AN IDEAL - BASED ZERO-DIVISOR GRAPH OF POSETS

Balasubramanian Elavarasan and Kasi Porsevi

Abstract. The structure of a poset \(P \) with smallest element 0 is looked at from two viewpoints. Firstly, with respect to the Zariski topology, it is shown that \(\text{Spec}(P) \), the set of all prime semi-ideals of \(P \), is a compact space and \(\text{Max}(P) \), the set of all maximal semi-ideals of \(P \), is a compact \(T_1 \) subspace. Various other topological properties are derived. Secondly, we study the semi-ideal-based zero-divisor graph structure of poset \(P \), denoted by \(G_I(P) \), and characterize its diameter.

1. Preliminaries

Throughout this paper, \((P, \leq)\) denotes a poset with a least element 0, and all prime and maximal semi-ideals of \(P \) are assumed to be proper. For \(M \subseteq P \), let \((M)^l := \{x \in P : x \leq m \text{ for all } m \in M\}\) denote the lower cone of \(M \) in \(P \), and dually let \((M)^u := \{x \in P : m \leq x \text{ for all } m \in M\}\) be the upper cone of \(M \) in \(P \). For \(A, B \subseteq P \), we write \((A, B)^l\) instead of \((A \cup B)^l\) and dually for the upper cones. If \(M = \{x_1, x_2, \ldots, x_n\} \) is finite, then we use the notation \((x_1, x_2, \ldots, x_n)^l\) instead of \((\{x_1, x_2, \ldots, x_n\})^l\) (and dually). We use \(\text{Spec}(P) \) and \(\text{Max}(P) \) for the spectrum of prime semi-ideals and the maximal semi-ideals of \(P \), respectively.

Following [10], a nonempty subset \(I \) of \(P \), \(I \) is called a semi-ideal of \(P \) if \(b \in I \) and \(a \leq b \), then \(a \in I \). A proper semi-ideal \(I \) of \(P \) is called prime if for any \(a, b \in P \), \((a, b)^l \subseteq I\) implies \(a \in I \) or \(b \in I \). In [5], Radomir Halas, in which he has used the term ideals for the semi-ideals of a poset, defined a class of \(n \)-prime semi-ideals in posets, a semi-ideal \(I \) is called \(n \)-prime if for pairwise distinct elements \(x_1, x_2, \ldots, x_n \in P \), if \((x_1, x_2, \ldots, x_n)^l \subseteq I\), then at least \((n - 1)\) of \(n \)-subsets \((x_2, x_3, \ldots, x_n)^l\), \((x_1, x_3, \ldots, x_n)^l\), \(\ldots\), \((x_1, x_2, \ldots, x_{n-1})^l\) is a subset of \(I \). From Theorem 3 of [5], we can observe that every prime semi-ideal of \(P \) is \(n \)-prime. For any semi-ideal \(J \) of \(P \) and \(a \in P \), we define \(V(a) = \{I \in \text{Spec}(P) : a \in I\}\) and \(D(I) = \text{Spec}(P) \setminus V(I) \). Let \(V(J) = \cap_{a \in J} V(a) \). Then \(F = \{V(J) : J \text{ is an semi-ideal of } P\} \) is closed under finite unions and arbitrary intersections, so that there is a topology on \(\text{Spec}(P) \) for which \(F \) is

Received May 16, 2011; Revised November 23, 2011.

2010 Mathematics Subject Classification. 05C99, 06B35.

Key words and phrases. posets, semi-ideals, prime semi-ideals, zero-divisor graph.
the family of closed sets. This is called the Zariski topology. It is easy to see that, for any subset A of P, $(A)^{l}$ is a semi-ideal of P. If $A = \{a\}$, for any $a \in P$, then $(a)^{l}$ is the smallest semi-ideal containing a, and also $V(a) = V((a)^{l})$. Also $B = \{D(a) : a \in P\}$ form a basis for a topology on $Spec(P)$. It is also clear that $Max(P) \subseteq Spec(P)$.

In [2], I. Beck introduced the idea of a zero-divisor graph of a commutative ring. Let the zero-divisors of R be the vertices and connect two vertices a and b by an edge in case $ab = 0$. Later in [1], D. F. Anderson and P. S. Livingston have considered only non-zero zero-divisors as vertices of the zero-divisor graph of R, denoted by $\Gamma(R)$, is the (undirected) graph with vertices $Z(R)^{*} = Z(R)\setminus\{0\}$, the set of non-zero zero-divisors of R, and for distinct $x, y \in Z(R)^{*}$, the vertices x and y are adjacent if and only if $xy = 0$. In [9], S. P. Redmond generalized this notion by replacing elements whose product is zero with elements whose product lies in some ideal I of R.

In [6], R. Halaš and M. Jukl have introduced the concept of a graph structure of posets, let (P, \leq) be a poset with 0. Then the zero-divisor graph of P, denoted by $G(P)$, is an undirected graph whose vertices are just the elements of P with two distinct vertices x and y are joined by an edge if and only if $(x,y)^{l} = \{0\}$, and proved some interesting results related with clique and chromatic number of this graph structure.

In [7], V. Joshi introduced the zero divisor graph $G_{I}(P)$ of a poset P (with 0) with respect to an ideal I, and proved $G_{I}(P)$ is connected with its diameter 3, also and if $G_{I}(P)$ contains a cycle, then the core K of $G_{I}(P)$ is a union of 3-cycles and 4-cycles.

In this paper, we study the zero divisor graph $G_{I}(P)$ of a poset P with respect to a semi-ideal I as semi-ideal need not be an ideal in poset. Let P be a poset and J be a semi-ideal of P. Then the graph of P with respect to the semi-ideal J, denoted by $G_{J}(P)$, is the graph whose vertices are the set $\{x \in P\setminus J : (x,y)^{l} \subseteq J$ for some $y \in P\setminus J\}$ with distinct vertices x and y are adjacent if and only if $(x,y)^{l} \subseteq J$. If $J = \{0\}$, then $G_{J}(P) = G(P)$, and J is a prime semi-ideal of P if and only if $G_{J}(P) = \phi$. For distinct vertices x and y of a graph G, let $d(x, y)$ be the length of the shortest path from x to y. The diameter of a connected graph is the supremum of the distances between vertices.

Following [5], let I be a semi-ideal of P. Then the extension of I by $x \in P$ is meant the set $(I : x) = \{a \in P : (a,x)^{l} \subseteq I\}$. For any subset S of P, we define $I_{S} = \{a \in P : (a,s)^{l} \subseteq I$ for all $s \in S\}$. Note that $I_{S} = \cap_{s \in S}(I : s)$, if $S = \{a\}$, then $I_{S} = (I : s)$. Let P be the intersection of all prime semi-ideals of P. Then we set $Supp(a) = \cap_{y \in (P,a)}V(x)$. In this paper the notations of graph theory are from [3], the notations of posets are from [5] and [7], and the notations of topology are from [4] and [8].
2. Topological space of $\text{Spec}(P)$

In this section, we associate the poset properties of P and the topological
properties of $\text{Spec}(P)$. We start this section with the following useful lemma.

Lemma 2.1. Let P be a poset and A a subset of P. Then

(i) If $x \in A$, then $V(A) \subseteq V(x)$ and $D((\mathbb{P} : x)) \subseteq V(x)$.

(ii) If $V(A) = \emptyset$, then $A = P$.

(iii) $D(A) = \emptyset$ if and only if $A \subseteq \mathbb{P}$.

(iv) $V(\{0\}) = \text{Spec}(P)$ and $V(P) = \emptyset$.

(v) $V(I) \cup V(J) = V(I \cap J)$ for any semi-ideals I, J of P.

(vi) $\bigcap_{i \in A} V(I_i) = V(\bigcup_{i \in A} I_i)$, I_i is a semi-ideal of P for each $i \in A$.

Lemma 2.2. Let P be a poset. If A is a subset of $\text{Spec}(P)$, then there exists
a semi-ideal $J = \cap A$ of P with $cl(A) = V(J)$. In particular, if A is a closed
subset of $\text{Spec}(P)$, then $A = V(J)$ for some semi-ideal J of P.

Proof. Let A be a subset of $\text{Spec}(P)$ and $J = \cap A$. Then it is easy to verify
that $cl(A) \subseteq V(J)$ as $A \subseteq V(J)$. Let $P_1 \in V(J)$ and let $D(x)$ be any arbitrary
element in B such that $P_1 \in D(x)$. Suppose that $D(x) \cap A = \emptyset$. Then $x \in J,$
and so $P_1 \in V(x)$, a contradiction. Thus $D(x) \cap A \neq \emptyset$, and hence, the result
follows from Theorem 17.5 of [8].

With the help of Lemma 2.2, we have the following remark and some
important characterizations of $\text{Spec}(P)$.

Remark 2.3. Let P be a poset. Then

(i) The closure of $I \in \text{Spec}(P)$ is $V(I)$.

(ii) A point $I \in \text{Spec}(P)$ is closed if and only if $I \in \text{Max}(P)$.

(iii) If $I, J \in \text{Spec}(P)$ with $cl(I) = cl(J)$, then $I = J$.

Theorem 2.4. Let S be a subset of P. Then $\mathbb{P}_S = \cap V(\mathbb{P}_S)$.

Proof. Clearly, $\mathbb{P}_S \subseteq \cap V(\mathbb{P}_S)$. Let $a \in \cap V(\mathbb{P}_S)$. Suppose on the contrary that
$a \in P \setminus \mathbb{P}$. Then $(a, s)^l \notin I$ for some $I \in \text{Spec}(P)$ and some $s \in S$ which
implies $a \notin I$ and $s \notin I$. So we can get $\mathbb{P}_S \subseteq I$. Thus $a \notin I \in V(\mathbb{P}_S)$, a
contradiction.

Theorem 2.5. Let P be a poset and $a, b \in P$. Then $\text{int}(V(a)) \subseteq \text{int}(V(b))$ if
and only if $(\mathbb{P} : a) \subseteq (\mathbb{P} : b)$.

Proof. Let $\text{int}(V(a)) \subseteq \text{int}(V(b))$ for any $a, b \in P$ and $x \in (\mathbb{P} : a)$. Then $\text{Spec}(P) \setminus V(x) \subseteq \text{int}(V(a)) \subseteq \text{int}(V(b)) \subseteq V(b)$, which gives $(b, x)^l \subseteq \mathbb{P}$, so
$x \in (\mathbb{P} : b)$.

Conversely, let $(\mathbb{P} : a) \subseteq (\mathbb{P} : b)$ and let $I \in \text{int}(V(a))$. Suppose
$I \notin V(b)$. By Lemma 2.2, since $I \notin \text{Spec}(P) \setminus V(a)$, then there is $0 \neq c \in P$
with $\text{Spec}(P) \setminus V(a) \subseteq V(c)$ and $c \notin I$ which imply $(a, c)^l \subseteq \mathbb{P}$. Clearly
$(b, c)^l \notin I$. Then $c \in (\mathbb{P} : a)$ and $c \notin (\mathbb{P} : b)$, a contradiction. Thus $I \in V(b)$
and hence $\text{int}(V(a)) \subseteq V(b)$ which implies $\text{int}(V(a)) \subseteq \text{int}(V(b))$.

\hfill \Box
Theorem 2.6. Let P be a poset. Then \(\text{cl}(D(a)) = V((\mathbb{P} : a)) = \text{Supp}(a) = \text{Spec}(P) \cap \text{int} V(a) \) for every \(a \in P \).

Proof. It is easy to verify that \(D(a) \subseteq V((\mathbb{P} : a)) \) which implies \(\text{cl}(D(a)) \subseteq V((\mathbb{P} : a)) \). Let \(I \in V((\mathbb{P} : a)) \) and \(D(x) \) be any arbitrary element in \(B \) such that \(I \in D(x) \). We now claim that \(D(x) \cap D(a) \neq \phi \). If \(I \notin D(a) \) and suppose \(D(x) \cap D(a) = \phi \), then \(D(x, a)^{\phi} \subseteq D(x) \cap D(a) = \phi \) which implies \((x, a)^{\phi} \subseteq \mathbb{P} \).

Then \(x \in I \), a contradiction to \(I \in D(x) \). Thus \(D(x) \cap D(a) \neq \phi \) and hence \(V((\mathbb{P} : a)) \subseteq \text{cl}(D(a)) \). By the definition, we have \(V((\mathbb{P} : a)) = \text{Supp}(a) \). It remains to prove that \(\text{cl}(D(a)) = \text{Spec}(P) \cap \text{int} V(a) \).

Let \(I_1 \in \text{cl}(D(a)) \) and suppose that \(I_1 \in \text{int} V(a) \). Then there exists an open set \(U \) of \(\text{Spec}(P) \) with \(I_1 \in U \subseteq V(a) \), and so \(I_1 \notin \text{Spec}(P) \cup U \), a contradiction as \(\text{Spec}(P) \cup U \) is a closed set containing \(D(a) \). So \(\text{cl}(D(a)) \subseteq \text{Spec}(P) \cap \text{int} V(a) \).

Let \(I_1 \in \text{Spec}(P) \cap \text{int} V(a) \) and let \(D(x) \) be any arbitrary element in \(B \) with \(I_1 \in D(x) \). Suppose that \(D(x) \cap D(a) = \phi \). Then \(I_1 \in D((\mathbb{P} : a)) \subseteq V(a) \), a contradiction. \(\square \)

Lemma 2.7. Let \(P \) be a poset with greatest element \(e \). Then \(\text{Spec}(P) \) does not contain any clopen subset.

Proof. Suppose that \(A \) is a clopen subset of \(\text{Spec}(P) \) and let \(J = \cap A \) and \(J_1 = \cap A^C \). Then by Lemma 2.2 \(A = \text{cl}(A) = V(J) \) and \(A^C = V(J_1) \), and so \(V(J) \cap V(J_1) = \phi \) which gives \(e \in P = J \cup J_1 \), a contradiction. \(\square \)

Lemma 2.8. Let \(P \) be a poset with greatest element \(e \). If \(F \subseteq \text{Spec}(P) \) is a closed set and \(D(K) \) is an open set in \(\text{Spec}(P) \) satisfying \(F \cap \text{Max}(P) \subseteq D(K) \), then \(F \subseteq D(K) \).

Proof. Suppose that there is \(I \in F \) with \(I \notin D(K) \). Then \(K \cup L \subseteq I \), since \(F = V(L) \) for some semi-ideal \(L \) of \(P \). Hence, each maximal semi-ideal \(M \) containing \(I \) is also in \(F \). Then \(M \in F \cap \text{Max}(P) \), and so \(M \in D(K) \), a contradiction. \(\square \)

Theorem 2.9. Let \(P \) be a poset with greatest element \(e \). Then

(i) \(\text{Max}(P) \) is a compact \(T_1 \) subspace.

(ii) If \(\text{Spec}(P) \) is normal, then \(\text{Max}(P) \) is a Hausdorff space.

Proof. (i) Let \(B = \{ D(s_i) : s_i \in J \} \) be the basis of \(P \) for any subset \(J \) of \(P \), and suppose that \(\text{Max}(P) = \bigcup_{s_i \in J} D(s_i) \cap \text{Max}(P) \). Then \(\phi = \cap_{s_i \in J} (\text{Max}(P) \cap D(s_i)) = \cap_{s_i \in J} V(s_i) \cap \text{Max}(P) = V(\cup_{s_i \in J} \{ s_i \} \cap \text{Max}(P) \) which implies \(e \in (s_i)^{\phi} \) and \(e = s_i \) for some \(s_i \in J \). So \(\text{Max}(P) = D(s_i) \).

Let \(M_1 \) and \(M_2 \) be two distinct elements in \(\text{Max}(P) \). Then \(M_1 \in D(M_2) \) and \(M_2 \in D(M_1) \), and so \(\text{Max}(P) \) is a \(T_1 \) space.

(ii) Let \(M_1 \) and \(M_2 \) be distinct elements in \(\text{Max}(P) \). Then \(\{ M_1 \} \) and \(\{ M_2 \} \) are closed subsets in both \(\text{Spec}(P) \) and \(\text{Max}(P) \). If \(\text{Spec}(P) \) is normal, then there exist disjoint open sets \(D(I) \) and \(D(J) \) such that \(\{ M_1 \} \subseteq D(I) \) and \(\{ M_2 \} \subseteq D(J) \) for some semi-ideals \(I \) and \(J \) of \(P \), respectively. So, \(M_1 \in \)}
Theorem 3.2, I be a semi-ideal of P. Then $G_I(P)$ is connected and $\text{diam}(G_I(P)) \leq 3$.

Lemma 3.5. Let I be a semi-ideal of P. Then a pentagon or hexagon can not be a $G_I(P)$.

Proof. Suppose that $G_I(P)$ is $a - b - c - d - e - a$, a pentagon. Then by Theorem 3.2, $I \cup \{a\}$ is a semi-ideal of P. Then in the pentagon, $(a, b)^l \subseteq I$ and $(a, e)^l \subseteq I$. Since $I \cup \{a\}$ is a semi-ideal, and $(a, c)^l \not\subseteq I$, we have $a \leq c$. Similarly, we can show that $a \leq d$. Thus $a \in (c, d)^l \subseteq I$, a contradiction to $a \notin I$. The proof for the hexagon is the same.

Theorem 3.6. If $I \cup \{x\}$ is not a semi-ideal of P for any $x \in P \setminus I$ and $|G_I(P)| \geq 3$, then every pair of vertices in $G_I(P)$ is contained in a cycle of length ≤ 6.

Proof. Let $a, b \in G_I(P)$. If $(a, b)^l \subseteq I$, then $a - b$ is an edge of triangles or rectangles by Corollary 3.3. If $a - x - b$ is a path in $G_I(P)$, then it is contained in a cycle of length ≤ 4. If $a - x - y - b$ is a path in $G_I(P)$, then we find cycles $a - x - y - c - a$ and $b - y - x - d - b$ where $c \neq x$ and $d \neq y$. This gives cycle $a - x - d - b - y - c - a$ of length 6.

Lemma 3.7. Let P be a poset and let $a, b \in G_P(P)$. Then

(i) $\text{Supp}(a) \cup \text{Supp}(b) \neq \text{Spec}(P)$ if and only if $\text{Supp}(a) \cup \text{Supp}(b) \subseteq V(c)$ for some $c \in G_P(P)$.

3. Properties of semi-ideal-based zero-divisor graphs

In this section, we associate the poset properties of P and the graph properties of semi-ideal-based zero-divisor graphs of poset. Although the proof of the following three theorems are just similar of that for Theorem 2.4, Lemma 2.12 and Theorem 2.13 given in [7] to semi-ideal I of P.

Theorem 3.1 ([7]). Let I be a semi-ideal of P. Then $G_I(P)$ is connected and $\text{diam}(G_I(P)) \leq 3$.

Theorem 3.2 ([7]). Let I be a semi-ideal of P and if $a - x - b$ is a path in $G_I(P)$, then either $I \cup \{x\}$ is a semi-ideal of P or $a - x - b$ is contained in a cycle of length ≤ 4.

In view of above theorem, we have the following corollary.

Corollary 3.3. Let $|G_I(P)| \geq 3$ and $I \cup \{x\}$ be not a semi-ideal of P for any $x \notin I$. Then any edge in $G_I(P)$ is contained in a cycle of length ≤ 4, and therefore $G_I(P)$ is a union of triangles and squares.

Theorem 3.4 ([7]). Let I be a semi-ideal of P. If $G_I(P)$ contains a cycle, then the core K of $G_I(P)$ is a union of triangles and rectangles. Moreover, any vertex in $G_I(P)$ is either a vertex of the core K of $G_I(P)$ or else is an end vertex of $G_I(P)$.

Lemma 3.5. Let I be a semi-ideal of P. Then a pentagon or hexagon can not be a $G_I(P)$.

Proof. Suppose that $G_I(P)$ is $a - b - c - d - e - a$, a pentagon. Then by Theorem 3.2, $I \cup \{a\}$ is a semi-ideal of P. Then in the pentagon, $(a, b)^l \subseteq I$ and $(a, e)^l \subseteq I$. Since $I \cup \{a\}$ is a semi-ideal, and $(a, c)^l \not\subseteq I$, we have $a \leq c$. Similarly, we can show that $a \leq d$. Thus $a \in (c, d)^l \subseteq I$, a contradiction to $a \notin I$. The proof for the hexagon is the same.

Theorem 3.6. If $I \cup \{x\}$ is not a semi-ideal of P for any $x \in P \setminus I$ and $|G_I(P)| \geq 3$, then every pair of vertices in $G_I(P)$ is contained in a cycle of length ≤ 6.

Proof. Let $a, b \in G_I(P)$. If $(a, b)^l \subseteq I$, then $a - b$ is an edge of triangles or rectangles by Corollary 3.3. If $a - x - b$ is a path in $G_I(P)$, then it is contained in a cycle of length ≤ 4. If $a - x - y - b$ is a path in $G_I(P)$, then we find cycles $a - x - y - c - a$ and $b - y - x - d - b$ where $c \neq x$ and $d \neq y$. This gives cycle $a - x - d - b - y - c - a$ of length 6.

Lemma 3.7. Let P be a poset and let $a, b \in G_P(P)$. Then

(i) $\text{Supp}(a) \cup \text{Supp}(b) \neq \text{Spec}(P)$ if and only if $\text{Supp}(a) \cup \text{Supp}(b) \subseteq V(c)$ for some $c \in G_P(P)$.

(ii) \(D(a) \cap D(b) \neq \phi \) if and only if there exists \(c \in G_T(P) \) such that \(\phi \neq D(a) \cap D(b) \subseteq V(c) \).

Proof. (i) Suppose \(\text{Supp}(a) \cup \text{Supp}(b) \neq \text{Spec}(P) \). Then there exists an element \(P \in \text{Spec}(P) \) with \(x, y \notin P \) for some \(x \in (P : a) \) and \(y \in (P : b) \). So \((x, y)^I \nsubseteq P \). So there exists \(t \in (x, y)^I \) with \(t \notin P \). It is easy to verify that \(t \in G_T(P) \) and \(\text{Supp}(a) \cup \text{Supp}(b) \subseteq V(t) \). Conversely, let \(\text{Supp}(a) \cup \text{Supp}(b) \subseteq V(c) \) for some \(c \in G_T(P) \) and suppose that \(\text{Supp}(a) \cup \text{Supp}(b) = \text{Spec}(P) \). Then \(c \in P \), a contradiction. Hence, \(\text{Supp}(a) \cup \text{Supp}(b) \neq \text{Spec}(P) \).

(ii) Obvious. \(\square \)

Now by Theorem 3.1, and Lemma 3.7, we have the following characterizations of the diameter of \(G_T(P) \).

Theorem 3.8. Let \(P \) be a poset and let \(a, b \in G_T(P) \) be distinct elements. Then

(i) For any \(c \in G_T(P) \), we have \(c \) is adjacent to both \(a \) and \(b \) if and only if \(\text{Supp}(a) \cup \text{Supp}(b) \subseteq V(c) \).

(ii) \(d(a, b) = 1 \) if and only if \(D(a) \cap D(b) = \phi \).

(iii) \(d(a, b) = 2 \) if and only if \(D(a) \cap D(b) \neq \phi \) and \(\text{Supp}(a) \cup \text{Supp}(b) \neq \text{Spec}(P) \).

(iv) \(d(a, b) = 3 \) if and only if \(D(a) \cap D(b) \neq \phi \) and \(\text{Supp}(a) \cup \text{Supp}(b) = \text{Spec}(P) \).

Proof. (i) and (ii) are trivial.

(iii) Let \(a, b \in G_T(P) \). Then \(d(a, b) = 2 \) if and only if \((a, b)^I \nsubseteq P \) and there exists \(c \in G_T(P) \) such that \(c \) is adjacent to both \(a \) and \(b \) if and only if \(D(a) \cap D(b) \neq \phi \) and \(\text{Supp}(a) \cup \text{Supp}(b) \subseteq V(c) \) if and only if \(D(a) \cap D(b) \neq \phi \) and \(\text{Supp}(a) \cup \text{Supp}(b) \neq \text{Spec}(P) \) by Lemma 3.7.

(iv) By Theorem 3.1, \(d(a, b) = 3 \) if and only if \(d(a, b) \neq 1, 2 \) if and only if \(D(a) \cap D(b) \neq \phi \) and \(\text{Supp}(a) \cup \text{Supp}(b) = \text{Spec}(P) \) by (i) and (ii). \(\square \)

Theorem 3.9. Let \(I \) be a semi-ideal of \(P \) and let \(a \in G_1(P) \). If \(a \) is adjacent to every vertex in \(G_1(P) \), then \((I : a) \) is a prime semi-ideal of \(P \).

Proof. Let \((x, y)^I \subseteq (I : a) \) for \(x \in P \). Then \((a, x, y)^I \subseteq I \) and so \(x \in (I : t) \) for all \(t \in (y, a)^I \). Suppose that \(y \notin (I : a) \). Then there exists \(t_1 \in (y, a)^I \) such that \(t_1 \notin I \). We now claim that \(I_{t_1} = I_a \). Clearly \((I : a) \subseteq (I : t_1) \). Now let \(p \in (I : t_1) \). If \(p \in I \), then \(p \in (I : a) \). Otherwise \(p \notin I \). It is clear that \(p \in G_2(P) \). Since \(a \) is adjacent to every vertex, therefore \((p, a)^I \subseteq I \). So \((I : a) = (I : t_1) \). Since \(x \in (I : t_1) \), we have \(x \in (I : a) \). \(\square \)

Lemma 3.10. Let \(P \) be a poset. If \(x \in P \) and \((I : x) \) is maximal among \((I : a) = \{ y \in P : (a, y)^I \subseteq I \} \), then \((I : x) \) is a prime semi-ideal of \(P \).

Proof. Suppose that \((a, b)^I \subseteq (I : x) \) and \(a \notin (I : x) \). Then \((a, b, x)^I \subseteq I \). Let \(z \in (a, x)^I \setminus I \). Then \((b, z)^I \subseteq (a, b, x)^I \subseteq I \), thus \(b \in (I : z) \). Since \((I : x) \subseteq (I : z) \)
and $z \notin I$, we have $(I : z) \neq P$. By the maximality of $(I : x)$, we have $(I : x) = (I : z)$, hence $b \in (I : z) = (I : x)$. □

Acknowledgments. The authors express their sincere thanks to the referee for his/her valuable comments and suggestions which improve the paper a lot.

References

Balasubramanian Elavarasan
Department of Mathematics
School of Science and Humanities
Karunya University
Coimbatore-641 114, Tamilnadu, India
E-mail address: belavarasan@gmail.com

Kasi Porselvi
Department of Mathematics
School of Science and Humanities
Karunya University
Coimbatore-641 114, Tamilnadu, India
E-mail address: porselvi94@yahoo.co.in