UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING DIFFERENTIAL POLYNOMIALS

Jiang-Tao Li and Ping Li

Abstract. In this paper, we study the uniqueness of entire functions concerning differential polynomials and deficient value. The results extend and improve Theorem 2 in Yi [13].

1. Introduction and main results

Let f be a nonconstant meromorphic function in the whole complex plane \mathbb{C}, we will use the standard notations of Nevanlinna’s value distribution theory such as $T(r,f)$, $N(r,f)$, $N'(r,f)$, $m(r,f)$ and so on, as found in [11]. In particular, we denote by $S(r,f)$ any function satisfying $S(r,f) = o(T(r,f))$ as $r \to \infty$, possibly outside a set of r of finite linear measure. For $a \in \mathbb{C} \cup \{\infty\}$, we set $E(a,f) = \{z \mid f(z) - a = 0, \text{counting multiplicities}\}$ and $\bar{E}(a,f) = \{z \mid f(z) - a = 0, \text{ignoring multiplicities}\}$ respectively.

Let f and g be two nonconstant meromorphic functions, we say that f and g share the value a CM (IM) provided that $E(a,f) = E(a,g)$ ($\bar{E}(a,f) = \bar{E}(a,g)$).

The quantity $\lambda(f) = \lim_{r \to \infty} \frac{\log^+ T(r,f)}{\log r}$ is called the order of $f(z)$. Also

$$\delta(a,f) = \lim_{r \to \infty} \frac{m(r, \frac{1}{f-a})}{T(r,f)} = 1 - \lim_{r \to \infty} \frac{N(r, \frac{1}{f-a})}{T(r,f)}$$

is called the deficiency of a with respect to $f(z)$. If $\delta(a,f) > 0$, then the complex number a is named a deficient value of $f(z)$.

In 1976, Yang [8] posed the following question:

What can be said about the relationship between two nonconstant entire functions f and g if f and g share the value 0 CM and f' and g' share the value 1 CM?

Received February 13, 2015.
2010 Mathematics Subject Classification. 30D35, 30D45.
Key words and phrases. entire functions, differential polynomials, deficient value, uniqueness.

This work is supported by the National Natural Science Foundation of China (No. 11371384).

©2015 Korean Mathematical Society
The above problem has been studied by K. Shibazaki [7], Yi [12, 13], Yang-Yi [10], Hua [2], Muse-Reinders [6] and I. Lahiri [3]. And Yi [13] has proved the following theorem.

Theorem 1.1 ([13, Theorem 2]). Let \(f \) and \(g \) be two nonconstant entire functions and let \(k \) be a nonnegative integer. If \(f \) and \(g \) share the value 0 CM, \(f^{(k)} \) and \(g^{(k)} \) share the value 1 CM and \(\delta(0, f) > \frac{1}{2} \), then \(f \equiv g \) unless \(f^{(k)} \cdot g^{(k)} \equiv 1 \).

Let \(h \) be a nonconstant meromorphic function. We denote by \(P(h) = h^{(k)} + a_1h^{(k-1)} + a_2h^{(k-2)} + \cdots + a_{k-1}h' + a_kh \) the differential polynomial of \(h \), where \(a_1, a_2, \ldots, a_k \) are finite complex numbers and \(k \) is a positive integer.

Remark 1.2. The following example shows that in Theorem 1.1 the functions \(f^{(k)} \) and \(g^{(k)} \) cannot be replaced by \(P(f) \) and \(P(g) \). Let \(f = \frac{1}{2}e^{-2z} \) and \(g = e^{-2z} \). Then \(f \) and \(g \) share the value 0 CM, \(f'' + 2f' \) and \(g'' + 2g' \) share the value 1 CM and \(\delta(0, f) > \frac{1}{2} \), but \(f \neq g \) and \((f'' + 2f')(g'' + 2g') \neq 1 \).

In this paper, we shall prove the following general results which extend and improve Theorem 1.1.

Theorem 1.3. Let \(f \) and \(g \) be two nonconstant entire functions. Suppose that \(f \) and \(g \) share the value 0 CM, \(P(f) \) and \(P(g) \) share the value 1 CM and \(\delta(0, f) > \frac{1}{2} \). If \(\lambda(f) \neq 1 \), then \(f \equiv g \) unless \(P(f) \cdot P(g) \equiv 1 \).

Theorem 1.4. Let \(f \) and \(g \) be two nonconstant entire functions. Suppose \(f \) and \(g \) share the value 0 CM, \(P(f) \) and \(P(g) \) share the value 1 IM and \(\delta(0, f) > \frac{1}{2} \). If \(\lambda(f) \neq 1 \), then \(f \equiv g \) unless \(P(f) \cdot P(g) \equiv 1 \).

2. Some lemmas

Lemma 2.1 ([5]). Let \(f \) be a nonconstant meromorphic function and let \(k \) be a nonnegative integer. Then

\[
T(r, P(f)) \leq T(r, f) + k\tilde{N}(r, f) + S(r, f).
\]

Lemma 2.2. Suppose that \(f(z) \) is a nonconstant meromorphic function in the complex plane and \(a(z) \) is a small function of \(f(z) \), that is, \(T(r, a) = S(r, f) \). If \(f(z) \) is not a polynomial, then

\[
N(r, \frac{1}{P(f) - P(a)}) \leq T(r, P(f)) - T(r, f) + N(r, \frac{1}{f - a}) + S(r, f)
\]

and

\[
N(r, \frac{1}{P(f) - P(a)}) \leq N(r, \frac{1}{f - a}) + k\tilde{N}(r, f) + S(r, f).
\]

Proof. By the Nevanlinna’s first fundamental theorem and the lemma of logarithmic derivatives, we have

\[
T(r, f) - N(r, \frac{1}{f - a}) = m(r, \frac{1}{f - a}) + S(r, f)
\]
We get (2) by transposition. And we obtain (3) combined with (1) and (2), which proves this lemma.

Next, we introduce some notations.

Let F and G be two nonconstant meromorphic functions such that F and G share the value 1 IM. We denote by $\bar{N}_L(r, \frac{1}{F-1})$ the reduced counting function for zeros of both $F - 1$ and $G - 1$ about which $F - 1$ has larger multiplicity than $G - 1$, $N_{E}^{\downarrow}(r, \frac{1}{F-1})$ the counting function for common simple zeros of both $F - 1$ and $G - 1$, and $\bar{N}_E(r, \frac{1}{F-1})$ the reduced counting function for common multiple zeros of both $F - 1$ and $G - 1$. In the same way, we can define $\bar{N}_L(r, \frac{1}{G-1})$, $N_{E}^{\downarrow}(r, \frac{1}{G-1})$, and $\bar{N}_E(r, \frac{1}{G-1})$. Also we denote by $N_{1}(r, \frac{1}{F})$ the counting function for simple zeros of F, and $\bar{N}_L(r, \frac{1}{F})$ the reduced counting function for multiple zeros of F.

Lemma 2.3. Let F and G be two nonconstant meromorphic functions such that F and G share the value 1 IM. Let

$$ H = \frac{F''}{F'} - \frac{2F'}{F-1} - \frac{G''}{G-1} + \frac{2G'}{G-1}. $$

If $H \neq 0$, then

$$ T(r, F) \leq N(r, \frac{1}{F}) + 2N(r, F) + N(r, \frac{1}{G}) + 2\bar{N}_E(r, \frac{1}{F-1}) $$
$$ + 2\bar{N}(r, G) + \bar{N}_L(r, \frac{1}{G-1}) + S(r, F) + S(r, G). $$

Proof. Let z_0 be a common simple zero of $F - 1$ and $G - 1$. By (4), we have $H(z_0) = 0$ and $m(r, H) = S(r, F) + S(r, G)$, then

$$ N_{E}^{\downarrow}(r, \frac{1}{F-1}) \leq N(r, \frac{1}{H}) \leq T(r, H) + O(1) $$

and

$$ N_{E}^{\downarrow}(r, \frac{1}{G-1}) \leq N(r, H) + S(r, F) + S(r, G). $$

By the Nevanlinna’s second fundamental theorem, we have

$$ T(r, F) + T(r, G) \leq \bar{N}(r, \frac{1}{F}) + \bar{N}(r, \frac{1}{F-1}) + \bar{N}(r, F) - N_{0}(r, \frac{1}{F'}) $$
$$ + S(r, F) + \bar{N}(r, \frac{1}{G}) + \bar{N}(r, \frac{1}{G-1}) $$
$$ + \bar{N}(r, G) - N_{0}(r, \frac{1}{G}) + S(r, G). $$

We get (2) by transposition. And we obtain (3) combined with (1) and (2), which proves this lemma.
where \(N_0(r, 1/F) \) denotes the counting function corresponding to the zeros of \(F' \) that are not zeros of \(F \) and \(F - 1 \) and \(N_0(r, 1/G') \) denotes the counting function corresponding to the zeros of \(G' \) that are not zeros of \(G \) and \(G - 1 \). Since \(F \) and \(G \) share the value 1 IM, we get

\[
\bar{N}(r, \frac{1}{F - 1}) = N_{E}^{1}(r, \frac{1}{F - 1}) + \bar{N}_{L}(r, \frac{1}{F - 1}) + \bar{N}_{L}(r, \frac{1}{G - 1})
\]

\[
+ \bar{N}_{E}^{2}(r, \frac{1}{G - 1}) + S(r, F) + S(r, G)
\]

\[
= \bar{N}(r, \frac{1}{F - 1}) + S(r, F) + S(r, G).
\]

Then

\[
N(r, \frac{1}{F - 1}) + \bar{N}(r, \frac{1}{G - 1}) = N_{E}^{1}(r, \frac{1}{F - 1}) + \bar{N}_{L}(r, \frac{1}{F - 1})
\]

\[
+ \bar{N}_{L}(r, \frac{1}{G - 1}) + \bar{N}_{E}^{2}(r, \frac{1}{G - 1})
\]

\[
+ \bar{N}(r, \frac{1}{G - 1}) + S(r, F) + S(r, G)
\]

\[
\leq N_{E}^{1}(r, \frac{1}{F - 1}) + \bar{N}_{L}(r, \frac{1}{F - 1})
\]

\[
+ N(r, \frac{1}{G - 1}) + S(r, F) + S(r, G)
\]

\[
\leq N_{E}^{1}(r, \frac{1}{F - 1}) + \bar{N}_{L}(r, \frac{1}{F - 1})
\]

\[
+ \bar{N}(r, \frac{1}{G - 1}) - N_0(r, \frac{1}{F}) - N_0(r, \frac{1}{G}) + S(r, F) + S(r, G).
\]

From (7) and (8), we obtain

\[
T(r, F) \leq \bar{N}(r, \frac{1}{F}) + \bar{N}(r, F) + \bar{N}(r, \frac{1}{G}) + N_{E}^{1}(r, \frac{1}{F - 1})
\]

\[
+ \bar{N}_{L}(r, \frac{1}{F - 1}) - N_0(r, \frac{1}{F}) - N_0(r, \frac{1}{G}) + S(r, F) + S(r, G).
\]

By (4), we get

\[
N(r, H) \leq \bar{N}(r, \frac{1}{F}) + \bar{N}(r, F) + \bar{N}(r, \frac{1}{G}) + \bar{N}(r, \frac{1}{G - 1})
\]

\[
+ \bar{N}_{L}(r, \frac{1}{F - 1}) + \bar{N}_{L}(r, \frac{1}{G - 1}) + N_0(r, \frac{1}{F - 1}) + N_0(r, \frac{1}{G - 1})
\]

\[
+ S(r, F) + S(r, G).
\]

Combine (6), (9) and (10), we have

\[
T(r, F) \leq \bar{N}(r, \frac{1}{F}) + \bar{N}(r, \frac{1}{F}) + 2 \bar{N}(r, F) + N_{E}^{1}(r, \frac{1}{G})
\]

\[
+ \bar{N}_{E}^{2}(r, \frac{1}{G}) + 2 \bar{N}(r, G) + 2 \bar{N}_{L}(r, \frac{1}{F - 1})
\]

\[
+ \bar{N}(r, \frac{1}{G - 1}) - N_0(r, \frac{1}{F}) - N_0(r, \frac{1}{G}) + S(r, F) + S(r, G).
\]
It is obvious that

\begin{align}
\hat{N}(r, \frac{1}{F}) + \hat{N}(r, \frac{1}{G}) & \leq N(r, \frac{1}{F}), \\
\hat{N}(r, \frac{1}{G}) + \hat{N}(r, \frac{1}{F}) & \leq N(r, \frac{1}{G}).
\end{align}

From (11), (12) and (13), we get (5), which completes the proof. \(\square\)

Lemma 2.4 ([9]). Suppose \(f_j (j = 1, 2, \ldots, m + 1)\) and \(g_j (j = 1, 2, \ldots, m)\) are entire functions satisfying the following conditions:

- \[\sum_{j=1}^{m} f_j(z) e^{g_j(z)} \equiv f_{m+1}(z);\]
- The order of \(f_j(z)\) is less than the order of \(e^{g_k(z)}\) for \(1 \leq j \leq m + 1, 1 \leq k \leq m\); And furthermore, the order of \(f_j(z)\) is less than the order of \(e^{g_l(z)} - g_k(z)\) for \(m \geq 2\) and \(1 \leq j \leq m + 1, 1 \leq l, k \leq m, l \neq k.\)

Then \(f_j \equiv 0 (j = 1, 2, \ldots, m + 1).\)

3. Proof of Theorem 1.4

We just prove Theorem 1.4, and the proof of Theorem 1.3 is similar. Next we consider two cases.

Case 1. Assume that \(P(f), P(g) \neq c\), where \(c\) is a finite complex constant.

Since \(f\) and \(g\) share the value 0 CM and \(P(f)\) and \(P(g)\) share the value 1 IM, by Milloux’s basic result we have

\[
T(r, f) \leq \hat{N}(r, f) + N(r, \frac{1}{f}) + \hat{N}(r, \frac{1}{P(f) - 1}) + S(r, f)
\]

\[
= N(r, \frac{1}{g}) + \hat{N}(r, \frac{1}{P(g) - 1}) + S(r, f)
\]

\[
\leq T(r, g) + T(r, P(g)) + S(r, f).
\]

By Lemma 2.1, we get

\[
(14) \quad T(r, f) \leq (k + 2)T(r, g) + S(r, f) + S(r, g).
\]

Similarly we can get

\[
(15) \quad T(r, g) \leq (k + 2)T(r, f) + S(r, f) + S(r, g).
\]

Then

\[
(16) \quad S(r, f) = S(r, g).
\]

Let \(F = P(f), G = P(g)\) and let \(H\) be defined by (4), then \(F\) and \(G\) share the value 1 IM. If \(H \neq 0\), then by Lemma 2.3 we have

\[
(17) \quad T(r, F) \leq N(r, \frac{1}{F}) + N(r, \frac{1}{G}) + 2\hat{N}(r, \frac{1}{F - 1})
\]
\[+ \tilde{N}_L(r, \frac{1}{G-1}) + S(r, F) + S(r, G). \]

From (3), we obtain
\[(18) \quad \tilde{N}_L(r, \frac{1}{F-1}) \leq N(r, \frac{1}{F}) \leq N(r, \frac{1}{F}) + \tilde{N}(r, F) + S(r, F), \]
\[\tilde{N}_L(r, \frac{1}{G-1}) \leq N(r, \frac{1}{G}) \leq N(r, \frac{1}{G}) + \tilde{N}(r, G) + S(r, G). \]

Substituting (18) into (17), we deduce that
\[(19) \quad T(r, F) \leq 3N(r, \frac{1}{F}) + 2N(r, \frac{1}{G}) + S(r, F) + S(r, G). \]

By Lemma 2.2 and (19), we have
\[(20) \quad T(r, P(f)) \leq T(r, P(f)) - T(r, f) + N(r, \frac{1}{F}) + 2N(r, \frac{1}{G}) + 2N(r, \frac{1}{g}) + S(r, f) + S(r, g). \]

Noting that \(f \) and \(g \) share the value 0 CM, by (16) and (20) we get
\[T(r, f) \leq 5N(r, \frac{1}{F}) + S(r, f), \]
which contradicts the condition \(\delta(0, f) > \frac{4}{5} \). Thus \(H \equiv 0 \).

Solving this equation, we get
\[(21) \quad F = \frac{AG + B}{CG + D} \quad (AD - BC \neq 0), \]
where \(A, B, C \) and \(D \) are finite complex constants. Next we consider three subcases.

Subcase 1.1. Assume that \(AC \neq 0 \). From (21), we know that \(\frac{A}{C} \) is a Picard exceptional value of \(F \). By the Nevanlinna’s second fundamental theorem, we have
\[(22) \quad T(r, F) \leq N(r, \frac{1}{F}) + N(r, \frac{1}{F - \frac{A}{C}}) + N(r, F) + S(r, F) \]
\[= N(r, \frac{1}{F}) + S(r, F). \]

From (3) and (22), we get
\[T(r, P(f)) \leq T(r, P(f)) - T(r, f) + N(r, \frac{1}{F}) + S(r, f), \]
that is, \(T(r, f) \leq N(r, \frac{1}{F}) + S(r, f) \), which contradicts the condition \(\delta(0, f) > \frac{4}{5} \).

Subcase 1.2. Assume that \(A \neq 0 \) and \(C = 0 \). Then \(F = \frac{AG}{D} + \frac{B}{D} \). If \(B \neq 0 \), then \(N(r, \frac{1}{F}) = N(r, \frac{1}{f}) \). By the Nevanlinna’s second fundamental theorem, we have
\[(23) \quad T(r, F) \leq N(r, \frac{1}{F}) + N(r, \frac{1}{F - \frac{A}{C}}) + N(r, F) + S(r, F) \]
\[= N(r, \frac{1}{F}) + N(r, \frac{1}{G}) + S(r, F). \]
From Lemma 2.3 and (23), we obtain

\[
T(r, P(f)) \leq T(r, P(f)) - T(r, f) + N(r, \frac{1}{f}) + N(r, \frac{1}{g}) + S(r, f) + S(r, g).
\]

By (16) and (24), we have

\[
T(r, f) \leq N(r, \frac{1}{f}) + N(r, \frac{1}{g}) + S(r, f) = 2N(r, \frac{1}{f}) + S(r, f),
\]
a contradiction to the condition \(\delta(0, f) > \frac{4}{5}\). Thus \(B = 0\), that is, \(F = \frac{1}{g}\). If \(1\) is a Picard exceptional value of \(F\), then \(\frac{1}{4} = 1\). Otherwise, \(\frac{1}{4}\) is a Picard exceptional value of \(F\) that is different from 1, which contradicts the Deficiency Theorem [11]. Thus \(F \equiv G\). If \(1\) is not a Picard exceptional value of \(F\), then there is a complex number \(z_0\) such that \(F(z_0) = G(z_0) = 1\). Therefore, \(\frac{1}{4} = 1\), that is, \(F \equiv G\).

Subcase 1.3. Assume that \(A = 0\) and \(C \neq 0\). Proceeding as in the proof of subcase 1.2 we can get \(F \cdot G \equiv 1\).

In conclusion, we know that \(F \equiv G\) unless \(F \cdot G \equiv 1\). If \(F \cdot G \equiv 1\), that is, \(P(f) \cdot P(g) \equiv 1\), then the result of theorem 1.4 is true. If the former is established, that is, \(P(f - g) \equiv 0\), solving this equation (see [1, 4]) we get

\[
f - g = \sum_{j=1}^{m} p_j(z)e^{\alpha_j z},
\]

where \(m \leq k\) is a positive integer, \(\alpha_j\) \((j = 1, \ldots, m)\) are distinct complex constants and \(p_j(z)\) \((j = 1, \ldots, m)\) are polynomials. Next we prove that if \(\lambda(f) \neq 1\), then \(f \equiv g\). We distinguish two cases below.

Case I. Assume that \(\lambda(f) < 1\). By (14) and (15), we know that \(\lambda(f) = \lambda(g)\). Since \(f\) and \(g\) share the value 0 CM, we can get \(\frac{f}{g} = e^{h(z)}\), where \(h(z)\) is an entire function. Then

\[
\lambda(e^{h(z)}) = \lambda\left(\frac{f}{g}\right) \leq \max\{\lambda(f), \lambda(\frac{1}{g})\} < 1.
\]

Thus \(e^{h(z)} \equiv c_0\), where \(c_0\) is a finite complex constant. We obtain \(f \equiv c_0g\), then \(P(f) \equiv c_0P(g)\). By \(P(f) \equiv P(g)\), we can get \(c_0 = 1\), that is, \(f \equiv g\).

Case II. Assume that \(\lambda(f) > 1\). By the Weierstrass’s factorization theorem, we have

\[
f(z) = \pi(z)e^{l_1(z)}, \quad g(z) = \pi(z)e^{l_2(z)},
\]

where \(\pi(z)\) is canonical product formed with common zeros of \(f\) and \(g\) and \(l_1(z)\) and \(l_2(z)\) are entire functions.

If \(l_1 \equiv l_2\), then \(f \equiv g\). If \(l_1 \neq l_2\), since \(\lambda(\pi)\) is equal to \(\tau(f)\) which is the exponent of convergence of zeros of \(f(z)\) and \(\tau(f) \leq \tau(f - g) \leq \lambda(f - g)\), by
(25) we have
\[\lambda(\pi) \leq \lambda(f - g) = \lambda(\sum_{j=1}^{m} p_j(z)e^{\alpha_j z}) \leq 1. \]

Since \(\lambda(f) = \lambda(g) > 1 \) and \(f - g = (e^{l_1(z)} - 1)g \), we can get that \(\lambda(e^{l_1(z)} - l_2(z)) > 1 \) and \(\lambda(e^{l_1(z)} - l_2(z)) > 1 \). By \(\pi(z)e^{l_1(z)} - \pi(z)e^{l_2(z)} = \sum_{j=1}^{m} p_j(z)e^{\alpha_j z} \) and Lemma 2.4 we know that \(\sum_{j=1}^{m} p_j(z)e^{\alpha_j z} \equiv 0 \) and \(\pi(z) \equiv 0 \). Then \(f(z) \equiv 0 \), a contradiction.

Case 2. Assume that \(P(f) \equiv c \), where \(c \) is a finite complex constant.

We can know that \(f \equiv c_1 + \sum_{j=1}^{m} q_j(z)e^{\beta_j z} \), where \(c_1 \) is finite complex constant, \(q_j \) \((j = 1, 2, \ldots, m)\) are polynomials and \(\beta_j \) \((j = 1, 2, \ldots, m)\) are distinct finite complex constants. Since \(\lambda(f) \neq 1 \), we get \(\lambda(f) < 1 \). Then \(f \equiv c_1 + \sum_{j=1}^{m} q_j(z) \), that is, \(f \) is a polynomial. Suppose the degree of \(f \) is \(n \). Then

\[N(r, f) = n \log r \quad \text{and} \quad T(r, f) = n \log r + O(1). \]

Therefore, \(\delta(0, f) = 1 - \lim_{r \to \infty} \frac{N(r, f)}{T(r, f)} = 0 < \frac{4}{5} \), which is a contradiction.

This completes the proof of Theorem 1.4.

References

Jiang-Tao Li
Department of Mathematics
Chongqing University
Chongqing 401331, P. R. China

AND

Department of Mathematics
Shihezi University
Shihezi, Xinjiang 832003, P. R. China
E-mail address: ljt@sdu.edu.cn

Ping Li
Department of Mathematics
Chongqing University
Chongqing 401331, P. R. China
E-mail address: sxlip@sina.cn