]

So $f(U) \cap V \neq \emptyset$ and $f(x) \in c_{g'}(f(U))$. This implies $f(c_g(U)) \subseteq c_{g'}(f(U))$. □

Theorem 3.3. Let $f : (X, g) \to (Y, g')$ be a function on GTS’s (X, g) and (Y, g'). If $f(M_g) \subseteq M_{g'}$, then the following are equivalent:

1. f is $R(g, g')$-continuous.

2. For each point $x \in X$ and a g'-open set V containing $f(x)$, there is a g-open set U containing x such that $c_g(f(c_g(U))) \cap M_{g'} \subseteq V$.

3. For each point $x \in X$ and a g'-closed set F with $f(x) \notin F$, there is a g-open set U containing x and a g'-open set V such that $F \cap M_{g'} \subseteq V$ and $f(c_g(U)) \cap V = \emptyset$.

4. For each point $x \in X$ and a g'-closed set F with $f(x) \notin F$, there is a g-open set U containing x and a g'-open set V such that $F \cap M_{g'} \subseteq V$ and $f(U) \cap V = \emptyset$.

Proof. (1) \Rightarrow (2) For $x \in X$, let V be a g'-open set containing $f(x)$. Then there is a g-open set U containing x such that $c_g(f(U)) \cap M_{g'} \subseteq V$. By
Theorem 3.2, we have \(f(c_g(U)) \subseteq c_{g'}(f(U)) \). It implies \(c_{g'}(f(c_g(U))) \cap M_{g'} \subseteq c_{g'}(f(U)) \cap M_{g'} \subseteq V \).

(2) \(\Rightarrow \) (3) For \(x \in X \), let \(F \) be a \(g' \)-closed set with \(f(x) \notin F \). Since \(f(x) \in Y - F \) and \(Y - F \) is \(g' \)-open, by (2), there is a \(g \)-open set \(U \) containing \(x \) such that \(c_{g'}(f(c_g(U))) \cap M_{g'} \subseteq Y - F \). Set \(V = Y - (c_{g'}(f(c_g(U)))) \). Then \(V \) is a \(g' \)-open set such that \(F \cap M_{g'} \subseteq V \) and \(f(c_g(U)) \cap V = \emptyset \).

(3) \(\Rightarrow \) (4) It is obvious.

(4) \(\Rightarrow \) (1) Let \(x \in X \) and \(V \) a \(g' \)-open set containing \(f(x) \). Then \(Y - V \) is a \(g' \)-closed set and \(f(x) \notin Y - V \). By (4), there is a \(g \)-open set \(U \) containing \(x \) and a \(g' \)-open set \(W \) such that \((Y - V) \cap M_{g'} \subseteq W \) and \(f(U) \cap W = \emptyset \). So \(c_{g'}(f(U)) \cap M_{g'} \subseteq c_{g'}(Y - W) \cap M_{g'} = (Y - W) \cap M_{g'} \subseteq V \), and hence \(f \) is \(R(g, g') \)-continuous.

\[\square \]

Corollary 3.4. Let \(f : (X, g) \to (Y, g') \) be a function on GTS’s \((X, g)\) and \((Y, g')\). If \(Y \) is strong, then the following are equivalent:

1. \(f \) is \(R(g, g') \)-continuous.
2. For each point \(x \in X \) and a \(g' \)-open set \(V \) containing \(f(x) \), there is a \(g \)-open set \(U \) containing \(x \) such that \(c_{g'}(f(c_g(U))) \subseteq V \).
3. For each point \(x \in X \) and a \(g' \)-closed set \(F \) with \(f(x) \notin F \), there is a \(g \)-open set \(U \) containing \(x \) and a \(g' \)-open set \(V \) such that \(F \subseteq V \) and \(f(c_g(U)) \cap V = \emptyset \).
4. For each point \(x \in X \) and a \(g' \)-closed set \(F \) with \(f(x) \notin F \), there is a \(g \)-open set \(U \) containing \(x \) and a \(g' \)-open set \(V \) such that \(F \subseteq V \) and \(f(U) \cap V = \emptyset \).

Theorem 3.5. Let \(f : X \to Y \) be a function on GTS’s \((X, g)\) and \((Y, g')\). Then if \(f \) is \(R(g, g') \)-continuous and \(Y \) is strong, then it is strongly \(\theta(g, g') \)-continuous.

Proof. It follows from Corollary 3.4(2).

Remark 3.6. The converse of Theorem 3.5 is not true in general as shown by the next example.

Example 3.7. Let \(X = \{a, b, c\} \) and \(Y = \{1, 2, 3\} \). Consider generalized topologies \(g = (\emptyset, \{a\}) \) on \(X \) and \(g' = (\emptyset, \{1\}, Y) \) on \(Y \). Let us define a function \(f : X \to Y \) as \(f(a) = f(b) = f(c) = 1 \). Then \(f \) is strongly \(\theta(g, g') \)-continuous. But since \(c_{g'}(f(\{a\})) = c_{g'}(\{1\}) = Y \), \(f \) can not be \(R(g, g') \)-continuous.

From Remark 3.8 of [5] and Theorem 3.5, we have the implications:

\(R(g, g') \)-continuous \(\Rightarrow \) strongly \(\theta(g, g') \)-continuous \(\Rightarrow \) super \((g, g') \)-continuous \(\Rightarrow \) \((g, g') \)-continuous.

Definition 3.8. Let \((X, g)\) and \((Y, g')\) be generalized topological spaces. Then a function \(f : X \to Y \) is said to be weakly \((g, g')\)-closed if for each \(g \)-closed set \(F \) in \(X \), \(c_{g'}(f(\{i_g(F)\})) \subseteq f(F) \).

Lemma 3.9. Let \((X, g)\) and \((Y, g')\) be GTS’s. Then if a function \(f : X \to Y \) is weakly \((g, g')\)-closed, then \(c_{g'}(f(U)) \subseteq f(c_g(U)) \) for every \(g \)-open set \(U \) in \(X \).
Proof. For any \(g \)-open set \(U \subseteq X \), since \(c_g(U) \) is \(g \)-closed and \(U \subseteq i_g(c_g(U)) \), it is obtained. \(\square \)

Theorem 3.10. Let \((X, g)\) and \((Y, g')\) be GTS’s. Then if a function \(f : X \to Y \) is weakly \((g, g')\)-closed and strongly \(g(g')\)-continuous, then it is \(R(g, g')\)-continuous.

Proof. For \(x \in X \), let \(V \) be a \(g' \)-open set containing \(f(x) \). Then from the strong \(\theta(g, g')\)-continuity of \(f \), there exists a \(g \)-open set \(U \) of \(x \) such that \(f(c_g(U)) \subseteq V \). From Lemma 3.9, it follows \(c'_g(f(U)) \cap M_{g'} \subseteq f(c_g(U)) \cap M_{g'} \subseteq V \). Hence by Theorem 3.3(2), \(f \) is \(R(g, g')\)-continuous. \(\square \)

Definition 3.11. Let \((X, g)\) be a generalized topological space. Then \(X \) is said to be relative \(G\)-regular (simply, \(G\)-regular) [4] on \(M_g \) if for \(x \in M_g \) and a \(g \)-closed set \(F \) with \(x \notin F \), there exist \(U, V \in g \) such that \(x \in U \), \(F \cap M_g \subseteq V \) and \(U \cap V = \emptyset \).

Theorem 3.12 ([4]). Let \((X, g)\) be a GTS. Then \(X \) is \(G\)-regular if and only if for \(x \in M_g \) and a \(g \)-open set \(U \) containing \(x \), there is a \(g \)-open set \(V \) containing \(x \) such that \(x \in V \subseteq c_g V \cap M_g \subseteq U \).

Theorem 3.13. Let \((X, g)\) and \((Y, g')\) be GTS’s. Then a function \(f : X \to Y \) is strongly \(\theta(g, g')\)-continuous and \(Y \) is \(G\)-regular, then it is \(R(g, g')\)-continuous.

Proof. For \(x \in X \), let \(V \) be a \(g' \)-open set containing \(f(x) \). Since \(Y \) is \(G\)-regular, for the \(g' \)-open set \(V \) containing \(f(x) \), there is a \(g' \)-open set \(W \) containing \(f(x) \) such that \(f(x) \in W \subseteq c'_g W \cap M_{g'} \subseteq V \). For the \(g' \)-open set \(W \) containing \(f(x) \), from the strong \(\theta(g, g')\)-continuity of \(f \), there exists a \(g \)-open set \(U \) of \(x \) such that \(f(c_g(U)) \subseteq W \). This implies \(c'_g(f(c_g(U))) \cap M_{g'} \subseteq c'_g(W) \cap M_{g'} \subseteq V \). By Theorem 3.3(2), \(R(g, g')\)-continuous. \(\square \)

From Corollary 3.13 of [5], Lemma 3.5 and Theorem 3.13, the following corollary is easily obtained:

Corollary 3.14. Let \(f : X \to Y \) be a function between two GTS’s \((X, g)\) and \((Y, g')\). Then if \(Y \) is \(G\)-regular and strong, then the following things are equivalent:

1. \(R(g, g')\)-continuity.
2. strongly \(\theta(g, g')\)-continuity.
3. \((g, g')\)-continuity.

Let \((X, g)\) and \((Y, g')\) be GTS’s. Then a function \(f : X \to Y \) is said to be \((g, g')\)-open [3] if for every \(g \)-open set \(G \) in \(X \), \(f(G) \) is \(g' \)-open in \(Y \).

Theorem 3.15. Let \((X, g)\) and \((Y, g')\) be GTS’s and \(f(M_g) = M_{g'} \). Then if a function \(f : X \to Y \) is \((g, g')\)-open and \(R(g, g')\)-continuous, then \(Y \) is \(G\)-regular.
Proof. Let \(y \in M'_g \) and \(V \) any \(g' \)-open set containing \(y \). Let \(f(x) = y \) for \(x \in X \). Then since \(f \) is \(R(g,g') \)-continuous, there exists a \(g \)-open set \(U \) containing \(x \) such that \(c'_g(f(U)) \cap M'_{g'} \subseteq V \). Since \(f \) is \((g,g') \)-open, \(f(U) \) is a \(g' \)-open set containing \(y \), and so \(f(U) = f(U) \cap M'_{g'} \subseteq c'_g(f(U)) \cap M'_{g'} \subseteq V \). Therefore, since \(f(U) \) is a \(g' \)-open set containing \(y \), by Theorem 3.12, \(Y \) is \(G \)-regular. \(\square \)

References

Young Key Kim
Department of Mathematics
MyongJi University
Yongin 449-728, Korea
E-mail address: ykkim@mju.ac.kr

Won Keun Min
Department of Mathematics
Kangwon National University
Chunchon 200-701, Korea
E-mail address: wkmin@kangwon.ac.kr