STATICAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE

Dae Ho Jin

Abstract. In this paper, we study half lightlike submanifolds M of an indefinite Kaehler manifold \bar{M} of quasi-constant curvature such that the characteristic vector field ζ of \bar{M} is tangent to M. First, we provide a new result for such a half lightlike submanifold. Next, we investigate a statical half lightlike submanifold M of \bar{M} subject such that (1) the screen distribution $S(TM)$ is totally umbilical or (2) M is screen conformal.

1. Introduction

In the theory of Riemannian geometry, Chen-Yano [2] introduced the notion of a Riemannian manifold of a quasi-constant curvature as a Riemannian manifold $({\bar{M}}, g)$ equipped with a curvature tensor \bar{R} of the following form:

$$\bar{R}(X, Y)Z = f_1\{g(Y, Z)X - g(X, Z)Y\}
+f_2\{\theta(Y)\theta(Z)X - \theta(X)\theta(Z)Y
+ g(Y, Z)\theta(X)\zeta - g(X, Z)\theta(Y)\zeta\}$$

for any vector fields X, Y and Z on \bar{M}, where f_1 and f_2 are smooth functions, ζ is a unit vector field which is called the characteristic vector field of \bar{M}, and θ is a 1-form associated with ζ by $\theta(X) = g(X, \zeta)$. It is well known that if $f_2 = 0$, then \bar{M} is reduced to a space of constant curvature.

The theory of lightlike submanifolds is an important topic of research in differential geometry due to its application in mathematical physics. Half lightlike submanifold M is a lightlike submanifold of codimension 2 such that $\text{rank}\{\text{Rad}(TM)\} = 1$, where $\text{Rad}(TM) = TM \cap TM^\perp$ is the radical distribution of M. It is a special case of general r-lightlike submanifold [4] such that $r = 1$. Its geometry is more general than that of lightlike hypersurface or coisotropic submanifold which is lightlike submanifolds M of codimension...
2 such that \(\text{rank}\{\text{Rad}(TM)\} = 2 \). Much of its theory will be immediately
generalized in a formal way to arbitrary \(r \)-lightlike submanifolds.

In this paper, we study half lightlike submanifolds \(M \) of an indefinite Kaehler
manifold \(\bar{M} \) of quasi-constant curvature such that the characteristic vector
field \(\zeta \) of \(\bar{M} \) is tangent to \(M \). First, we provide a new result for such a half
lightlike submanifold. Next, we investigate a statical half lightlike submanifold
\(M \) of such an indefinite Kaehler manifold \(M \) subject such that (1) the screen
distribution \(S(TM) \) is totally umbilical or (2) \(M \) is screen conformal.

2. Preliminaries

Let \((M,\bar{g})\) be a half lightlike submanifold of a semi-Riemannian manifold
\((\bar{M},\bar{g})\) with the tangent bundle \(TM \), the normal bundle \(TM^\perp \), the radical
distribution \(\text{Rad}(TM) = TM \cap TM^\perp \), a screen distribution \(S(TM) \), and a
co-screen distribution \(S(TM^\perp) \) such that

\[
TM = \text{Rad}(TM) \oplus_{\text{orth}} S(TM), \quad TM^\perp = \text{Rad}(TM) \oplus_{\text{orth}} S(TM^\perp),
\]

where \(\oplus_{\text{orth}} \) denotes the orthogonal direct sum. We follow Duggal-Jin [5] for
notations and structure equations used in this article. Denote by \(H(M) \) the algebra of smooth functions on \(M \) and by \(\Gamma(E) \) the \(H(M) \) module of smooth
sections of a vector bundle \(E \). Also denote by (2.6) the first equation of
the two equations in (2.6). We use same notations for any others. Choose
\(L \in \Gamma(S(TM^\perp)) \) as a unit spacelike vector field, \(i.e., \ g(L,L) = 1 \), without loss
of generality. Consider the orthogonal complementary distribution \(S(TM^\perp) \)
to \(S(TM) \) in \(TM \), of rank 3. Certainly the vector fields \(\xi \) and \(L \) belong to
\(\Gamma(S(TM^\perp)) \). Hence we have the following orthogonal decomposition

\[
S(TM)^\perp = S(TM^\perp) \oplus_{\text{orth}} S(TM^\perp)^\perp,
\]

where \(S(TM^\perp)^\perp \) is the orthogonal complementary to \(S(TM^\perp) \) in \(S(TM^\perp) \), of
rank 2. It is known [5] that, for any null section \(\xi \) of \(\text{Rad}(TM) \), there exists a
uniquely defined null vector field \(N \) in \(S(TM^\perp)^\perp \) satisfying

\[
\bar{g}(\xi,N) = 1, \quad \bar{g}(N,N) = \bar{g}(N,X) = \bar{g}(N,L) = 0, \quad \forall X \in \Gamma(S(TM)).
\]

Denote by \(\text{ltr}(TM) \) the subbundle of \(S(TM^\perp)^\perp \) locally spanned by \(N \). We see that
\(S(TM^\perp)^\perp = \text{Rad}(TM) \oplus \text{ltr}(TM) \). Let \(\text{tr}(TM) = S(TM^\perp) \oplus_{\text{orth}} \text{ltr}(TM) \). We call \(N, \text{ltr}(TM) \) and \(\text{tr}(TM) \) the lightlike transversal vector
field, lightlike transversal vector bundle and transversal vector bundle of \(M \)
with respect to the screen distribution \(S(TM) \) respectively.

Let \(\bar{\nabla} \) be the Levi-Civita connection of \(\bar{M} \) and \(P \) the projection morphism of
\(TM \) on \(S(TM) \). Then the local Gauss-Weingarten formulas of \(M \) and \(S(TM) \)
given respectively by

\[
\begin{align*}
\bar{\nabla}_X Y &= \nabla_X Y + B(X,Y)N + D(X,Y)L, \\
\bar{\nabla}_X N &= -A_N X + \tau(X)N + \rho(X)L, \\
\bar{\nabla}_X L &= -A_L X + \phi(X)N;
\end{align*}
\]
where ∇ and ∇^* are the induced connections on TM and $S(TM)$ respectively. Using the local Gauss-Weingarten formulas, we have

\begin{align}
(2.12) & \quad \nabla_X P Y = \nabla_X^* P Y + C(X, PY) \xi, \\
(2.13) & \quad \nabla_X \xi = -A^*_X X - \tau(X) \xi,
\end{align}

where ∇ and ∇^* are the induced connections on TM and $S(TM)$ respectively. B and D are called the local second fundamental forms of M, C is called the local screen second fundamental form on $S(TM)$. A^*_X and A^*_X are called the shape operators, and τ, ρ and ϕ are 1-forms on TM.

From now and in the sequel, let X, Y, Z and W be the vector fields on M, unless otherwise specified. Since ∇ is irrotational, ∇ is also torsion-free and the second fundamental forms B and D are symmetric. The above local second fundamental forms are related to their shape operators by

\begin{align}
(2.6) & \quad B(X, Y) = g(A^*_X X, Y), \quad \tilde{g}(A^*_X X, N) = 0, \\
(2.7) & \quad C(X, PY) = g(A^*_X X, PY), \quad \tilde{g}(A^*_X X, N) = 0, \\
(2.8) & \quad D(X, Y) = g(A^*_X X, Y) - \phi(X) \eta(Y), \quad \tilde{g}(A^*_X X, N) = \rho(X),
\end{align}

where η is a 1-form given by $\eta(X) = \tilde{g}(X, N)$. From (2.6), (2.8), we get

\begin{align}
(2.9) & \quad B(X, \xi) = 0, \quad D(X, \xi) = -\phi(X).
\end{align}

A^*_X and A^*_X are $S(TM)$-valued, and A^*_X is self-adjoint on TM such that

\begin{align}
(2.10) & \quad A^*_X \xi = 0.
\end{align}

The induced connection ∇ of M is not metric and satisfies

\begin{align}
(2.11) & \quad (\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y).
\end{align}

But the induced connection ∇^* on $S(TM)$ is a metric connection.

Definition. A half lightlike submanifold M of a semi-Riemannian manifold (\tilde{M}, \tilde{g}) is said to be statistical [11, 12] if $\nabla_X \tilde{L} \in \Gamma(S(TM))$ for any $X \in \Gamma(TM)$.

From (2.3) and (2.8), we show that the above definition is equivalent to the conditions: $\phi = 0$ and $\rho = 0$. The condition $\phi = 0$ is equivalent to the conception: M is irrotational, i.e., $\nabla_X \xi \in \Gamma(TM)$ [14]. The condition $\rho = 0$ is equivalent to the conception: M is solenoidal, i.e., $A^*_X X \in \Gamma(S(TM))$ [13].

We need the following Gauss-Codazzi equations (for a full set of these equations see [5]). Denote by \tilde{R}, \tilde{R} and \tilde{R}^* the curvature tensors of ∇, ∇ and ∇^* respectively. Using the local Gauss-Weingarten formulas, we have

\begin{align}
(2.12) & \quad \tilde{R}(X, Y) Z = \tilde{R}(X, Y) Z + B(X, Z) A^*_Y Y - B(Y, Z) A^*_X X \\
& \quad + D(X, Z) A^*_Y Y - D(Y, Z) A^*_X X \\
& \quad + \{ (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) \\
& \quad + \tau(X) B(Y, Z) - \tau(Y) B(X, Z) \\
& \quad + \phi(X) D(Y, Z) - \phi(Y) D(X, Z) \} N \\
& \quad + \{ (\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) \} + \tilde{R}(X, Z) B(Y, Z) \\
& \quad - \tilde{R}(Y) B(X, Z) \} L,
\end{align}
Denote by \mathcal{R}.

Due to [6], using (2.6) we get

Using (2.13) and the first Bianchi's identity, we obtain

This shows that \mathcal{R} is called the induced Ricci tensor.

Let $\bar{\mathcal{R}}$ denote the induced tensor of type $(0, 2)$ on \bar{M} such that

In the case $R = 0$, we say that \bar{M} is flat. We set $\dim \bar{M} = n + 3$.

The Ricci tensor $\bar{\mathcal{R}}ic$ of \bar{M} is defined by

Denote by $\bar{\mathcal{R}}ic^{(0, 2)}$ the induced tensor of type $(0, 2)$ on \bar{M} such that

Due to [6], using (2.6)–(2.8) and the Gauss equation (2.12), we get

Using (2.13) and the first Bianchi's identity, we obtain

This shows that $\bar{\mathcal{R}}ic^{(0, 2)}$ is not symmetric. A tensor field $\bar{\mathcal{R}}ic^{(0, 2)}$ of \bar{M} is called its induced Ricci tensor and denoted by $\bar{\mathcal{R}}ic$ if it is symmetric. In this case, \bar{M} is called Ricci flat if $\bar{\mathcal{R}}ic = 0$. \bar{M} is called an Einstein manifold if there exists a smooth function κ such that

Let $\nabla_X N = \pi(\nabla_X N)$, where π is the projection morphism of TM on $\text{ltr}(TM)$. Then ∇^ℓ is a linear connection on $\text{ltr}(TM)$. We say that ∇^ℓ is a lightlike transversal connection. Define a curvature tensor \mathcal{R}^ℓ on $\text{ltr}(TM)$ by

$$\mathcal{R}^\ell(X, Y)N = \nabla^\ell_X \nabla^\ell_Y N - \nabla^\ell_Y \nabla^\ell_X N - \nabla^\ell_{[X,Y]}N.$$
If R^ℓ vanishes identically, then the lightlike transversal connection ∇^ℓ is said to be flat. This definition comes from the definition of flat normal connection \[1\] in the theory of classical geometry of non-degenerate submanifolds. We quote the following result (see [9, 10]).

Theorem 2.1. Let M be a half lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}). The following assertions are equivalent:

1. The lightlike transversal connection of M is flat, i.e., $R^\ell = 0$.
2. The 1-form τ is closed, i.e., $d\tau = 0$, on any $\mathcal{U} \subset M$.
3. The Ricci type tensor $R^{(\ell, 2)}$ is an induced Ricci tensor of M.

Note 1. $d\tau$ is independent to the choice of the section $\xi \in \Gamma(TM^\perp)$. Indeed, suppose τ and $\bar{\tau}$ are 1-forms with respect to the sections ξ and $\bar{\xi}$, respectively. By directed calculation, it follows that $d\tau = d\bar{\tau}$ \[5\]. In case $d\tau = 0$, by the cohomology theory, there exists a smooth function f such that $\tau = df$. Consequently we get $\tau(X) = X(f)$. If we take $\xi = \lambda \xi$, it follows that $\tau(X) = \bar{\tau}(X) + X(\ln \lambda)$. Setting $\lambda = \exp(f)$ in this equation, we get $\bar{\tau} = 0$. Thus if $d\tau = 0$, we can take a 1-form τ such that $\tau = 0$. We call the pair $\{\xi, N\}$ whose corresponding 1-form τ vanishes the canonical null pair of M.

3. Indefinite Kaehler manifolds

Let $\bar{M} = (\bar{M}, J, \bar{g})$ be a real even dimensional indefinite Kaehler manifold, where \bar{g} is a semi-Riemannian metric of index $q = 2v$, $0 < v < \frac{1}{2}(\dim \bar{M})$, and J is an almost complex structure on \bar{M} such that, for all $X, Y \in \Gamma(TM)$,

\[(3.1) \quad J^2 = -I, \quad \bar{g}(JX, JY) = \bar{g}(X, Y), \quad (\bar{\nabla}_X J)Y = 0.\]

Let (M, g) be a half lightlike submanifold of an indefinite Kaeler manifold \bar{M}. Due to [7, 8], we choose a screen distribution $S(TM)$ such that $J(\text{Rad}(TM))$, $J(\text{ltr}(TM))$, and $J(S(TM^\perp))$ are vector subbundles of $S(TM)$. In this case, the screen distribution $S(TM)$ is expressed as follow:

\[S(TM) = \{J(\text{Rad}(TM)) \oplus J(\text{ltr}(TM))\} \oplus_{\text{orth}} J(S(TM^\perp)) \oplus_{\text{orth}} H_\alpha,\]

where H_α is a non-degenerate almost complex distribution with respect to J, i.e., $J(H_\alpha) = H_\alpha$. Denote $H' = J(\text{ltr}(TM)) \oplus_{\text{orth}} J(S(TM^\perp))$. Then

\[(3.2) \quad TM = H \oplus H',\]

where H is a 2-lightlike almost complex distribution on M such that

\[H = \text{Rad}(TM) \oplus_{\text{orth}} J(\text{Rad}(TM)) \oplus_{\text{orth}} H_\alpha.\]

Consider two lightlike and one spacelike vector fields $\{U, V\}$ and W such that

\[(3.3) \quad U = -JN, \quad V = -J\xi, \quad W = -JL.\]

Denote by S the projection morphism of TM on H. By (3.2), for any vector field X on M, JX is expressed as follow

\[(3.4) \quad JX = FX + u(X)N + w(X)L,\]
where u, v and w are 1-forms locally defined on M by
\begin{equation}
(3.5) \quad u(X) = g(X, V), \quad v(X) = g(X, U), \quad w(X) = g(X, W)
\end{equation}
and F is a tensor field of type $(1, 1)$ globally defined on M by $F = J \circ S$.
Applying ∇_X to (3.3) and using the Gauss-Weingarten formulas, we have
\begin{equation}
(3.6) \quad B(X, U) = C(X, V), \quad C(X, W) = D(X, U), \quad B(X, W) = D(X, V),
\end{equation}
\begin{equation}
(3.7) \quad \nabla_X U = F(A_\xi X) + \tau(X)U + \rho(X)W,
\end{equation}
\begin{equation}
(3.8) \quad \nabla_X V = F(A_\zeta X) - \tau(X)V - \phi(X)W,
\end{equation}
\begin{equation}
(3.9) \quad \nabla_X W = F(A_\alpha X) + \phi(X)U.
\end{equation}

Theorem 3.1. Let M be a half lightlike submanifold of an indefinite Kaehler manifold \tilde{M} of quasi-constant curvature such that ζ is tangent to M. Then
\begin{align*}
f_1 &= 0, \\
f_2 \theta(V) &= f_2 \theta(W) = 0, \\
f_2 \alpha &= 0.
\end{align*}
\begin{proof}
Comparing the tangential, lightlike transversal and co-screen components of the two equations (1.1) and (2.12), we get
\begin{align*}
(3.10) \quad R(X, Y)Z &= f_1(\bar{g}(Y, Z)X - \bar{g}(X, Z)Y) \\
&\quad + f_2(\bar{g}(Y, Z)\theta(X)\zeta - \bar{g}(X, Z)\theta(Y)\zeta) \\
&\quad + \theta(Y)\theta(Z)X - \theta(X)\theta(Z)Y
\end{align*}
\begin{align*}
&\quad + B(Y, Z)A_\alpha X - B(X, Z)A_\alpha Y \\
&\quad + D(Y, Z)A_\alpha X - D(X, Z)A_\alpha Y,
\end{align*}
\begin{align*}
(3.11) \quad (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) + \tau(X)B(Y, Z) - \tau(Y)B(X, Z) \\
&\quad + \phi(X)D(Y, Z) - \phi(Y)D(X, Z) = 0,
\end{align*}
\begin{align*}
(3.12) \quad (\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) + \rho(X)B(Y, Z) - \rho(Y)B(X, Z) = 0.
\end{align*}
Taking the scalar product with N to (2.14), we have
\begin{align*}
g(R(X, Y)PZ, N) &= (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) \\
&\quad - \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ).
\end{align*}
Substituting (3.10) into this equation and using (2.7)$_2$ and (2.8)$_2$, we obtain
\begin{align*}
(3.13) \quad (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) \\
&\quad - \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ) \\
&\quad - \rho(X)D(Y, PZ) + \rho(Y)D(X, PZ) \\
&\quad = f_1\{g(Y, PZ)\eta(X) - g(X, PZ)\eta(Y)\} \\
&\quad + f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ) \\
&\quad + \alpha f_2\{\theta(X)g(Y, PZ) - \theta(Y)g(X, PZ)\}.
\end{align*}
Applying ∇_X to (3.6)$_1$: $B(Y, U) = C(Y, V)$, we have
\begin{align*}
(\nabla_X B)(Y, U) &= (\nabla_X C)(Y, V) + g(A_\alpha Y, \nabla_X V) - g(A_\alpha Y, \nabla_X U).
\end{align*}
Using (3.1), (3.4) and (3.6)–(3.8), the last equation is reduced to
\[
(\nabla_X B)(Y, U) = (\nabla_X C)(Y, V) - 2\tau(X)C(Y, V) - \phi(X)D(Y, U) - \rho(X)D(Y, V) - g(A_\xi^2 X, F(A_\eta Y)) - g(A_\xi^2 Y, F(A_\eta X)).
\]
Substituting this equation into (3.11) such that \(Z = U\) and using (3.7), we get
\[
(\nabla_X C)(Y, V) - (\nabla_Y C)(X, V) - \tau(X)C(Y, V) + \tau(Y)C(X, V) - \rho(X)D(Y, V) + \rho(Y)D(X, V) = 0.
\]
Comparing this equation with (3.13) such that \(PZ = V\), we obtain
\[
(3.14) \quad f_1\{\eta(X)u(Y) - \eta(Y)u(X)\} + f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(V) + f_2\alpha\{\theta(X)u(Y) - \theta(Y)u(X)\} = 0.
\]
Replacing \(Y\) by \(\xi\) to this equation and using the fact that \(\theta(\xi) = 0\), we have
\[
f_1u(X) + f_2\theta(X)\theta(V) = 0.
\]
Taking \(X = V\) and \(X = U\) to this equation by turns, we get
\[
\begin{align*}
f_2\theta(V) &= 0, \\
f_1 + f_2\theta(U)\theta(V) &= 0.
\end{align*}
\]
From these two equations, we see that \(f_1 = 0\). Taking \(X = \zeta\) and \(Y = U\) to (3.14) and using the facts that \(u(\zeta) = \theta(V)\) and \(f_2\theta(V) = 0\), we have \(f_2\alpha = 0\).

Applying \(\nabla_X\) to (3.6)\quad \(D(Y, U) = C(Y, W)\), and using (2.7), (2.8) and (3.7), we have
\[
(\nabla_X D)(Y, U) = (\nabla_X C)(Y, W) + g(A_\eta Y, \nabla_X W) - g(A_\xi Y, \nabla_X U) + \phi(Y)C(X, U).
\]
Using (2.8)\quad (3.1), (3.4), (3.6), (3.7) and (3.9), we have
\[
(\nabla_X D)(Y, U) = (\nabla_X C)(Y, W) - \tau(X)C(Y, W) - \rho(X)D(Y, W) - \rho(X)B(Y, U) + \phi(X)C(Y, U) + \phi(Y)C(X, U) - g(A_\xi X, F(A_\eta Y)) - g(A_\xi Y, F(A_\eta X)).
\]
Substituting this equation into (3.11) such that \(Z = U\) and using (3.7), we get
\[
(\nabla_X C)(Y, W) - (\nabla_Y C)(X, W) - \tau(X)C(Y, W) + \tau(Y)C(X, W) - \rho(X)D(Y, W) + \rho(Y)D(X, W) = 0.
\]
Comparing this equation with (3.13) such that \(PZ = W\), we obtain
\[
f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(W) = 0.
\]
Taking \(Y = \zeta\) and \(Y = \xi\) to this equation, we get \(f_2\theta(W) = 0\). \(\Box\)
4. Totally umbilical screen distribution

If \bar{M} is an indefinite Kaehler manifold of quasi-constant curvature, using (1.1) and the fact that $f_1 = 0$, we see that $\bar{g}(R(\xi, X)Y, N) = f_2\theta(X)\theta(Y)$, $\bar{g}(\bar{R}(\xi, X)Y, N) = f_2\theta(X)\theta(Y)$ and $\bar{Ric}(X, Y) = f_2\{g(X, Y) + (n+1)\theta(X)\theta(Y)\}$. Thus (2.17) is reduced to

\[
R^{(0,2)}(X, Y) = f_2\{g(X, Y) + (n-1)\theta(X)\theta(Y)\} + \rho(X)\phi(Y)
+ B(X, Y)tr A_\perp + D(X, Y)tr A_\perp
- g(A_\perp X, A_\perp Y) - g(A_\perp X, A_\perp Y).
\]

Definition. A screen distribution $S(TM)$ is called totally umbilical [4, 5] in M if there exists a smooth function γ such that $A_\perp X = \gamma PX$, or equivalently,

\[
C(X, PY) = \gamma g(X, Y).
\]

In case $\gamma = 0$, we say that $S(TM)$ is totally geodesic in M.

Note 2. If M is irrotational and $S(TM)$ is totally umbilical, then (4.1) reduces

\[
R^{(0,2)}(X, Y) = f_2\{g(X, Y) + (n-1)\theta(X)\theta(Y)\}
+ B(X, Y)tr A_\perp + D(X, Y)tr A_\perp
- \gamma g(X, A_\perp Y) - g(A_\perp X, A_\perp Y).
\]

As A_\perp is self-adjoint, it follows that $R^{(0,2)}$ is symmetric, i.e., $R^{(0,2)}$ is the induced Ricci tensor \bar{Ric} of M. Therefore, $d\tau = 0$ and the transversal connection is flat by Theorem 2.1. As $d\tau = 0$, we can take $\tau = 0$ by Note 1.

Theorem 4.1. Let M be a tactial half lightlike submanifold of an indefinite Kaehler manifold M of a quasi-constant curvature such that ζ is tangent to M. If $S(TM)$ is totally umbilical, then we have the following results:

1. $S(TM)$ is totally geodesic and parallel distribution,
2. M is locally a product manifold $C_\zeta \times M^*$, where C_ζ is a null geodesic tangent to TM^\perp, and M^* is a leaf of $S(TM)$,
3. $f_1 = f_2 = 0$, i.e., M is flat, and the curvature tensor R is given by

\[
R(X, Y)Z = D(Y, Z)A_\perp X - D(X, Z)A_\perp Y.
\]
4. Moreover, if M is an Einstein manifold, then M is Ricci flat.

Proof. As M is statical, the 1-forms ϕ and ρ are satisfied $\phi = \rho = 0$. Applying ∇_X to $C(Y, PZ) = \gamma g(Y, PZ)$ and using (2.11), we have

\[
(\nabla_X C)(Y, PZ) = (X\gamma)g(Y, PZ) + \gamma B(X, PZ)\eta(Y).
\]

Substituting this and (4.2) into (3.13) with $f_1 = f_2\alpha = \rho = 0$, we obtain

\[
(X\gamma)g(Y, Z) - (\gamma g(X, Z) + \gamma (B(X, Z)\eta(Y) - B(Y, Z)\eta(X))
= f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(Z).
\]
Taking \(Y = U, Z = V \) and \(Y = V, Z = U \) to (4.4) by turns and using (3.9), (4.2) and the facts that \(f_2 \theta(V) = 0 \) and \(\eta(V) = 0 \), we obtain
\[
X \gamma = (U \gamma) u(X), \quad X \gamma = (V \gamma) v(X).
\]
From these equations, we get \(X \gamma = 0 \). Thus \(\gamma \) is a constant. (4.4) reduces
\[
\{ \gamma B(X, Z) + f_2 \theta(X) \theta(Z) \} \eta(Y) = \{ \gamma B(Y, Z) + f_2 \theta(Y) \theta(Z) \} \eta(X).
\]
Taking \(Y = \xi \) to this equation and using (2.9), we have
\[
(4.5) \quad \gamma B(X, Y) = -f_2 \theta(X) \theta(Y).
\]
Taking \(Y = U \) to this equation and using (3.3), (3.5) and (4.2), we have
\[
(4.6) \quad \gamma^2 u(X) = -f_2 \theta(X) \theta(U).
\]
Assume that \(f_2 \neq 0 \). Taking \(X = \zeta \) to (4.6), we have
\[
\gamma^2 \theta(V) = -f_2 \theta(U).
\]
As \(f_2 \neq 0 \), if we product with \(f_2 \) to the last equation and use the fact that \(f_2 \theta(V) = 0 \), then we obtain \(f_2 \theta(U) = 0 \). Taking \(X = U \) to (4.6) and using the fact that \(f_2 \theta(U) = 0 \), we get \(\gamma = 0 \). As \(\gamma = 0 \), taking \(X = Y = \zeta \) to (4.5), we have \(f_2 = 0 \). It is a contradiction. Therefore, \(f_2 = 0 \). As \(f_2 = 0 \), from (4.6), we obtain \(\gamma = 0 \).

(1) As \(\gamma = C = 0 \), \(S(TM) \) is totally geodesic and, from (2.4) we see that \(S(TM) \) is a parallel distribution.

(2) As \(S(TM) \) is a parallel distribution, \(\text{Rad}(TM) \) is also an auto-parallel distribution due to (2.5) and (2.10). As \(TM = \text{Rad}(TM) \oplus S(TM) \), by the decomposition theorem of de Rham [3], \(M \) is locally a product manifold \(\mathbb{C} \times M^* \), where \(\mathbb{C} \) is a null geodesic tangent to \(\text{Rad}(TM) \) and \(M^* \) is a leaf of \(S(TM) \).

(3) As \(f_1 = f_2 = 0 \), \(M \) is flat. As \(f_1 = f_2 = A_{\zeta} = 0 \), from (3.10), \(R \) is given by
\[
R(X, Y)Z = D(Y, Z)A_\zeta X - D(X, Z)A_\zeta Y.
\]

(4) As \(C = 0 \), using (2.6), (2.8) and (3.6)1,2, we have
\[
B(X, U) = 0, \quad D(X, U) = 0, \quad A_\zeta^2 U = 0, \quad A_\zeta X = 0.
\]
Substituting (2.18) into (4.1) such that \(f_2 = 0 \) and \(Y = U \) and then, using the last equations, we obtain \(\kappa = 0 \). Therefore, \(M \) is Ricci flat. \(\Box \)

Theorem 4.2. Let \(M \) be an Einstein statical half lightlike submanifold of an indefinite Kaehler manifold \(M \) of a quasi-constant curvature such that \(\zeta \) is tangent to \(M \). If \(S(TM) \) is totally umbilical, then \(M \) is Ricci flat.

Proof. As \(C = 0 \), from (3.6)2 and the facts that \(\phi = 0 \) and \(\rho = 0 \), we obtain
\[
(4.7) \quad D(X, U) = 0, \quad A_\zeta U = 0.
\]
As \(f_2 = \gamma = A_{\zeta} = 0 \), from (4.3), the induced Ricci tensor \(R^{(0, 2)} \) is given by
\[
(4.8) \quad R^{(0, 2)}(X, Y) = D(X, Y)tr A_\zeta - g(A_\zeta X, A_\zeta Y),
\]
where $\ell = \text{tr } A_L$. As M is Einstein, substituting (2.18) into (4.8), we have
\[
g(A_L X, A_L Y) - \ell g(A_L X, Y) + \kappa g(X, Y) = 0.
\]
Taking $X = U$ and $Y = V$ to this equation and using (4.7), we obtain $\kappa = 0$. Therefore M is Ricci flat.

Denote by $G = J(\text{Rad}(TM)) \oplus \text{orth} J(S(TM)) \oplus \text{orth} H_0$. Then G is a complementary vector subbundle to $J(\text{ltr}(TM))$ in $S(TM)$ and we have
\[
S(TM) = J(\text{ltr}(TM)) \oplus G.
\]

Theorem 4.3. Let M be a statical half lightlike submanifold of an indefinite Kaehler manifold \bar{M} of quasi-constant curvature such that ζ is tangent to M. If $S(TM)$ is totally umbilical, then M is locally a product manifold $C_\xi \times C_U \times M^\#$, where C_ξ and C_U are null geodesics tangent to $\text{Rad}(TM)$ and $J(\text{ltr}(TM))$ respectively and $M^\#$ is a leaf of G.

Proof. As M is statical and $S(TM)$ is totally umbilical, we have
\[
(4.9) \quad \nabla_X U = 0,
\]
due to $A_N = \tau = \rho = 0$. Thus $J(\text{ltr}(TM))$ is a parallel distribution on M. From (2.5) and (2.10), $\text{Rad}(TM)$ is also a parallel distribution on M. Using (4.9), we derive
\[
g(\nabla_X Y, U) = 0, \quad g(\nabla_X V, U) = 0, \quad g(\nabla_X W, U) = 0,
\]
for all $X \in \Gamma(G)$ and $Y \in \Gamma(H_0)$. Thus G is also parallel. By the decomposition theorem of de Rham [3], M is locally a product manifold $C_\xi \times C_U \times M^\#$, where C_ξ and C_U are null geodesics tangent to $\text{Rad}(TM)$ and $J(\text{ltr}(TM))$ respectively and $M^\#$ is a leaf of G. \qed

5. Screen conformal lightlike hypersurfaces

Definition. A half lightlike submanifold M is called screen conformal [6, 7] if there exists a non-vanishing function φ such that $A_N = \varphi A_L^*$, or equivalently,
\[
C(X, PY) = \varphi B(X, Y).
\]
If φ is a non-zero constant, then we say that M is screen homothetic.

Note 3. If M is irrotational and screen conformal, then (4.1) is reduced to
\[
R^{(0,2)}(X, Y) = f_2\{g(X, Y) + (n-1)\theta(X)\theta(Y)\}
+ B(X, Y)\text{tr } A_N + D(X, Y)\text{tr } A_L
- \varphi g(A_L^2 X, A_L^2 Y) - g(A_L X, A_L Y).
\]
Thus $R^{(0,2)}$ is symmetric, $d\tau = 0$ and the transversal connection is flat by Theorem 2.1. In this section, since $d\tau = 0$, we also take $\tau = 0$ as Section 4.
Proposition 5.1. Let M be a half lightlike submanifold of an indefinite Kaehler manifold \bar{M} of a quasi-constant curvature such that ζ is tangent to M. If M is irrotational and screen conformal, then the curvature function f_2 is satisfied $f_2\theta(U) = 0$. Moreover, M is statical and screen homothetic, then $f_2 = 0$.

Proof. Applying ∇_X to $C(Y, PZ) = \varphi B(Y, PZ)$, we have

$$(\nabla_X C)(Y, PZ) = (X \varphi) B(Y, PZ) + \varphi(\nabla_X B)(Y, PZ).$$

Substituting this into (3.13) such that $\tau = 0$ and using (3.11), we obtain

$$(X \varphi) B(Y, PZ) - (Y \varphi) B(X, PZ) - \rho(X) D(Y, PZ) + \rho(Y) D(X, PZ) = f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ).$$

Replacing Y by ξ to this and using (2.9) and the fact that $\theta(\xi) = 0$, we get

$$(\xi \varphi) B(X, Y) - \rho(\xi) D(X, Y) = f_2\theta(X)\theta(Y).$$

Taking $Y = V$ to (5.3) and using (3.6) and the fact that $f_2\theta(V) = 0$, we have

$$(\xi \varphi) B(X, V) - \rho(\xi) B(X, W) = 0.$$

Replacing Y by U to (5.3) and using (3.6) and the fact that $f_2\theta(U) = 0$, we have

$$(\xi \varphi) C(X, V) - \rho(\xi) C(X, W) = f_2\theta(U)\theta(U).$$

From the last two equations and (5.1), we obtain $f_2\theta(X)\theta(U) = 0$. Replacing X by ζ, we get $f_2\theta(U) = 0$. If M is statical and screen homothetic, then $\xi \varphi = 0$ and $\rho(\xi) = 0$. Therefore, taking $X = Y = \zeta$ to (5.3), we get $f_2 = 0$. \qed

Theorem 5.2. Let M be an Einstein half lightlike submanifold of an indefinite Kaehler manifold \bar{M} of a quasi-constant curvature such that ζ is tangent to M. If M is irrotational and screen conformal, then the function κ, given by (2.18), is satisfied $\kappa = f_2$. Moreover, M is statical and screen homothetic, then it is Ricci flat, i.e., $\kappa = 0$.

Proof. As $\{U, V\}$ is a null basis of $J(Rad(TM)) \oplus J(ltr(TM))$, the vector fields $\mu = U - \varphi V, \nu = U + \varphi V$

form an orthogonal basis of $J(Rad(TM)) \oplus J(ltr(TM))$. From (3.5) and (5.1), we obtain

$$B(X, \mu) = 0, \quad A_\mu^\nu \mu = 0.$$

From (2.8), (3.6) and the fact that $\phi = 0$, we also obtain

$$D(X, \mu) = 0, \quad A_\nu^\mu \mu = \rho(\mu)\xi.$$

As $f_2\theta(V) = 0$ and $f_2\theta(U) = 0$, we also have

$$f_2\theta(\mu) = 0, \quad f_2\theta(\nu) = 0.$$

Taking $X = Y = \mu$ to (5.2) and using (5.4) \sim (5.6), we have $\kappa = f_2$. If M is statical and screen homothetic, then $\kappa = 0$ as $f_2 = 0$. \qed
Let $\mathcal{H}' = \text{Span}\{\mu\}$. Then $\mathcal{H} = H_o \oplus_{\text{orth}} \text{Span}\{\nu, W\}$ is a complementary vector subbundle to \mathcal{H}' in $S(TM)$ and we have the following decomposition

$$(5.7) \quad S(TM) = \mathcal{H}' \oplus_{\text{orth}} \mathcal{H}.$$

Theorem 5.3. Let M be a statical and screen homothetic half lightlike submanifold of an indefinite Kaehler manifold \bar{M} of quasi-constant curvature such that ζ is tangent to M. Then M is locally a product manifold $\mathcal{C}_\xi \times \mathcal{C}_\mu \times M^3$, where \mathcal{C}_ξ and \mathcal{C}_μ are null and non-null geodesics tangent to $\text{Rad}(TM)$ and \mathcal{H}', respectively and M^3 is a leaf of \mathcal{H}.

Proof. As M is statical and screen homothetic, using (3.7), (3.8) and the fact that F is linear operator, we have

$$(5.8) \quad \nabla_X \mu = 0.$$

This implies that \mathcal{H}' is a parallel distribution on M. From (2.5) and (2.10), $\text{Rad}(TM)$ is also a parallel distribution on M. Using (5.8), we derive

$$g(\nabla_X Y, \mu) = 0, \quad g(\nabla_X \nu, \mu) = 0, \quad g(\nabla_X W, \mu) = 0,$$

for all $X \in \Gamma(\mathcal{H})$ and $Y \in \Gamma(H_o)$. Thus \mathcal{H} is also parallel. By the decomposition theorem of de Rham [3], M is locally a product manifold $\mathcal{C}_\xi \times \mathcal{C}_\mu \times M^3$, where \mathcal{C}_ξ and \mathcal{C}_μ are null and non-null geodesics tangent to $\text{Rad}(TM)$ and \mathcal{H}', respectively and M^3 is a leaf of \mathcal{H}. □

References

Department of Mathematics
Dongguk University
Kyongju 780-714, Korea
E-mail address: jindh@dongguk.ac.kr