REMARKS ON SOME VARIATIONAL INEQUALITIES

Sehie Park

1. Introduction and Preliminaries

This is a continuation of the author's previous work [17]. In this paper, we consider mainly variational inequalities for single-valued functions.

We first obtain a generalization of the variational type inequality of Juberg and Karamardian [10] and apply it to obtain strengthened versions of the Hartman-Stampacchia inequality and the Brouwer fixed point theorem. Next, we obtain fairly general versions of Browder's variational inequality [5] and its subsequent generalizations due to Brezis et al. [4], Takahashi [23], Shih and Tan [19], Simons [20], and others. Finally, in this paper, we obtain a variational inequality for non-real locally convex t.v.s. which generalizes a result of Shih and Tan [19].

For terminology and notations, we follow [17]. For a subset X of a vector space E and $x \in E$, the inward and outward sets of X at x, $I_K(x)$ and $O_K(x)$, are defined as follows:

$$I_X(x) = \{ x + r(u-x) \in E : u \in X, \ r > 0 \},$$
$$O_X(x) = \{ x - r(u-x) \in E : u \in X, \ r > 0 \}.$$

We begin with the following form of [17, Theorem 1], which can be deduced from a generalized Fan-Browder fixed point theorem in [15], [16] as in [17].

Theorem 0. Let X be a convex space, $p, q : X \times X \rightarrow \mathbb{R} \cup \{ +\infty \}$ and $h : X \rightarrow \mathbb{R} \cup \{ +\infty \}$ functions satisfying

(i) $q(x, y) \leq p(x, y)$ for $(x, y) \in X \times X$ and $p(x, x) \leq 0$ for all $x \in X$;

Received June 1, 1990.

Supported in by the S.N.U. Daewoo Program in 1989.
(ii) for each $y \in X$, $\{x \in X : p(x,y) + h(y) > h(x)\}$ is convex or empty;

(iii) for each $x \in X$, $\{y \in X : q(x,y) + h(y) > h(x)\}$ is compactly open; and

(iv) there exist a nonempty compact subset K of X and, for each finite subset N of X, a compact convex subset L_N of X containing N such that $y \in L_N \setminus K$ implies $q(x,y) + h(y) > h(x)$ for some $x \in L_N$.

Then there exists a point $y_0 \in K$ such that

$$q(x,y_0) + h(y_0) \leq h(x) \quad \text{for all } x \in X.$$

Moreover, the set of all such solutions y_0 is a compact subset of K.

2. Main results

Let E be a real vector space, F a nonempty set, and $\langle \cdot , \cdot \rangle : E \times F \to \mathbb{R}$ a real-valued function which is linear in the first variable in the sense: for each given $y \in F$, $\langle \cdot , y \rangle$ maps E linearly into \mathbb{R}.

Theorem 1. Let X be a convex space in E, $h : X \to \mathbb{R} \cup \{+\infty\}$ and $f, g : X \to F$ functions satisfying

(i) $\langle x - y, gy \rangle \leq \langle x - y, fy \rangle$ for $(x,y) \in X \times X$;

(ii) for each $y \in X$, $\{x \in X : \langle x - y, fy \rangle + h(y) > h(x)\}$ is convex or empty;

(iii) for each $x \in X$, $\{y \in X : \langle x - y, gy \rangle + h(y) > h(x)\}$ is compactly open; and

(iv) there exist a nonempty compact subset K of X and, for each finite subset N of X, a compact convex subset L_N of X containing N such that $y \in L_N \setminus K$ implies $(x - y, gy) + h(y) > h(x)$ for some $x \in L_N$.

Then there exists a $y_0 \in K$ such that

$$\langle x - y_0, gy_0 \rangle + h(y_0) \leq h(x) \quad \text{for all } x \in X.$$

Moreover, if $h : E \to \mathbb{R} \cup \{+\infty\}$ is convex, then the inequality holds for all $x \in I_X(y_0)$.

164
Proof. Putting \(p(x, y) \equiv (x - y, fy) \) and \(q(x, y) \equiv (x - y, gy) \) in Theorem 0, we have a \(y_0 \in K \) satisfying
\[
(x - y_0, gy_0) + h(y_0) \leq h(x) \quad \text{for all} \quad x \in X.
\]
Moreover, suppose that \(h : E \to \mathbb{R} \cup \{+\infty\} \) is convex. If \(x \in I_X(y_0) \setminus X \), then there exist \(u \in X \) and \(r > 1 \) such that \(x = y_0 + r(u - y_0) \). Hence
\[
u - y_0 = \frac{1}{r}(x - y_0) \quad \text{and} \quad u = \frac{1}{r}x + (1 - \frac{1}{r})y_0 \in X.
\]
Since \((u - y_0, gy_0) + h(y_0) \leq h(u) \), we have
\[
\frac{1}{r}(x - y_0, gy_0) + h(y_0) \leq h(u) \leq \frac{1}{r}h(x) + (1 - \frac{1}{r})h(y_0)
\]
or
\[
(x - y_0, gy_0) + h(y_0) \leq h(x) \quad \text{for all} \quad x \in I_X(y_0).
\]
This completes our proof.

Corollary 1.1. Let \(X \) be a convex space in \(E, h : X \to \mathbb{R} \cup \{+\infty\} \) a l.s.c. convex function, and \(f : X \to F \) a function such that
(a) for each \(x \in X \), \(y \mapsto (x - y, fy) \) is l.s.c. on compact subsets of \(X \), and
(b) the condition (iv) of Theorem 1 holds with \(f \equiv g \).

Then there exists a \(y_0 \in K \) such that
\[
(x - y_0, fy_0) + h(y_0) \leq h(x) \quad \text{for all} \quad x \in X.
\]
Moreover, if \(h : E \to \mathbb{R} \cup \{+\infty\} \) is a convex function which is l.s.c. on \(X \), then the inequality holds for all \(x \in I_X(y_0) \).

Proof. We use Theorem 1 with \(f \equiv g \). Since, for each \(y \in X \), \(x \mapsto (x - y, fy) \) is linear and \(x \mapsto h(x) \) is convex, the set \(\{x \in X : (x - y, fy) + h(y) > h(x)\} \) is convex or empty. This shows that the condition (ii) in Theorem 1 holds. Since \(h \) is l.s.c., the condition (a) implies (iii). Therefore, by Theorem 1, the conclusion follows.

For \(h \equiv 0 \), we have the following:
Corollary 1.2. Let X be a convex space in E, and $f : X \to F$ a function.

(1) If, for each $x \in X$, $y \mapsto \langle x - y, fy \rangle$ is l.s.c. on compact subsets of X, and if there exist K and L_N as in (iv) of Theorem 0 such that $y \in L_N \setminus K$ implies $\langle x - y, fy \rangle > 0$ for some $x \in L_N$, then there exists a $y_0 \in K$ such that

$$\langle x - y_0, fy_0 \rangle \leq 0 \quad \text{for all} \quad x \in I_X(y_0).$$

(2) If, for each $x \in X$, $y \mapsto \langle y - x, fy \rangle$ is l.s.c. on compact subsets of X, and if there exist K and L_N as in (iv) of Theorem 0 with $y \in L_N \setminus K$ implies $\langle y - x, fy \rangle > 0$ for some $x \in L_N$, then there exists a $y_0 \in K$ such that

$$\langle x - y_0, fy_0 \rangle \leq 0 \quad \text{for all} \quad x \in O_X(y_0).$$

Proof. The case (1) is a direct consequence of Corollary 1.1 with $h \equiv 0$.

For (2), considering $\langle y - x, fy \rangle$ instead of $\langle x - y, fy \rangle$ in (1), we obtain a $y_0 \in K$ such that

$$\langle y_0 - x', fy_0 \rangle \leq 0 \quad \text{for all} \quad x' \in I_X(y_0).$$

For any $x \in O_X(y_0)$, let $x' = 2y_0 - x \in I_X(y_0)$. Then

$$\langle x - y_0, fy_0 \rangle \leq 0 \quad \text{for all} \quad x \in O_X(y_0).$$

Remarks.

1. If E is a t.v.s. and if $x \mapsto \langle x, y \rangle$ is continuous on E for each fixed $y \in F$, then the inward [resp. outward] set in Corollary 3.2 can be replaced by its closure.

2. The coercivity assumption in (1) is implied by the following:

\[(*) \quad \text{there exists a nonempty compact convex subset } L \text{ of } X \text{ such that, for each } y \in X \setminus L, \text{ there is an } x \in L \text{ satisfying } \langle x - y, fy \rangle > 0. \]
Corollary 1.2(1) with the assumption (*) improves the "variational type" inequality of Juberg and Karamardian [10, Theorem]. In fact, they assumed closedness of X and local convexity of E, and obtained weaker conclusion.

3. For a compact X, the condition (*) holds automatically. Therefore, from Corollary 1.2, we have the following:

Corollary 1.3. Let X be a compact convex subset in a t.v.s. E, F a topological space, and $f : X \to F$ a function such that $(x, y) \mapsto \langle x, fy \rangle$ is continuous on $E \times X$. Then there exists a $y_0 \in X$ such that

$$\langle x - y_0, fy_0 \rangle \leq 0 \quad \text{for all } x \in W(y_0).$$

Remark. Here $W(y_0)$ denotes any of $\overline{I}_X(y_0)$ or $\overline{O}_X(y_0)$. Corollary 1.3 strengthens Juberg and Karamardian [10, Lemma]. They showed that Corollary 1.2 follows from Corollary 1.3 in a particular case.

Let $\langle \cdot, \cdot \rangle$ denote the inner product of a real inner product space. Then Corollary 1.3 reduces to the following:

Corollary 1.4. Let X be a compact convex subset in an inner product space E and $f : X \to E$ a continuous map. Then there exists an $x_0 \in X$ satisfying

$$\langle fx_0, y - x_0 \rangle \leq 0 \quad \text{for all } y \in W(x_0)$$

Remark. The origin of Corollary 1.4 goes back to Hartman and Stampacchia [9] in 1966 for \mathbb{R}^n. See also Stampacchia [22, Theorem 2.2] and Moré [13, Theorem 2.1].

We now show that Corollary 1.4 implies the following well-known generalization of the Brouwer fixed point theorem.

Corollary 1.5. Let X be a compact convex subset in an inner product space E and $g : X \to E$ a continuous map such that $gx \in W(x)$ for all $x \in \text{Bd} \, X$. Then g has a fixed point.

Proof. For any $x \in X$ we have $gx \in W(x)$. In fact, for any $x \in \text{Int} \, X$, we have $gx \in E = I_X(x) = O_X(x)$. Define $f \equiv g - 1_X : X \to E$. Then by Corollary 1.4, there exists an $x_0 \in X$ such that

$$\langle gx_0 - x_0, y - x_0 \rangle \leq 0 \quad \text{for all } y \in W(x_0).$$

167
Since \(gx_0 \equiv y \) lies in \(W(x_0) \), we must have \(x_0 = gx_0 \) as desired.

Let \(E \) be a real t.v.s., \(E^* \) its topological dual (i.e., the vector space of all continuous linear functionals \(E \to \mathbb{R} \)), and \(\langle \cdot, \cdot \rangle : E^* \times E \to \mathbb{R} \) denote the natural pairing.

Theorem 2. Let \(X \) be a convex space in \(E \) and let

\[
p(x, y) \equiv \langle fx, y - x \rangle + h(x) - h(y)
\]

where \(h : X \to \mathbb{R} \) is a l.s.c. convex function and \(f : X \to E^* \) is a function such that

(a) for each \(y \in X \), \(x \mapsto \langle fx, y - x \rangle \) is l.s.c. on compact subsets of \(X \), and

(b) there exist a nonempty compact subset \(K \) of \(X \) and, for any finite subset \(N \) of \(X \), a compact convex subset \(L_N \) of \(X \) containing \(N \) such that \(x \in L_N \setminus K \) implies \(p(x, y) > 0 \) for some \(y \in L_N \).

Then there exists an \(x_0 \in K \) such that

\[
p(x_0, y) \leq 0 \quad \text{for all} \quad y \in X.
\]

Moreover, if \(h : E \to \mathbb{R} \) is a convex function which is l.s.c. on \(X \), then the conclusion holds for all \(y \in I_X(x_0) \).

Proof. In Corollary 1.1, interchange \(x \) and \(y \) and put \(F = E^* \).

Remarks.

1. Note that Brézis, Nirenberg, and Stampacchia [4, Application 3] obtained Theorem 2 under the stronger assumption that \(f \) is pseudo-monotone and continuous with a much stronger condition than (b). Theorem 2 improves Brézis [3, Corollary 29] and Hartman and Stampacchia [9, Theorems 1.1 and 5.1].

2. Theorem 2 also improves Allen [1, Corollary 1]. In fact, he assumed the following particular form of (b):

(b)' let \(L \) be a nonempty compact convex subset of \(X \) and suppose that for each \(x \in X \setminus L \) there exists \(y \in L \) such that \(p(x, y) > 0 \).
Remarks on some variational inequalities

From now on, let E^* have any topology such that a continuous function $f : X \to E^*$ satisfies the requirement (a) of Theorem 2. For example, we equip E^* with the topology of uniform convergence on bounded subsets of E.

Corollary 2.1. Let X be a convex subset of E, and $f : X \to E^*$ continuous.

1. If there exist K and L_N as in (b) of Theorem 2 such that $x \in L_N \setminus K$ implies $\langle fx, y - x \rangle > 0$ for some $y \in L_N$, then there exists an $x_0 \in K$ such that

 \[\langle fx_0, y - x_0 \rangle \leq 0 \quad \text{for all} \quad y \in \overline{I}_X(x_0). \]

2. If there exist K and L_N as in (b) of Theorem 2 such that $x \in L_N \setminus K$ implies $\langle fx, x - y \rangle > 0$ for some $y \in L_N$, then there exists an $x_0 \in K$ such that

 \[\langle fx_0, y - x_0 \rangle \leq 0 \quad \text{for all} \quad y \in \overline{O}_X(x_0). \]

Proof. (1) By putting $h \equiv 0$ in Theorem 2, we know that there exists an $x_0 \in K$ such that

 \[\langle fx_0, y - x_0 \rangle \leq 0 \quad \text{for all} \quad y \in I_X(x_0). \]

Since $fx_0 \in E^*$, this implies the conclusion.

(2) By the case for $\langle fx, y - x \rangle$ in Theorem 2, we know that there exists a point $x_0 \in K$ such that $\langle fx_0, x_0 - y' \rangle \leq 0$ for all $y' \in I_X(x_0)$ as in (1). For any $y \in O_X(x_0)$, let $y' = 2x_0 - y \in I_X(x_0)$. Then

 \[\langle fx_0, y - x_0 \rangle = \langle fx_0, x_0 - y' \rangle \leq 0 \]

for all $y \in O_X(x_0)$. Hence, $\langle fx_0, y - x_0 \rangle \leq 0$ holds for all $y \in \overline{O}_X(x_0)$.

Remarks.

1. In case X is compact, Corollary 2.1 reduces to Park [14, Theorem 2], which strengthens Browder [5, Theorem 2].

169
2. In case X is a closed convex subset of a t.v.s. E, if there exists a compact convex subset L of X such that

$$K \equiv \{ x \in X : \langle fx, y - x \rangle \leq 0 \text{ for all } y \in L \} \subset L,$$

is compact, then the same conclusion holds. This improves Takahashi [23, Theorem 3].

3. Instead of the continuity of f, it suffices to assume the condition (a) of Theorem 2. Hence, Corollary 2.1 improves Allen [1, Corollary 2].

4. If $x_0 \in \text{Int } X$ or $X = E$ in Corollary 2.1, it is obvious that there exists $x^* \in E$ such that $fx^* = 0$. In fact, $\langle fx_0, y - x_0 \rangle \leq 0$ for all $y \in E = I_X(x_0)$ implies $fx_0 = 0$.

5. Corollary 2.1 has a very interesting interpretation when X is a cone in E as follows:

A nonempty closed subset X is a cone in E if $\alpha x + \beta y \in X$ for all $\alpha, \beta \geq 0$ and $x, y \in X$. The polar X^* of a cone X is the cone defined by

$$X^* \equiv \{ p \in E^* : \langle p, x \rangle \geq 0 \text{ for all } x \in X \}.$$

Corollary 2.2. Let X be a cone in E and $f : X \to E^*$ continuous. If there exist K and L_N as in (b) of Theorem 2 such that $x \in L_N \setminus K$ implies $\langle fx, x - y \rangle > 0$ for some $y \in L_N$, then there exists an $x_0 \in X$ such that

$$fx_0 \in X^* \text{ and } \langle fx_0, x_0 \rangle = 0.$$

Proof. By Corollary 2.1(2), there exists $x_0 \in K$ such that $\langle fx_0, y - x_0 \rangle \geq 0$ for all $y \in X$. Since $\langle fx_0, \alpha y \rangle \geq \langle fx_0, x_0 \rangle$ for all $\alpha > 0$ and $y \in X$, we obtain $\langle fx_0, y \rangle \geq 0$ for all $y \in X$, i.e., $fx_0 \in X^*$. Since $\langle fx_0, 0 - x_0 \rangle \geq 0$, we have $\langle fx_0, x_0 \rangle = 0$.

Remarks.

1. The problem of finding a vector $x_0 \in X$ satisfying the conclusion is known as the complementarity problem; several problems in mathematical programming, game theory, economics, operations research, and mechanics can be presented in this form.

Corollary 2.3. Let X be a convex subset of E, and $T : X \to 2^{E^*}$ a multifunction having a continuous selection $f : X \to E^*$.

(1) If there exist K and L_N as in (b) of Theorem 2 such that $x \in L_N \setminus K$ implies $(fx, y - x) > 0$ for some $y \in L_N$, then there exist $x_0 \in K$ and $x_0^* \in E^*$ such that

$$x_0^* \in Tx_0 \quad \text{and} \quad \langle x_0^*, y - x_0 \rangle \leq 0 \quad \text{for all} \quad y \in \overline{I}_X(x_0).$$

(2) If there exist K and L_N as in (b) of Theorem 2 such that $x \in L_N \setminus K$ implies $(fx, x - y) > 0$ for some $y \in L_N$, then the same conclusion holds for all $y \in \overline{O}_X(x_0)$.

Proof. Put $x_0^* = fx_0$ in Corollary 2.1.

Remark. Corollary 2.3 is a particular form of the generalized quasi-variational inequalities. For related results, see, e.g., Shih and Tan [18].

The following is a simple consequence of Corollary 2.3.

Corollary 2.4. Let X be a compact convex subset of E and $T : X \to 2^{E^*}$ a multifunction satisfying

(i) Tx is nonempty and convex for each $x \in X$; and

(ii) $T^{-1}y$ is open for each $y \in Y$.

Then there exist $x_0 \in X$ and $x_0^* \in E^*$ such that

$$x_0^* \in Tx_0 \quad \text{and} \quad \langle x_0^*, y - x_0 \rangle \leq 0 \quad \text{for all} \quad y \in W(x_0).$$

Proof. T has a continuous selection by a result in [2].

Remark. Corollary 4.4 strengthens Simons [21, Theorem 4.5]. For another proof, see Komiya [12]. This generalizes and unifies fixed point theorems for multifunctions due to Browder [5], Fan [8], Takahashi [23], [25] and Cellina [7]. Simons [21] gave several comments on related results to Corollary 2.4 and deduced some fixed point theorems from Corollary 2.4.

For reflexive Banach spaces, Theorem 2 reduces to the following:
Corollary 2.5. Let \(X \) be a convex subset of a real reflexive Banach space \(E \), \(f : X \to E^* \) is a weakly continuous function, and \(h : X \to \mathbb{R} \) a weakly l.s.c. convex function. If

\[(*) \text{ there exist a bounded subset } K \text{ of } X \text{ and, for each finite subset } N \text{ of } X, \text{ a closed bounded convex subset } L_N \text{ of } X \text{ containing } N \text{ such that } x \in L_N \setminus K \text{ implies } \langle fx, x - y \rangle + h(x) > h(y) \text{ for some } y \in L_N, \]

then there exists an \(x_0 \in K \) such that

\[\langle fx_0, x_0 - y \rangle + h(x_0) \leq h(y) \text{ for all } y \in X. \]

Moreover, if \(h \) is defined on \(E \), then the conclusion holds for all \(y \in I_X(x_0) \).

Proof. Switch to the weak topology.

Remark. Browder [6, Theorem 6] obtained Corollary 2.4 under stronger assumptions, i.e.,

1. \(f \) is pseudo-monotone in the sense in [6] (which implies \(f \) is continuous from any finite topology of \(X \) to the weak topology of \(X^* \)), and

2. for some \(y_0 \in X \), there exists an \(R_0 \in \mathbb{R} \) such that

\[\langle fx, x - y_0 \rangle + h(x) > h(y_0) \]

for all \(x \in X \) with \(\|x\| > R_0 \).

Note that (2) implies (*). In fact,

\[K \equiv \{ x \in X : \langle fx, x - y_0 \rangle + h(x) \leq h(y_0) \} \subset \{ x \in X : \|x\| \leq R_0 \} \]

is bounded.

Finally in this paper, we add a variational inequality for a non-real Hausdorff locally convex space (simply, l.c.s.).

Theorem 3. Let \(X \) be a nonempty bounded convex subset of a l.c.s. \(E \), and \(f : X \to E^* \) continuous from \(X \) to the strong topology of \(E^* \) such that

\[(*) \text{ there exist a nonempty compact subset } K \text{ of } X \text{ and, for each finite subset } N \text{ of } X, \text{ a compact convex subset } L_N \text{ of } X \text{ containing } N \text{ such that } y \in L_N \setminus K \text{ implies } \text{Re} \langle fy, y - x \rangle > 0 \text{ for some } x \in L_N. \]
Remarks on some variational inequalities

Then there exists a point $y_0 \in K$ such that

$$\text{Re} \langle y_0, y_0 - x \rangle \leq 0 \quad \text{for all } x \in \overline{I}_X(y_0).$$

Proof. Define $p : X \times X \to \mathbb{R}$ by

$$p(x, y) \equiv \text{Re} \langle fy, y \rangle \quad \text{for all } x, y \in X.$$

Then, for each $x \in X$, $p(x, \cdot)$ is continuous by [19, Lemma 1]. By applying Theorem 0 with $h \equiv 0$, the conclusion follows.

REMARKS.

1. Theorem 3 generalizes Shih and Tan [19, Theorem 10] since they assumed the following stronger condition than ($*$):

 ($**$) there exists a compact convex subset L of X such that, for each $y \in X \setminus L$, there is an $x \in L$ with $\text{Re} \langle fy, y - x \rangle > 0$.

2. If X is closed in Theorem 3, ($*$) is implied by the following:

 ($***$) for some nonempty compact subset C of E and $x_0 \in X \cap C$,

 $$\text{Re} \langle fy, y - x_0 \rangle > 0 \quad \text{for all } y \in X \setminus C.$$

Therefore, Theorem 3 generalizes Shih and Tan [19, Theorem 11].

3. For compact X, Theorem 5 improves Browder's variational inequality in [5], [6].

References

