ON STABLE MINIMAL SURFACES IN THREE DIMENSIONAL
MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE

CHONG HEE LEE

1. Introduction
The following is the basic problem about the stability in Riemannian
Geometry; given a Riemannian manifold N, find all stable complete
minimal submanifolds of N. As answers of this problem, do Carmo-
Peng [1] and Fischer-Colbrie and Schoen [3] showed that the stable
minimal surfaces in R^3 are planes and Schoen-Yau [5] and Fischer-
Colbrie and Schoen [3] gave a solution for the case where the ambient
space is a three dimensional manifold with nonnegative scalar curvature.
In this paper we will remove the assumption of finite absolute total
curvature in [3, Theorem 3].

2. The main result
We prove the following theorem.

THEOREM. Let N be a complete oriented 3–manifold of nonnegative
scalar curvature S. Let M be an oriented complete, stable minimal sur-
face in N. If M is noncompact, then M is conformally equivalent to the
complex plane C or the cylinder A. If the latter case occurs, then M is
flat and totally geodesic and the scalar curvature of N is zero along M.
Therefore if the scalar curvature of N is everywhere positive, then M
cannot be a cylinder.

If the Ricci curvature of N is nonnegative, then M is conformally
equivalent to the complex plane C or M is a flat and totally geodesic
cylinder.

In order to prove this theorem, we need following lemmas.

LEMMA 1. If u is a positive function on M satisfying $\Delta u + (S - K +
\frac{1}{2} \|B\|^2)u = 0$ on M, where K is the Gaussian curvature of M and $\|B\|^2$

Received November 25, 1988.
is the square of the length of the second fundamental form of \(M \), then
\(d\bar{s}^2 = u^2 ds^2 \) is a complete metric on \(M \) with nonnegative Gaussian curvature where \(ds^2 \) is the original metric on \(M \).

Proof. Use the method of the proof in [2, Theorem 2.1].

Lemma 2([4]). Let \(M \) be a finitely connected, open Riemann surface on which a complete conformal metric \(e^{\varphi(x)} |dz| \) is defined and \(K \) a Gaussian curvature of \(M \). Suppose that either \(\int_M K^- dv < \infty \) or \(\int_M K^+ dv < \infty \) where \(K^+(x) = \max \{ K(x), 0 \} \), \(K^-(x) = -\min \{ K(x), 0 \} \) and \(dv \) is the volume element of \(M \). Then \(\int_M K dv \leq 2\pi \kappa(M) \) where \(\kappa(M) \) denotes the Euler–Poincaré characteristic.

Remark 3. This is a result of S. Cohn–Vossen in the extended form.

The results of Theorem are proved in [3, Theorem 3] with the exception of the assertion that if \(M \) is conformally equivalent to the cylinder \(A \), then \(M \) is flat and totally geodesic and the scalar curvature of \(N \) is zero along \(M \). (This follows from [3, Theorem 3] only if \(M \) is assumed to have finite absolute total curvature).

Proof of Theorem. Let \(M \) be conformally equivalent to a cylinder. Since \(M \) is stable, there exists a positive solution \(u \) on \(M \) satisfying

\[
\Delta u + (S - K + \frac{1}{2} \|B\|^2) u = 0.
\]

Then by Lemma 1, \(d\bar{s}^2 = u^2 ds^2 \) is a complete metric on \(M \) with nonnegative Gaussian curvature \(\bar{K} \). Since \(M \) is conformally equivalent to a cylinder, the Euler–Poincare characteristic \(\kappa(M) = 0 \). By Lemma 2, \(\bar{K} \equiv 0 \) on \(M \). Hence \(-u \Delta u - \|\nabla u\|^2 \equiv 0 \). So \(S + \frac{1}{2} \|B\|^2 + \|\nabla u\|^2 \equiv 0 \) on \(M \). Since \(S \geq 0 \) and \(u \) satisfies \(\Delta u + (S - K + \frac{1}{2} \|B\|^2) u = 0 \), we have \(S \equiv 0 \), \(\|B\|^2 \equiv 0 \) and \(K \equiv 0 \) on \(M \). Hence \(M \) is flat and totally geodesic and the scalar curvature of \(N \) is zero along \(M \). This completes the proof.

Remark 4. Schoen and Yau [6] proved that the cylinder is totally geodesic without assumption of finite absolute total curvature.
References

Seoul National University
Seoul 151–742, Korea