A CERTAIN SUBCLASS OF JANOWSKI TYPE FUNCTIONS ASSOCIATED WITH \(k \)-SYMMETRIC POINTS

Ohsang Kwon and Youngjae Sim

Abstract. We introduce a subclass \(S^k(A, B) \ (−1 \leq B < A \leq 1) \) of functions which are analytic in the open unit disk and close-to-convex with respect to \(k \)-symmetric points. We give some coefficient inequalities, integral representations and invariance properties of functions belonging to this class.

1. Introduction

Let \(\mathcal{A} \) denote the class of functions which are analytic in the open unit disk \(U \) and normalized by \(f(0) = 0 \) and \(f'(0) = 1 \). Also let \(\mathcal{S} \) denote the subclass of \(\mathcal{A} \) consisting of all functions which are univalent in \(U \).

Let \(f(z) \) and \(F(z) \) be analytic in \(U \). Then we say that the function \(f(z) \) is subordinate to \(F(z) \) in \(U \), if there exists an analytic function \(w(z) \) in \(U \) such that \(|w(z)| \leq 1 \) and \(f(z) = F(w(z)) \), denote by \(f \prec F \) or \(f(z) \prec F(z) \). If \(F(z) \) is univalent in \(U \), then the subordination is equivalent to \(f(0) = F(0) \) and \(f(U) \subset F(U) \).

Now, we denote by \(\mathcal{S}^*(A, B) \) and \(\mathcal{C}(A, B) \) the subclasses of \(\mathcal{A} \) as follows:

\[\mathcal{S}^*(A, B) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} < \frac{1 + Az}{1 + Bz}, z \in U \right\} \]

and

\[\mathcal{C}(A, B) = \left\{ f \in \mathcal{A} : \exists g \in \mathcal{S}^*(A, B) \text{ such that } \frac{zf'(z)}{g(z)} < \frac{1 + Az}{1 + Bz}, z \in U \right\}, \]

respectively. For \(A = 1 - 2\alpha \) and \(B = -1 \) in (1) and (2), we can obtain the classes \(\mathcal{S}^*(1 - 2\alpha, -1) = \mathcal{S}^*(\alpha) \) and \(\mathcal{C}(1 - 2\alpha, -1) = \mathcal{C}(\alpha) \), consisting of functions which are starlike of order \(\alpha \) and close-to-convex of order \(\alpha \), respectively. Especially, we can obtain the classes \(\mathcal{S}^*(1, -1) = \mathcal{S}^* \) and \(\mathcal{C}(1, -1) = \mathcal{C} \) which

Received March 20, 2012; Revised May 10, 2012.

2010 Mathematics Subject Classification. Primary 30C45, 30C50.

Key words and phrases. close-to-convex functions, Janowski type, sakaguchi functions, \(k \)-symmetric points.

The research was supported by Kyungsung University Research Grants in 2013.

©2013 The Korean Mathematical Society
are the classes of starlike functions and close-to-convex functions, respectively, for $A = 1$ and $B = -1$.

Sakaguchi [6] once introduced a classes S^*_s of functions starlike with respect to symmetric points, it consists of functions $f(z) \in S$ satisfying

$$\text{Re} \left\{ \frac{zf'(z)}{f(z) - f(-z)} \right\} > 0 \quad (z \in U).$$

Following him, many authors discussed this class and its subclasses (see [4], [5], [7], [8], [10], [11], [12] and [13]). In the present paper, we introduced the following class of analytic functions with respect to k-symmetric points, and obtain some interesting results.

Definition. Let $S^{(k)}_s(A, B)$ denote the class of functions in S satisfying the inequality

$$\left| \frac{zf'(z)}{f_k(z)} - 1 \right| < \left| A - B \frac{zf'(z)}{f_k(z)} \right| \quad (z \in U),$$

where $-1 \leq A < B \leq 1$, $k \geq 1$ is a fixed positive integer and $f_k(z)$ is defined by the following equality

$$f_k(z) = \frac{1}{k} \sum_{\mu=0}^{k-1} \varepsilon^{-\mu} f(\varepsilon^\mu z),$$

where $\varepsilon = \exp(\frac{2\pi i}{k})$ with $k \in \mathbb{Z}$.

By the definition of $f_k(z)$, we can easily obtain the expansion of $f_k(z)$. That is, if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, then

$$f_k(z) = z + \sum_{n=2}^{\infty} \sigma_k(n) a_n z^n,$$

where $\sigma_k(n) = \begin{cases} 1, n = lk + 1 \\ 0, n \neq lk + 1 \end{cases} \quad (l \in \mathbb{N}_0)$. And we note that $f_1(z) = f(z)$ and $f_2(z) = \frac{1}{2}(f(z) - f(-z))$.

Now the following identities follow directly from the above definition [3]:

$$f_k(\varepsilon^\mu z) = \varepsilon^\mu f_k(z),$$

$$f_k'(\varepsilon^\mu z) = f_k(z) = \frac{1}{k} \sum_{\mu=0}^{k-1} f'(\varepsilon^\mu z).$$

Remark 1.1. Using the definition of the subordination, we can easily obtain that the equivalent condition of belonging to the class $S^{(k)}_s(A, B)$ ($-1 \leq B < A \leq 1$) is

$$\frac{zf'(z)}{f_k(z)} \prec \frac{1 + Az}{1 + Bz} \quad (z \in U).$$
It is easy to know that $S_k^{(2)}(1,-1) = S_k^*$ and $S_k^{(1)}(1,-1) = S^*$, so $S_k^{(k)}(A,B)$ has a meaning as the generalization of S_k^* and S^*, respectively.

In this paper, we will discuss the coefficient inequalities, integral representations and some invariance properties of functions belonging to the class $S_k^{(k)}(A,B)$.

2. Coefficient inequalities

Theorem 2.1. Let $f(z) \in S_k^{(k)}(A,B)$. Then $f_k(z) \in S^*(A,B) \subset S$.

Proof. For $f(z) \in S_k^{(k)}(A,B)$, we can obtain $\frac{zf'(z)}{f_k(z)} < \frac{1 + Az}{1 + Bz}$. Substituting z by $\varepsilon^\mu z$ respectively ($\mu = 0, 1, 2, \ldots, k - 1$), then

$$\varepsilon^\mu \frac{zf'(\varepsilon^\mu z)}{f_k(\varepsilon^\mu z)} < \frac{1 + Az}{1 + Bz} \quad (z \in U).$$

According to the definition of $f_k(z)$ and $\varepsilon = \exp(\frac{2\pi i}{k})$, we know $\varepsilon^{-\mu} f_k(\varepsilon^\mu z) = f_k(z)$. Then the equation (8) becomes

$$\frac{zf'(\varepsilon^\mu z)}{f_k(z)} < \frac{1 + Az}{1 + Bz} \quad (z \in U).$$

Let $\mu = 0, 1, 2, \ldots, k - 1$ in (9) respectively, and sum them we can get

$$\frac{zf_k'(z)}{f_k(z)} = \frac{1}{k} \sum_{\mu=0}^{k-1} \frac{zf'(\varepsilon^\mu z)}{f_k(z)} < \frac{1 + Az}{1 + Bz} \quad (z \in U).$$

That is, $f_k(z) \in S^*(A,B) \subset S$. \qed

Putting $A = 1, B = -1$ and $k = 2$ in Theorem 2.1, we can obtain the following corollary.

Corollary 2.2. Let $f(z) \in S_k^*$, defined as (3). Then the odd function $\frac{1}{2}(f(z) - f(-z))$ is a starlike function.

Remark 2.3. Let $f(z) \in S_k^{(k)}(A,B)$. Then $f(z)$ is a close-to-convex function.

We need the following lemma to give the coefficient estimate of functions in the class $S_k^{(k)}(A,B)$.

Lemma 2.4. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ and satisfy the inequality

$$\left| \frac{zf'(z)}{g(z)} - 1 \right| \leq \frac{A - Bzf'(z)}{g(z)} \quad (z \in U),$$

where $-1 \leq B < A \leq 1$. Then for $n \geq 2$, we have

$$|na_n - b_n|^2 \leq 2(1 + |AB|) \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} |a_j||b_j|.$$
Proof. Let \(f(z) \) and \(g(z) \) satisfy the inequality
\[
\left| \frac{zf'(z)}{g(z)} - 1 \right| \leq \left| A - B \frac{zf'(z)}{g(z)} \right| \quad (z \in U).
\]
Then (12) is equivalent to
\[
\frac{zf'(z)}{g(z)} \prec 1 + \frac{Az}{1 + Bz}.
\]
By the definition of subordination, there exists a Schwarz function \(w(z) \) which satisfies \(w(0) = 0 \), \(|w(z)| < |z| \) and
\[
zf'(z) = g(z) = 1 + Aw(z) \quad (z \in U)
\]
or
\[
g(z) - zf'(z) = (Bzf'(z) - Ag(z))w(z) \quad (z \in U).
\]
Now if \(w(z) = \sum_{n=1}^{\infty} c_n z^n \), then
\[
(13) \quad \sum_{n=2}^{\infty} (b_n - na_n)z^n = \left((B - A)z + \sum_{n=2}^{\infty} (Bna_n - Ab_n)z^n \right) \left(\sum_{n=1}^{\infty} c_n z^n \right).
\]
Comparing the coefficient of \(z^n \) in (13), we have
\[
(14) \quad b_n - na_n = (B - A)c_{n-1} + (2Ba_2 - Ab_2)c_{n-2} + \cdots + ((n - 1)Ba_{n-1} - Ab_{n-1})c_1.
\]
Thus the coefficient combination on the right-hand side of (14) depends only on the coefficients combination \(Ba_1, \ldots, (n - 1)Ba_{n-1} - Ab_{n-1} \) on the left-hand side. Hence, for \(n \geq 2 \), we can write
\[
(15) \quad \sum_{j=2}^{n} (b_j - ja_j)z^j + \sum_{j=n+1}^{\infty} d_j z^j = \left(\sum_{j=1}^{n-1} (jBa_j - Ab_j)z^j \right) w(z),
\]
with \(a_1 = b_1 = 1 \). Squaring the modulus of the both sides of (15) and integrating along \(|z| = r < 1 \), and using the fact that \(|w(z)| < 1 \), we obtain
\[
\sum_{j=2}^{n} |b_j - ja_j|^2 r^{2j} + \sum_{j=n+1}^{\infty} |d_j|^2 r^{2j} < \sum_{j=1}^{n-1} |jBa_j - Ab_j|^2 r^{2j}.
\]
Letting \(r \to 1 \) on the left-hand side of this inequality, we obtain
\[
\sum_{j=2}^{n} |b_j - ja_j|^2 \leq \sum_{j=1}^{n-1} |jBa_j - Ab_j|^2.
\]
This implies that
\[
|na_n - b_n|^2 \leq \sum_{j=1}^{n-1} \left(|jB a_j - Ab_j|^2 - |b_j - ja_j|^2 \right) \\
\leq \sum_{j=1}^{n-1} (B^2 - 1) j^2 |a_j|^2 + (A^2 - 1) |b_j|^2 + 2j(1 + |AB|)|a_j||b_j| \\
\leq 2(1 + |AB|) \sum_{j=1}^{n-1} j|a_j||b_j|,
\]

since \(-1 \leq B < A \leq 1\), hence the proof of Lemma 2.4 is complete. \(\square\)

Applying the above Lemma 2.4, we give the following theorem about the coefficient estimate of functions in \(S^k_s(A, B)\).

Theorem 2.5. Let \(f(z) \in S^k_s(A, B)\). Then we have

(i) For \(n = lk + 1\) (\(l \in \mathbb{N}_0\)),
\begin{align*}
(n - 1)^2 |a_n|^2 \leq 2(1 + |AB|) \sum_{j=0}^{l-1} (jk + 1) |a_{jk+1}|^2.
\end{align*}

(ii) For \(n \neq lk + 1\) (\(l \in \mathbb{N}_0\)),
\begin{align*}
n^2 |a_n|^2 \leq 2(1 + |AB|) \sum_{j=0}^{\lfloor \frac{n-1}{k} \rfloor} (jk + 1) |a_{jk+1}|^2,
\end{align*}

where \(\lfloor \frac{n-1}{k} \rfloor\) denotes the biggest integer among the integers smaller than \(\frac{n-1}{k}\).

Proof. We note that \(zf'(z)\) and \(f_k(z)\) satisfy the condition of Lemma 2.4. And, at the same time, by the definition of \(f_k(z)\) we have
\[
f_k(z) = z + \sum_{n=2}^{\infty} \sigma_k(n) a_n z^n = z + \sum_{l=1}^{\infty} a_{lk+1} z^{lk+1}.
\]

Using Lemma 2.4, let \(n = lk + 1\) in (11), we can get (16). And if \(n \neq lk + 1\), from (11), we can get (17). \(\square\)

Next, we give that sufficient condition for functions belonging to the class \(S^k_s(A, B)\).

Theorem 2.6. Let \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) be analytic in \(U\). If for \(-1 \leq B < A \leq 1\), we have
\[
\sum_{n=2, n \neq lk+1}^{\infty} (1 + |B|)|a_n| + \sum_{l=1}^{\infty} (lk + (A - B)(lk + 1)) |a_{lk+1}| \leq A - B.
\]
Then \(f(z) \in S^{(k)}(A, B) \).

Proof. At first, we note that \(f_k(z) = z + \sum_{n=2}^{\infty} \sigma_k(n) a_n z^n \) for \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \). For the proof of Theorem 2.6, it suffices to show that the values for \(z f'/f_k \) satisfy
\[
\left| \frac{z f'(z) - f_k(z)}{A f_k(z) - B z f'(z)} \right| \leq 1.
\]
And we have
\[
\left| \frac{z f'(z) - f_k(z)}{A f_k(z) - B z f'(z)} \right| = \left| \frac{\sum_{n=2}^{\infty} (n - \sigma_k(n)) a_n z^n}{(A - B) z + \sum_{n=2}^{\infty} (A \sigma_k(n) - B n) a_n z^n} \right|
\leq \frac{\sum_{n=2}^{\infty} (n - \sigma_k(n)) |a_n| |z|^n}{(A - B) - \sum_{n=2}^{\infty} |A \sigma_k(n) - B n| |a_n| |z|^n}.
\]
This last expression is bounded above by 1 if
\[
\sum_{n=2}^{\infty} (n - \sigma_k(n)) |a_n| \leq (A - B) - \sum_{n=2}^{\infty} |A \sigma_k(n) - B n| |a_n|,
\]
which is equivalent to
\[
(18) \quad \sum_{n=2}^{\infty} (n - \sigma_k(n)) + |A \sigma_k(n) - B n| |a_n| \leq A - B.
\]
Hence \(\left| \frac{z f'(z) - f_k(z)}{A f_k(z) - B z f'(z)} \right| \leq 1 \), and Theorem 2.6 is proved. \(\square \)

Corollary 2.7. For \(k = 2 \), \(A = 1 - 2\alpha \) and \(B = -1 \) in Theorem 2.6, we can obtain the result in [1].

3. Integral representations and invariance properties

We give the integral representation of functions in the class \(S^{(k)}(A, B) \) and investigate the invariance properties of the following operators:
\[
F(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} f(t) dt
\]
and
\[
f_\lambda(z) = (1 - \lambda) z + \lambda f(z),
\]
where \(m \in \mathbb{N} \) and \(0 \leq \lambda \leq 1 \). And we introduce some lemmas we need.

Lemma 3.1 ([6]). Let \(N(z) \) be regular and \(D(z) \) starlike in \(\mathbb{U} \) and \(N(0) = D(0) = 0 \). Then for \(-1 \leq B < A \leq 1 \),
\[
\frac{N'(z)}{D'(z)} \leq \frac{1 + Az}{1 + Bz}.
\]
implies that
\[
\frac{N(z)}{D(z)} < \frac{1 + Az}{1 + Bz}.
\]

Lemma 3.2 ([2]). If \(g(z) \in S^*(A, B) \), then
\[
G(z) = \frac{m + 1}{z^m} \int_0^z t^{m-1} g(t) dt \in S^*(A, B).
\]

In Theorems 3.3 and 3.4, we give the integral representations of functions in \(S_s^{(k)}(A, B) \).

Theorem 3.3. Let \(f(z) \in S_s^{(k)}(A, B) \). Then we have
\[
f_k(z) = z \cdot \exp \left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^z \frac{e^{\mu \zeta} w(\zeta)}{\zeta (1 + B w(\zeta))} d\zeta \right\},
\]
where \(f_k(z) \) is defined by equality (5), \(w(z) \) is analytic in \(U \) and \(w(0) = 0, |w(z)| < 1 \).

Proof. Let \(f(z) \in S_s^{(k)}(A, B) \), from the definition of the subordination, we have
\[
\frac{zf'(z)}{f(z)} = \frac{1 + Aw(z)}{1 + Bw(z)},
\]
where \(w(z) \) is analytic in \(U \) and \(w(0) = 0, |w(z)| < 1 \). Substituting \(z \) by \(\varepsilon^\mu z \) respectively (\(\mu = 0, 1, 2, \ldots, k - 1 \)), we have
\[
\frac{zf'(\varepsilon^\mu z)}{\varepsilon^\mu f_k(z)} = \frac{1 + Aw(\varepsilon^\mu z)}{1 + Bw(\varepsilon^\mu z)}
\]
for \(\mu = 0, 1, 2, \ldots, k - 1 \), and \(z \in U \). Using the equality (6) and (7), sum (21) we can obtain
\[
\frac{zf'_k(z)}{f_k(z)} = \frac{1}{k} \sum_{\mu=0}^{k-1} \frac{1 + Aw(\varepsilon^\mu z)}{1 + Bw(\varepsilon^\mu z)},
\]
and equivalently,
\[
\frac{f'_k(z)}{f_k(z)} - \frac{1}{z} = (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \frac{w(\varepsilon^\mu z)}{z(1 + B w(\varepsilon^\mu z))}.
\]

Integrating equality (22), we have
\[
\log \frac{f_k(z)}{z} = (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^z \frac{w(\varepsilon^\mu \zeta)}{\zeta (1 + B w(\varepsilon^\mu \zeta))} d\zeta
\]
\[
= (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^z \frac{w(\zeta)}{\zeta (1 + B w(\zeta))} d\zeta.
\]
Therefore, arrange the above equality for $f_k(z)$, we can obtain

$$f_k(z) = z \cdot \exp \left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{e^{\mu z}} \frac{w(\zeta)}{\zeta(1 + Bw(\zeta))} \, d\zeta \right\},$$

and so the proof of Theorem 3.3 is complete. \(\square \)

Theorem 3.4. Let $f(z) \in S_0^{(k)}(A, B)$. Then we have

$$f(z) = \int_0^z \exp \left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{e^{\mu t}} \frac{w(t)}{t(1 + Bw(t))} \, dt \right\} \cdot \left(\frac{1 + Aw(\zeta)}{1 + Bw(\zeta)} \right) \, d\zeta,$$

where $w(z)$ is analytic in U, $w(0) = 0$ and $|w(z)| < 1$.

Proof. Let $f(z) \in S_0^{(k)}(A, B)$, from equalities (19) and (20) we have

$$f'(z) = \frac{f_k(z)}{z} \cdot \left(\frac{1 + Aw(z)}{1 + Bw(z)} \right)$$

$$= \exp \left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{e^{\mu z}} \frac{w(\zeta)}{\zeta(1 + Bw(\zeta))} \, d\zeta \right\} \cdot \left(\frac{1 + Aw(z)}{1 + Bw(z)} \right).$$

Integrating the above equality, we can obtain

$$f(z) = \int_0^z \exp \left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{e^{\mu t}} \frac{w(t)}{t(1 + Bw(t))} \, dt \right\} \cdot \left(\frac{1 + Aw(\zeta)}{1 + Bw(\zeta)} \right) \, d\zeta. \quad \square$$

Next, we investigate two invariance properties for the functions in $S_0^{(k)}(A, B)$.

Theorem 3.5. If $f(z) \in S_0^{(k)}(A, B)$, then so does

$$F(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} f(t) \, dt$$

for $m = 1, 2, \ldots$.

Proof. By using the equation (23), we have

$$F_k(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} f_k(t) \, dt$$

and

$$\frac{zF'(z)}{F(z)} = -m + \frac{z^m f(z)}{\int_0^z t^{m-1} f(t) \, dt}. $$
Hence
\[
\frac{zF'(z)}{F_k(z)} = \left(-m + \frac{z^m f(z)}{\int_0^z t^{m-1} f(t) dt} \right) \frac{F(z)}{F_k(z)} = \frac{z^m f(z) - m \int_0^z t^{m-1} f(t) dt}{\int_0^z t^{m-1} f(t) dt} := \frac{N(z)}{D(z)}.
\]

Since \(f_k \in S^*(A, B) \), by Lemma 3.2, we note that \(F_k(z) \in S^*(A, B) \). Differentiating (24), we have
\[
\frac{N'(z)}{D'(z)} = \frac{zf'(z)}{f_k(z)} < 1 + Az + Bz.
\]

By Lemma 3.1, we conclude that
\[
\frac{N(z)}{D(z)} < 1 + Az + Bz.
\]

Hence we have \(F(z) \in S^s_k(A, B) \). \(\square \)

Theorem 3.6. If \(f(z) \in S^s_k(A, B) \) and \(f_\lambda(z) = (1 - \lambda)z + \lambda f(z), 0 \leq \lambda \leq 1 \), then

(i) for \(B = 0 \), \(f_\lambda(z) \in S^s_k(A, 0) \).

(ii) for \(|z| < \frac{1}{B} \sin(\frac{B}{2A} \pi) \), \(B > 0 \), \(f_\lambda(z) \in S^s_k(A, B) \).

(iii) for \(|z| < \frac{1}{B} \sin(\frac{B}{2B-A} \pi) \), \(B < 0 \), \(f_\lambda(z) \in S^s_k(A, B) \).

Proof. Since \(f(z) \in S^s_k(A, B) \),
\[
\frac{zf'(z)}{f_k(z)} < \frac{1 + Az}{1 + Bz}.
\]

Put
\[
f_{\lambda, k}(z) = \frac{1}{k} \sum_{\mu = 0}^{k-1} \varepsilon^{-\mu} f_\lambda(\varepsilon^\mu z).
\]

Then \(f_{\lambda, k}(z) = (1 - \lambda)z + \lambda f_k(z) \) and \(zf_{\lambda, k}'(z) = (1 - \lambda)z + \lambda zf'(z) \). Hence
\[
\frac{zf_{\lambda, k}'(z)}{f_{\lambda, k}(z)} = \frac{(1 - \lambda)\frac{zf'(z)}{f_k(z)} + \lambda zf'(z)}{(1 - \lambda)f_k(z) + \lambda}.
\]

Since \(f_k \in S^*(A, B) \),
\[
\frac{tf_k(sz)}{sf_k(tz)} \prec \begin{cases} \frac{1 + Bsz}{1 + Btz}, B \neq 0, \\ \exp(A(s - t)z), B = 0. \end{cases}
\]
Put $s = 1$ and $t = 0$ into (25), then we can obtain

$$\frac{f_k(z)}{z} < \begin{cases} (1 + Bz)^{\frac{A}{\lambda} + B}, B \neq 0, \\ \exp(Az), B = 0. \end{cases}$$

(26)

For the case $B = 0$, it suffices to show that

$$\left| \frac{(1 - \lambda)}{f_k(z)} + \lambda \frac{zf'(z)}{f_k(z)} - 1 \right| < A.$$

(27)

Since $\frac{zf'(z)}{f_k(z)} < 1 + Az$, $\left| \frac{zf'(z)}{f_k(z)} - 1 \right| < A$. Since $\frac{f_k(z)}{z} \sim \exp(Az)$, there exists a Schwarz function w_2 which satisfies $w_2(0) = 0$ and $|w_2| < 1$ in U such that

$$\frac{f_k(z)}{z} = \exp(Aw_2(z)).$$

Hence

$$\left| \frac{(1 - \lambda)}{f_k(z)} + \lambda \frac{zf'(z)}{f_k(z)} - 1 \right| = \lambda \left| \frac{zf'(z)}{f_k(z)} - 1 \right| \frac{1}{(1 - \lambda) - \frac{\lambda}{f_k(z)} + \lambda} < \frac{A\lambda}{\left| (1 - \lambda) \exp(-Aw_2(z)) + \lambda \right|}.$$

Using the fact that $|w_2| < 1$ in U, we can obtain

$$|(1 - \lambda) \exp(-Aw_2(z)) + \lambda| > \lambda,$$

by simple calculations. And this implies that

$$\frac{zf'(z)}{f_k(z)} < 1 + Az$$

in U. For the case $B \neq 0$, we need to show that

$$\left| \frac{(1 - \lambda)}{f_k(z)} + \lambda \frac{zf'(z)}{f_k(z)} - 1 \right| < \left| A - B \frac{(1 - \lambda)}{f_k(z)} + \lambda \frac{zf'(z)}{f_k(z)} \right|.$$

(28)

And (28) is equivalent to

$$\left| \frac{zf'(z)}{f_k(z)} - 1 \right| < \left| (A - B)(\frac{1}{\lambda} - 1) \frac{z}{f_k(z)} + A - B \frac{zf'(z)}{f_k(z)} \right|.$$

Since $\frac{zf'(z)}{f_k(z)} < \frac{A + B}{1 + B}$,

$$\left| \frac{zf'(z)}{f_k(z)} - 1 \right| < \left| A - B \frac{zf'(z)}{f_k(z)} \right|.$$

We note that

$$\left| \arg \left(\frac{z}{f_k(z)} \right) - \arg \left(A - B \frac{zf'(z)}{f_k(z)} \right) \right| < \frac{\pi}{2}$$

(29)
implies that
\[\left| A - B \frac{zf'(z)}{f_k(z)} \right| < \left| (A - B) \left(\frac{1}{\lambda} - 1 \right) \frac{z}{f_k(z)} + A - B \frac{zf'(z)}{f_k(z)} \right|. \]

Hence it suffices to show that (29) holds. Since \(\frac{zf'(z)}{f_k(z)} < \frac{1 + A}{1 + Bz} \),
\[\left| \arg \left(A - B \frac{zf'(z)}{f_k(z)} \right) \right| \leq \arcsin(|B|r). \tag{30} \]
and
\[\left| \arg \left(\frac{z}{f_k(z)} \right) \right| = \left| \arg \left(\frac{f_k(z)}{z} \right) \right| \leq \frac{A - B}{B} \arcsin(Br). \tag{31} \]

Hence, by (30), (31) and the hypotheses of Theorem 3.6, we can easily show that
\[\left| \arg \left(\frac{z}{f_k(z)} \right) - \arg \left(A - B \frac{zf'(z)}{f_k(z)} \right) \right| \]
\[\leq \left| \arg \left(\frac{z}{f_k(z)} \right) \right| + \left| \arg \left(A - B \frac{zf'(z)}{f_k(z)} \right) \right| \]
\[\leq \arcsin(|B|r) + \frac{A - B}{B} \arcsin(Br) \]
\[< \frac{\pi}{2} \]
and this completes the proof of Theorem 3.6. \(\square \)

References

Ohsang Kwon
Department of Mathematics
Kyungsung University
Busan 608-736, Korea
E-mail address: oskwon@ks.ac.kr

Youngjae Sim
Department of Mathematics
Kyungsung University
Busan 608-736, Korea
E-mail address: yjsim@ks.ac.kr