FUZZY IDEALS IN NEAR-RINGS

Sung Min Hong, Young Bae Jun and Hee Sik Kim

Abstract. In this paper, we give another proof of Theorem 2.13 of [4] without using the sup property. For the homomorphic image $f(\mu)$ and preimage $f^{-1}(\nu)$ of fuzzy left (resp. right) ideals μ and ν respectively, we establish the chains of level left (resp. right) ideals of $f(\mu)$ and $f^{-1}(\nu)$, respectively. Moreover, we prove that a necessary condition for a fuzzy ideal μ of a near-ring R to be prime is that μ is two-valued.

1. Introduction

S. Abou-Zaid [1] introduced the notion of a fuzzy subnear-ring, and studied fuzzy left (resp. right) ideals of a near-ring, and gave some properties of fuzzy prime ideals of a near-ring. In [4], S. D. Kim and H. S. Kim proved that the homomorphic image of a fuzzy left (resp. right) ideal which has the “sup property” is a fuzzy left (resp. right) ideal. In this paper, we give another proof of Theorem 2.13 of [4] without using the sup property. For the homomorphic image $f(\mu)$ and preimage $f^{-1}(\nu)$ of fuzzy left (resp. right) ideals μ and ν respectively, we establish the chains of level left (resp. right) ideals of $f(\mu)$ and $f^{-1}(\nu)$, respectively. Moreover, we prove that a necessary condition for a fuzzy ideal μ of a near-ring R to be prime is that μ is two-valued.

1991 Mathematics Subject Classification: 03E72, 16Y30.
Key words and phrases: near-ring, fuzzy (prime) ideal, sup property, f-invariant, product.

This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No. BSRI-96-1406.
2. Preliminaries

By a near-ring [8] we mean a non-empty set \(R \) with two binary operations "+" and "." satisfying the following axioms:

1. \((R,+)\) is a group,
2. \((R,\cdot)\) is a semigroup,
3. \(x \cdot (y + z) = x \cdot y + x \cdot z\) for all \(x, y, z \in R\).

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use the word "near-ring" in stead of "left near-ring". We denote \(xy\) instead of \(x \cdot y\). Note that \(x0 = 0\) and \(x(-y) = -xy\) but in general \(0x \neq 0\) for some \(x \in R\). Let \(R\) and \(S\) be near-rings. A map \(f : R \to S\) is called a (near-ring) homomorphism if \(f(x + y) = f(x) + f(y)\) and \(f(xy) = f(x)f(y)\) for any \(x, y \in R\). An ideal \(I\) of a near-ring \(R\) is a subset of \(R\) such that

4. \((I,+)\) is a normal subgroup of \((R,+)\),
5. \(RI \subseteq I\),
6. \((r + i)s - rs \in I\) for any \(i \in I\) and any \(r, s \in R\).

Note that \(I\) is a left ideal of \(R\) if \(I\) satisfies (4) and (5), and \(I\) is a right ideal of \(R\) if \(I\) satisfies (4) and (6).

We note that the intersection of a family of left (resp. right) ideals is a left (resp. right) ideal, and that the onto homomorphic image of a left (resp. right) ideal is also a left (resp. right) ideal.

We now review some fuzzy logic concepts (see [2], [9] and [10] for details). A fuzzy set \(\mu\) in a set \(R\) is a function \(\mu : R \to [0,1]\). Let \(\text{Im}(\mu)\) denote the image set of \(\mu\). Let \(\mu\) be a fuzzy set in a set \(R\). For \(\alpha \in [0,1]\), the set

\[R^\alpha_\mu := \{x \in R | \mu(x) \geq \alpha\}\]

is called a level subset of \(\mu\).

Let \(f\) be a mapping from a set \(R\) to a set \(S\) and let \(\mu\) and \(\nu\) be fuzzy sets in \(R\) and \(S\), respectively. Then \(f(\mu)\), the image of \(\mu\) under \(f\), is a fuzzy set in \(S\):

\[f(\mu)(y) := \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise}, \end{cases}\]
for all $y \in S$. $f^{-1}(\nu)$, the preimage of ν under f, is a fuzzy set in R:

$$f^{-1}(\nu)(x) := \nu(f(x))$$

for all $x \in R$.

We say that a fuzzy set μ in R has the sup property if, for any subset T of R, there exists $t_0 \in T$ such that

$$\mu(t_0) = \sup_{t \in T} \mu(t).$$

Let f be a mapping from a set R to a set S and let μ be a fuzzy set in R. Then μ is said to be f-invariant if $f(x) = f(y)$ implies $\mu(x) = \mu(y)$ for all $x, y \in R$. Clearly, if μ is f-invariant then $f^{-1}(f(\mu)) = \mu$.

3. Fuzzy Ideals

Let R be a near-ring and μ be a fuzzy set in R. We say that μ is a fuzzy subnear-ring of R if, for all $x, y \in R$,

1. $\mu(x - y) \geq \min\{\mu(x), \mu(y)\}$,
2. $\mu(xy) \geq \min\{\mu(x), \mu(y)\}$.

μ is called a fuzzy ideal of R if μ is a fuzzy subnear-ring of R and

3. $\mu(y + x - y) \geq \mu(x)$,
4. $\mu(xy) \geq \mu(y)$,
5. $\mu((x + z)y - xy) \geq \mu(z)$,

for any $x, y, z \in R$.

Note that μ is a fuzzy left ideal of R if it satisfies (7), (8), (9) and (10), and μ is a fuzzy right ideal of R if it satisfies (7), (8), (9) and (11) (see [1]).

Lemma 1 ([1, Theorem 4.2]). Let μ be a fuzzy set in a near-ring R. Then the level subset R^α_μ is a subnear-ring (resp. an ideal) of R for all $\alpha \in [0, 1]$, $\alpha \leq \mu(0)$ if and only if μ is a fuzzy subnear-ring (resp. a fuzzy ideal).

The following proposition will be used in the sequel.
PROPOSITION 1. Let f be a mapping from a set R to a set S, and let μ be a fuzzy set in R. Then for every $\alpha \in (0,1]$,

$$S^\alpha_{f(\mu)} = \bigcap_{0<\beta<\alpha} f(R^\alpha_{\mu} - \beta).$$

Proof. Let $\alpha \in (0,1]$. For $y = f(x) \in S$, assume that $y \in S^\alpha_{f(\mu)}$. Then

$$\alpha \leq f(\mu)(y) = f(\mu)(f(x)) = \sup_{z \in f^{-1}(f(x))} \mu(z).$$

Hence for every real number β with $0 < \beta < \alpha$, there exists $x_0 \in f^{-1}(y)$ such that $\mu(x_0) > \alpha - \beta$, and so $y = f(x_0) \in f(R^\alpha_{\mu} - \beta)$. Therefore $y \in \bigcap_{0<\beta<\alpha} f(R^\alpha_{\mu} - \beta)$.

Conversely, let $y \in \bigcap_{0<\beta<\alpha} f(R^\alpha_{\mu} - \beta)$. Then $y \in f(R^\alpha_{\mu} - \beta)$ for every β with $0 < \beta < \alpha$, which implies that there exists $x_0 \in R^\alpha_{\mu} - \beta$ such that $y = f(x_0)$. It follows that $\mu(x_0) \geq \alpha - \beta$ and $x_0 \in f^{-1}(y)$, so that

$$f(\mu)(y) = \sup_{z \in f^{-1}(y)} \mu(z) \geq \sup_{0<\beta<\alpha} \{\alpha - \beta\} = \alpha.$$

Hence $y \in S^\alpha_{f(\mu)}$, and the proof is complete. \qed

THEOREM 1. ([4, Theorem 2.12]). A near-ring homomorphic preimage of a fuzzy left (resp. right) ideal is a fuzzy left (resp. right) ideal.

THEOREM 2 ([4, Theorem 2.13]). A near-ring homomorphic image of a fuzzy left (resp. right) ideal having the sup property is a fuzzy left (resp. right) ideal.

Now we give another proof of Theorem 2 without using the sup property.

THEOREM 3. Let $f : R \rightarrow S$ be an onto near-ring homomorphism and let μ be a fuzzy left (resp. right) ideal of R. Then $f(\mu)$ is a fuzzy left (resp. right) ideal of S.

458
Fuzzy ideals in near-rings

Proof. In view of Lemma 1 it is sufficient to show that $S_{f(\mu)}^\alpha$, $\alpha \in [0, \mu(0)]$, is a left (resp. right) ideal of S. Note that $S_{f(\mu)}^0 = S$, and if $\alpha \in (0, 1]$ then $S_{f(\mu)}^\alpha = \bigcap_{0 < \beta < \alpha} f(R_\mu^{\alpha-\beta})$ by Proposition 1. Since $R_\mu^{\alpha-\beta}$ is a left (resp. right) ideal of R and since f is onto, $f(R_\mu^{\alpha-\beta})$ is a left (resp. right) ideal of S. Therefore $S_{f(\mu)}^\alpha$ is an intersection of a family of left (resp. right) ideals is also a left (resp. right) ideal of S, ending the proof. \qed

Theorem 4. Let f and μ be as in Theorem 3. Then there is a one-to-one correspondence between the set of all f-invariant left (resp. right) fuzzy ideals of R and the set of all left (resp. right) fuzzy ideals of S.

Proof. Straightforward in view of Theorem 1, Theorem 3 and the following results:

(i) $f^{-1}(f(\mu)) = \mu$, where μ is any f-invariant left (resp. right) fuzzy ideal of R;

(ii) $f(f^{-1}(\nu)) = \nu$, where ν is any left (resp. right) fuzzy ideal of S. \qed

Theorem 5. Let $f : R \to S$ be an onto homomorphism of near-rings and let μ and ν be left (resp. right) fuzzy ideals of R and S, respectively such that

$$\text{Im}(\mu) = \{\alpha_0, \alpha_1, ..., \alpha_n\} \text{ with } \alpha_0 > \alpha_1 > ... > \alpha_n, \text{ and}$$

$$\text{Im}(\nu) = \{\beta_0, \beta_1, ..., \beta_m\} \text{ with } \beta_0 > \beta_1 > ... > \beta_m.$$

Then

(i) $\text{Im}(f(\mu)) \subseteq \text{Im}(\mu)$ and the chain of level left (resp. right) ideals of $f(\mu)$ is

$$f(R_\mu^{\alpha_0}) \subseteq f(R_\mu^{\alpha_1}) \subseteq ... \subseteq f(R_\mu^{\alpha_n}) = S.$$

(ii) $\text{Im}(f^{-1}(\nu)) = \text{Im}(\nu)$ and the chain of level left (resp. right) ideals of $f^{-1}(\nu)$ is

$$f^{-1}(S_\nu^{\beta_0}) \subseteq f^{-1}(S_\nu^{\beta_1}) \subseteq ... \subseteq f^{-1}(S_\nu^{\beta_m}) = R.$$

459
Proof. (i) Since \(f(\mu)(y) = \sup_{x \in f^{-1}(y)} \mu(x) \) for all \(y \in S \), obviously \(\text{Im}(f(\mu)) \subset \text{Im}(\mu) \). Note that for any \(y \in S \),

\[
y \in f(R^\alpha_\mu) \iff \text{there exists } x \in f^{-1}(y) \text{ such that } \mu(x) \geq \alpha_i
\]

\[
\iff \sup_{z \in f^{-1}(y)} \mu(z) \geq \alpha_i
\]

\[
\iff f(\mu)(y) \geq \alpha_i
\]

\[
\iff y \in S^\alpha_{f(\mu)}.
\]

Hence \(f(R^\alpha_\mu) = S^\alpha_{f(\mu)} \) for \(i = 0, 1, \ldots, n \), and therefore the chain of level left (resp. right) ideals of \(f(\mu) \) is

\[
f(R^\alpha_\mu) \subset f(R^\alpha_{f(\mu)}) \subset \cdots \subset f(R^\alpha_n) = S.
\]

(ii) Since \(f^{-1}(\nu)(x) = \nu(f(x)) \) for all \(x \in R \) and since \(f \) is onto, we have \(\text{Im}(f^{-1}(\nu)) = \text{Im}(\nu) \). Note that for all \(x \in R \),

\[
x \in f^{-1}(S^\beta_\nu) \iff f(x) \in S^\beta_\nu
\]

\[
\iff \nu(f(x)) \geq \beta_i
\]

\[
\iff f^{-1}(\nu)(x) \geq \beta_i
\]

\[
\iff x \in R^\beta_{f^{-1}(\nu)},
\]

so that \(f^{-1}(S^\beta_\nu) = R^\beta_{f^{-1}(\nu)} \) for all \(i = 0, 1, \ldots, m \). Hence the chain of level left (resp. right) ideals of \(f^{-1}(\nu) \) is

\[
f^{-1}(S^\beta_\nu) \subset f^{-1}(S^\beta_{f^{-1}(\nu)}) \subset \cdots \subset f^{-1}(S^\beta_{m}) = R.
\]

This completes the proof. \(\square \)

Lemma 2. Let \(\mu \) and \(\nu \) be fuzzy left (resp. right) ideals of \(R \) and \(f(R) \) respectively, where \(f : R \to S \) is a near-ring homomorphism. Then \(f(\mu)(0) = \mu(0) \) and \(f^{-1}(\nu)(0) = \nu(0) \).
Fuzzy ideals in near-rings

Proof. Straightforward. □

Let \(\rho \) and \(\delta \) be two fuzzy sets in a near-ring \(R \). The product \(\rho \circ \delta \) is defined by

\[
\rho \circ \delta(x) := \begin{cases}
\sup \{ \min\{\rho(y), \delta(z)\} \}, & \text{if } x = yz \\
0 & \text{if } x \text{ is not expressible as } x = yz.
\end{cases}
\]

A fuzzy ideal \(\mu \) of a near-ring \(R \) is said to be prime [1] if \(\mu \) is not a constant function and for any fuzzy ideals \(\rho \) and \(\delta \) of \(R \), \(\rho \circ \delta \subseteq \mu \) implies \(\rho \subseteq \mu \) or \(\delta \subseteq \mu \).

For a fuzzy left (resp. right) ideal \(\delta \) of a near-ring \(R \), let

\[
\delta_0 := \{ x \in R | \delta(x) = \delta(0) \}.
\]

Lemma 3 ([1, Theorem 3.7]). Let \(\delta \) be a fuzzy prime ideal of a near-ring \(R \). Then \(\delta_0 \) is a prime ideal of \(R \).

Proposition 2. Let \(f : R \to S \) be a near-ring homomorphism and let \(\delta \) be a fuzzy left (resp. right) ideal of \(R \). Then \(f(\delta_0) \subseteq f(\delta)_0 \), with equality if \(\delta \) has the sup property.

Proof. Let \(x \in \delta_0 \). Then

\[
f(\delta)(f(0)) \geq f(\delta)(f(x)) \geq \delta(x) = \delta(0) = f(\delta)(f(0)),
\]

and so \(f(\delta)(f(x)) = f(\delta)(f(0)) = f(\delta)(0) \). Hence \(f(x) \in f(\delta)_0 \) or \(f(\delta_0) \subseteq f(\delta)_0 \). Assume that \(\delta \) has the sup property and let \(x \in R \) be such that \(f(x) \in f(\delta)_0 \). Then

\[
\delta(0) = f(\delta)(f(x)) = \sup\{ \delta(y) | f(y) = f(x) \} = \delta(y)
\]

for some \(y \in R \) such that \(f(y) = f(x) \) since \(\delta \) has the sup property. Thus \(y \in \delta_0 \), and so \(f(x) = f(y) \in \delta_0 \). This completes the proof. □

Theorem 6. Let \(\mu \) be a fuzzy prime ideal of a near-ring \(R \). Then \(|\text{Im}(\mu)| = 2 \), i.e., \(\mu \) is two-valued. In particular, \(\mu(0) = 1 \).
Proof. Note that $|\text{Im}(\mu)| \geq 2$ since μ is not constant. Assume that $|\text{Im}(\mu)| \geq 3$. Let $\mu(0) = \alpha$ and $\lambda = \text{glb}\{\mu(x) | x \in R\}$. Then there exist $\gamma, \beta \in \text{Im}(\mu)$ such that $\lambda \leq \gamma < \beta < \alpha$. Let ρ and δ be fuzzy sets in R such that $\rho(x) := \frac{1}{2}(\gamma + \beta)$ for all $x \in R$ and

$$
\delta(x) := \begin{cases}
\lambda & \text{if } x \notin R_{\mu}^\beta, \\
\alpha & \text{otherwise.}
\end{cases}
$$

Clearly, ρ is a fuzzy ideal of R. We now prove that δ is a fuzzy ideal of R. Let $x, y \in R$. If $x, y \in R_{\mu}^\beta$, then $x - y \in R_{\mu}^\beta$ and $\delta(x - y) = \alpha = \min\{\delta(x), \delta(y)\}$. If $x \in R_{\mu}^\beta$ and $y \notin R_{\mu}^\beta$ (or $x \notin R_{\mu}^\beta$ and $y \in R_{\mu}^\beta$) then $x - y \notin R_{\mu}^\beta$ and

$$
\delta(x - y) = \lambda = \min\{\delta(x), \delta(y)\},
$$

since

$$
\delta(x) \text{ (or } \delta(y)) \geq \alpha > \lambda = \delta(y) \text{ (or } \delta(x)).
$$

If $x \notin R_{\mu}^\beta$ and $y \notin R_{\mu}^\beta$ then $\delta(x) = \delta(y) = \lambda$ and so

$$
\delta(x - y) \geq \lambda = \min\{\delta(x), \delta(y)\}.
$$

Hence $\delta(x - y) \geq \min\{\delta(x), \delta(y)\}$ for all $x, y \in R$. Similarly, we know that

$$
\delta(xy) \geq \min\{\delta(x), \delta(y)\} \text{ for all } x, y \in R.
$$

Hence δ is a fuzzy subnear-ring of R. For any $y \in R$, if $y \in R_{\mu}^\beta$ then $xy \in R_{\mu}^\beta$ for all $x \in R$, and so $\delta(xy) = \alpha = \delta(y)$. If $y \notin R_{\mu}^\beta$, then $\delta(xy) \geq \lambda = \delta(y)$. Hence $\delta(xy) \geq \delta(y)$ for all $x, y \in R$. Let $x, y \in R$. If $x \in R_{\mu}^\beta$ then $y + x - y \in R_{\mu}^\beta$ and $\delta(y + x - y) = \alpha = \delta(x)$. If $x \notin R_{\mu}^\beta$, then $\delta(y + x - y) \geq \lambda = \delta(x)$. This proves that δ is a fuzzy left ideal of R. Let $x, y, z \in R$. If $z \in R_{\mu}^\beta$, then $(x + z)y - xy \in R_{\mu}^\beta$ and $\delta((x + z)y - xy) = \alpha = \delta(z)$. If $z \notin R_{\mu}^\beta$, then $\delta(z) = \lambda \leq \delta((x + z)y - xy)$. Hence $\delta((x + z)y - xy) \geq \delta(z)$ for all $x, y, z \in R$, and therefore δ is a fuzzy ideal of R. Now we show that $\rho \circ \delta \subseteq \mu$. Consider the following cases:
Fuzzy ideals in near-rings

Case (i) $x = 0$. Then

$$
\rho \circ \delta(x) = \sup_{x=yz} \{\min\{\rho(y), \delta(z)\}\} \leq \frac{1}{2}(\gamma + \beta) < \alpha = \mu(0).
$$

Case (ii) $0 \neq x \in R^\beta_\mu$. Then $\mu(x) \geq \beta$, and

$$
\rho \circ \delta(x) = \sup_{x=yz} \{\min\{\rho(y), \delta(z)\}\} \leq \frac{1}{2}(\gamma + \beta) < \beta \leq \mu(x).
$$

Case (iii) $0 \neq x \notin R^\beta_\mu$. For any $y, z \in R$ such that $x = yz$, we have $z \notin R^\beta_\mu$. Thus $\delta(z) = \lambda$ and so

$$
\rho \circ \delta(x) = \sup_{x=yz} \{\min\{\rho(y), \delta(z)\}\} = \lambda \leq \mu(x).
$$

Thus in each case, $\rho \circ \delta(x) \leq \mu(x)$ or $\rho \circ \delta \subseteq \mu$.

Next we show that neither $\rho \subseteq \mu$ nor $\delta \subseteq \mu$. We can find $x \in R$ such that $\mu(x) = \gamma$. Then

$$
\rho(x) = \frac{1}{2}(\gamma + \beta) > \gamma = \mu(x).
$$

Hence $\rho \nsubseteq \mu$. We also know that $\mu(y) = \beta$ for some $y \in R$. It follows that $y \in R^\beta_\mu$ and $\delta(y) = \alpha > \beta = \mu(y)$. Therefore $\delta \nsubseteq \mu$. This shows that μ is not a fuzzy prime ideal of R, which is a contradiction. Hence $|\text{Im}(\mu)| = 2$. Now let $|\text{Im}(\mu)| = \{\alpha, \gamma\}$ and $\gamma < \alpha$. Then $\mu(0) = \alpha$ since $\mu(0) \geq \mu(x)$ for all $x \in R$. Assume that $\alpha \neq 1$. Then there exists $\beta \in [0, 1]$ such that $\alpha < \beta \leq 1$. Let ρ and δ be fuzzy sets in R such that $\rho(x) := \frac{1}{2}(\alpha + \gamma)$ for all $x \in R$ and

$$
\delta(x) := \begin{cases}
\beta & \text{if } x \in \mu_0, \\
\gamma & \text{otherwise.}
\end{cases}
$$

Clearly ρ is a fuzzy ideal of R. Since μ_0 is an ideal of R, δ is a fuzzy ideal of R. It can be easily checked that $\rho \circ \delta \subseteq \mu$. Since $\mu(0) = \alpha < \beta = \delta(0)$, we have $\delta \nsubseteq \mu$. Note that there exists $x \in R$ such that $\mu(x) = \gamma < \frac{1}{2}(\alpha + \gamma) = \rho(x)$, so that $\rho \nsubseteq \mu$. This is a contradiction to the hypothesis. Hence $\mu(0) = 1$, ending the proof.

\[\square\]

Acknowledgement. The authors are deeply grateful to the referee for the valuable suggestions.
S. M. Hong, Y. B. Jun and H. S. Kim

References

Sung Min Hong and Young Bae Jun, Department of Mathematics, Gyeong-sang National University, Chinju 660-701, Korea
E-mail: ybjun@nongae.gsu.ac.kr

Hee Sik Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea
E-mail: heekim@email.hanyang.ac.kr