PROJECTIVE LIMIT OF A SEQUENCE
OF BANACH FUNCTION ALGEBRAS
AS A FRÉCHET FUNCTION ALGEBRA

F. SADY

Abstract. Let X be a hemicompact space with (K_n) as an ad-
missible exhaustion, and for each $n \in \mathbb{N}$, A_n a Banach function
algebra on K_n with respect to $\| \cdot \|_{K_n}$ such that $A_{n+1} | K_n \subseteq A_n$ and
$\| f |_{K_n} \| \leq \| f \|_{n+1}$ for all $f \in A_{n+1}$. We consider the subalgebra
$A = \{ f \in C(X) : f |_{K_n} \in A_n, \forall n \in \mathbb{N} \}$ of $C(X)$ as a Fréchet func-
tion algebra and give a result related to its spectrum when each
A_n is natural. We also show that if X is moreover noncompact,
then any closed subalgebra of A cannot be topologized as a regu-
lar Fréchet Q-algebra. As an application, the Lipschitz algebra of
infinitely differentiable functions is considered.

1. Introduction

Let X be a compact Hausdorff space. We denote the algebra of all
continuous functions on X by $C(X)$ and the uniform norm of $f \in C(X)$
by $\| f \|_X$. Under a norm, a Banach subalgebra of $C(X)$, which contains
the constants and separates the points of X, is called a Banach function
algebra on X. The uniform norm of an element in a Banach function
algebra does not exceed from its norm. A Banach function algebra B on
X is called natural if each complex homomorphism on B is an evaluation
homomorphism at some point of X.

By a Fréchet algebra $(A, (p_n))$ we mean a topological algebra A whose
topology can be defined by a sequence (p_n) of separating and submul-
tiplicative seminorms, $p_n(fg) \leq p_n(f)p_n(g), f, g \in A$, and which is
complete with respect to this topology. Without loss of generality we
can assume that $p_n \leq p_{n+1}$ and that $p_n(1) = 1$ if A has unit 1 (see

2000 Mathematics Subject Classification: Primary 46J10; Secondary 46M40.
Key words and phrases: Fréchet Lipschitz algebra, admissible exhaustion, Lips-
chitz algebra, Fréchet algebra.
A Fréchet algebra A is called a Q-algebra if the set of quasi-regular elements of A is open in A. This is equivalent to say that the set of quasi-regular elements of A has an interior (see [1]).

In this paper, we assume that all algebras are unital.

The spectrum of a commutative Fréchet algebra $(A, (p_n))$, which is denoted by M_A, is the set of all non-zero continuous complex homomorphisms on A, and for each $f \in A$, $\hat{f} : M_A \to \mathbb{C}$ is the Gelfand transform of f. We always endow M_A with the Gelfand topology. The Fréchet algebra A is called functionally continuous if each complex homomorphism on A is continuous. It is unanswered for about 50 years whether or not each Fréchet algebra is functionally continuous (Michael’s problem).

Definition 1.1. A Hausdorff space X is called hemicompact if there exists a sequence (K_n) of increasing compact subsets of X such that each compact subset of X is contained in some K_n. The sequence (K_n) with this property is called an admissible exhaustion of X.

Let $(A, (p_n))$ be a Fréchet algebra. For each n, let A_n be the completion of $A/\ker p_n$ with respect to the norm $p_n'(f + \ker p_n) = p_n(f)$. Then A_n is a Banach algebra, $A = \lim A_n$, projective limit of (A_n), and $M_A = \bigcup M_{A_n}$ as sets. Moreover, M_A is a hemicompact space with (M_{A_n}) as an admissible exhaustion and $M_{A_n} = \{ \phi \in M_A : |\phi(f)| \leq p_n(f), \forall f \in A \}, n \in \mathbb{N}$ (see [4]).

Definition 1.2. Let X be a hemicompact space and A a subalgebra of $C(X)$ which contains the constants and separates the points of X. We call A a Fréchet function algebra or Ff-algebra on X if it is a Fréchet algebra with respect to some topology such that the evaluation homomorphism φ_x at each $x \in X$ is continuous, that is, $\varphi_x \in M_A$.

We can consider each commutative unital semisimple Fréchet algebra as an Ff-algebra on its spectrum. So indeed the class of Ff-algebras and the class of commutative unital semisimple Fréchet algebras are the same.

Now let $(A, (p_n))$ be an Ff-algebra on X. Since $J : X \to M_A, x \mapsto \varphi_x$, is a continuous injective map, $\{ \varphi_x : x \in K_n \}$ is a compact subset of M_A for each $n \in \mathbb{N}$. So for each n there exists an integer m such that $\{ \varphi_x : x \in K_n \} \subset M_{A_m}$. Therefore,

\[
(1) \quad \|f\|_{K_n} = \sup_{x \in K_n} |\varphi_x(f)| \leq \sup_{\varphi \in M_{A_m}} |\varphi(f)| = \|\hat{f}\|_{M_{A_m}} \leq p_m(f)
\]

for all $f \in A$.
For each \(n \in \mathbb{N} \), let \(i(n) \geq n \) be the smallest integer that \(\|f\|_{K_n} \leq p_{i(n)}(f) \) holds for all \(f \in A \) and define \(p_n' \) on \(A|_{K_n} \) by
\[
p_n'(f|_{K_n}) = \inf \{ p_{i(n)}(g) : g|_{K_n} = f|_{K_n}, \ g \in A \}
\]
for each \(f \in A \). Then \(p_n' \) is an algebra norm on \(A|_{K_n} \). Let \(A_{K_n} \) be the completion of \(A|_{K_n} \) with respect to the norm \(p_n' \). Then we have the following result:

Theorem 1.3 ([6]). Let \((A,(p_n)) \) be an \(Ff \)-algebra on \(X, (K_n) \) an admissible exhaustion of \(X \) and \((A_{K_n}) \) as defined above. Then \((A_{K_n}) \) is a sequence of Banach algebras and \(A \) is dense in \(\varprojlim A_{K_n} \). Moreover, if \(\ker q_n \subset \ker p_{i(n)} \) for each positive integer \(n \), then \(A \) is algebraically and topologically a projective limit \(\varprojlim A_{K_n} \), where \(q_n \) is defined by \(q_n(f) = \|f\|_{K_n} \).

Theorem 1.4 ([6]). Let \((A,(p_n)) \) and \((B,(q_n)) \) be \(Ff \)-algebras on hemicompact spaces \(X \) and \(Y \), respectively, and let \(T : (A,p_n) \rightarrow (B,q_n) \) be a continuous monomorphism with a dense range. Then the injective adjoint spectral map \(T^* : M_B \rightarrow M_A, \psi \mapsto \psi \circ T \), is surjective and proper, that is, the inverse image of each compact set is compact, if and only if for each \(m \in \mathbb{N} \), there exists an integer \(n \) such that
\[
\|\tilde{f}\|_{M_{A_m}} \leq q_n(T(f))
\]
for all \(f \in A \).

2. Main results

Let \(X \) be a hemicompact space and \((K_n) \) an admissible exhaustion of \(X \). In this section, we assume that \((A_n) \) is a sequence of Banach function algebras such that for each \(n \in \mathbb{N} \), \(A_n \) is a Banach function algebra on \(K_n \) with respect to \(\| \cdot \|_n \), \(A_{n+1} |_{K_n} \subseteq A_n \) and \(\|f|_{K_n}\|_n \leq \|f\|_{n+1} \) for all \(f \in A_{n+1} \). Consider
\[
A = \{ f \in C(X) : f|_{K_n} \in A_n, \ n \in \mathbb{N} \}.
\]
Clearly, \(A \) contains the constants and for each \(n \in \mathbb{N} \), \(p_n(f) = \|f|_{K_n}\|_n \), \(f \in A \), defines a submultiplicative seminorm on \(A \). It is easy to check that \(A \) is a Fréchet algebra with respect to the topology defined by the sequence \((p_n) \) of seminorms. Moreover, the evaluation map \(\varphi_x \) at each
$x \in X$ is continuous. So if A separates the points of X, then A is an Ff-algebra on X.

Note that if X is compact and if each A_n is inverse closed, that is, $\frac{1}{n} \in A_n$ if $f \in A_n$ and $f(x) \neq 0$ for all $x \in K_n$, then A is a Q-algebra. This is because A is also inverse closed and there is an integer N such that $K_n = X$ for all $n \geq N$. Let $G = \{f \in A : 1 + f \in A^{-1}\}$, where A^{-1} is the set of all invertible elements of A. If $f \in A$ and $p_N(f) < \frac{1}{2}$, then $\|f\|_X \leq \|f|_{K_n}\|_N = p_N(f) < \frac{1}{2}$, since the norm of a Banach function algebra is greater than the uniform norm. Thus $(1 + f)(x) \neq 0$ for all $x \in X$. Since A is inverse closed, $1 + f \in A$, that is, $f \in G$. Hence the open neighborhood $V = \{f \in A : p_N(f) < \frac{1}{2}\}$ of the origin is contained in G. So G has an interior point.

Theorem 2.1. Let X be a hemicompact space and let $(A_n, \| \cdot \|_n)$ and $(A, (p_n))$ be as defined above. Suppose that A separates the points of X and that for each n, A_n is natural. If $(B, (q_n))$ is an Ff-algebra on X which contains A as a dense subalgebra and the identity map $I : (A, (p_n)) \rightarrow (B, (q_n))$ is continuous, then $M_A = M_B$ as sets.

Proof. Let $i(n)$, p'_n and A_{K_n} be as defined in Theorem 1.3. Here we notice that $i(n) = n$ and if $f, g \in A$ and $f|_{K_n} = g|_{K_n}$, then $\|f - g\|_{K_n} = p_n(f - g) = 0$ so that $p_n(f) = p_n(g)$. This shows that for each $f \in A$, $p'_n(f|_{K_n}) = p_n(f) = \|f|_{K_n}\|_n$, and so A_{K_n} is indeed the closure of $A|_{K_n}$ in the Banach function algebra $(A_n, \| \cdot \|_n)$. Therefore, in this case, each A_{K_n} is a Banach function algebra on K_n and $A = \lim A_{K_n}$ by Theorem 1.3.

Since I is a continuous monomorphism with a dense range, $I^* : M_B \rightarrow M_A$, defined by $I^*(\varphi) = \varphi|_{A}$, is an injective continuous map. For each $m \in N$ and each $f \in A$,

$$\|\hat{f}\|_{M_{A_{K_m}}} = r_{A_{K_m}}(f|_{K_m}) = r_{A_{m}}(f|_{K_m}) = \|f\|_{K_m},$$

where $r_{A_{m}}(f|_{K_m})$ is the spectral radius of $f|_{K_m}$ in A_m and the last equality is a consequence of the naturality of A_m. On the other hand, since $(B, (q_n))$ is an Ff-algebra on X, for each $m \in N$, there exists an integer $n \in N$ such that

$$\|f\|_{K_m} \leq \|\hat{f}\|_{M_{B_n}} \leq q_n(f), \quad f \in B,$$

where B_n is the completion of $B/\ker q_n$ with respect to the norm $q'_n(f + \ker q_n) = q_n(f), \quad f \in B$ (see the inequality (1)). So by Theorem 1.4, I^* is surjective and proper. Thus $M_A = M_B$ as sets. \square
REMARK 1.

(a) In Theorem 2.1, if \(M_A \) is a \(k \)-space, then the restriction of \(I^{*-1} \) to each compact subset of \(M_A \) is continuous, since \(I^* \) is a proper map. So \(I^{*-1} \) is continuous on \(M_A \). Hence \(M_A \) is homeomorphic to \(M_B \).

(b) The naturality of each \(A_n \) cannot be omitted in Theorem 2.1. For example, let \(X = [0,1], \ K_n = X, \ A_n = A(D)\{[-1,1]\}, \) where \(D \) is the closed unit disk in \(C \) and \(A(D) \) is the uniform Banach algebra of continuous functions on \(D \) which are analytic on \(D \). For each \(f \in A_n \), there is a unique \(g \in A(D) \) such that \(g|_{[-1,1]} = f \). Define \(||f||_n = ||g||_{17} \). Then \(A = \{ f \in C(X) : f|_{K_n} \in A_n \} = A(D)\{[-1,1]\}, \ M_A = D, \) and \(A \) is dense in \(C([-1,1]) \). But \(M_{C([-1,1])} = [-1,1] \).

THEOREM 2.2. Let \(X \) be a hemicompact noncompact space with \((K_n) \) as an admissible exhaustion. Let \((A_n, || \cdot ||_n) \) and \((A, (p_n)) \) be as defined in the beginning of this section such that \(A \) separates the points of \(X \). Then any closed subalgebra \(B \) of the \(Ff \)-algebra \((A, (p_n)) \) cannot be normable as a regular Banach algebra.

Proof. Let \(|| \cdot || \) be a norm on \(B \) such that \((B, || \cdot ||) \) is a regular Banach algebra on \(M_B \). Since \(B \) is closed in \(A \), \((B, (p_n)) \) is a commutative semisimple Fréchet algebra. By the Carpenter's theorem, i.e., each commutative semisimple Fréchet algebra has a unique topology as a Fréchet algebra, the identity map \(I : (B, || \cdot ||) \to (B, (p_n)) \) is a homeomorphism. So there exist an \(n_0 \in \mathbb{N} \) and an \(M > 0 \) such that

\[
(2) \quad ||f|| \leq M \cdot p_{n_0}(f)
\]

holds for all \(f \in B \).

Since \(X \) is noncompact, one can choose an \(x \in X \setminus K_{n_0} \). By the compactness of \(K_{n_0} \) in \(X \) and hence in \(M_B \) and by the regularity of \(B \) on \(M_B \), there exists an \(f \in B \) with \(\hat{f}(\varphi_x) = 1 \) and \(\hat{f}(\varphi_y) = 0 \) for all \(y \in K_{n_0} \). That is, \(f(x) = 1 \) and \(f|_{K_{n_0}} = 0 \). Thus \(p_{n_0}(f) = 0 \). Now the inequality (2) implies that \(||f|| = 0 \) and hence \(f = 0 \) as an element of \(B \), which is a contradiction. \(\square \)

REMARK 2. By the same method as the proof of Theorem 2.2, one can show that the closed subalgebra \(B \) of \(A \) cannot be topologized as a regular Fréchet \(Q \)-algebra.
Example 2.3. Let \((X, d)\) be a metric space and \(0 < \alpha \leq 1\). The collection of all complex bounded Lipschitz functions of order \(\alpha\) on \(X\) is denoted by \(\text{Lip}(X, \alpha)\). It is well-known (see \([7]\)) that \(\text{Lip}(X, \alpha)\) with respect to pointwise multiplication is a Banach algebra under the norm \(\| \cdot \|_\alpha\), defined by

\[
\| f \|_\alpha = \| f \|_X + p_\alpha(f), \quad f \in \text{Lip}(X, \alpha),
\]

where \(p_\alpha(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d^\alpha(x, y)}\) and \(\| f \|_X = \sup_{x \in X} |f(x)|\).

Now let \(X\) be a hemi-compact metric space, \((K_n)\) an admissible exhaustion of \(X\), and \(0 < \alpha \leq 1\). Let \(A_n = \text{Lip}(K_n, \alpha)\) and

\[
\| f \|_n = \| f \|_{K_n} + \sup_{x, y \in K_n \atop x \neq y} \frac{|f(x) - f(y)|}{d^\alpha(x, y)}, \quad f \in A_n.
\]

Clearly, \(A_{n+1} |_{K_n} \subset A_n\) and \(\| f \|_{K_n} \leq \| f \|_{n+1}, \; f \in A_{n+1}\). So by the above argument, \(\text{FLip}(X, \alpha) = \{ f \in C(X) : f|_{K_n} \in \text{Lip}(K_n, \alpha), \; n \in \mathbb{N} \}\) is an \(F\)-algebra on \(X\) with respect to the topology defined by the sequence \((p_n)\) of seminorms, where \(p_n(f) = \| f \|_{K_n} \| n \) for all \(f \in \text{FLip}(X, \alpha)\) and all \(n \in \mathbb{N}\). Using \([7, \text{Proposition 1.4}]\), one can show that \(\text{FLip}(X, \alpha)\) is dense in \(C(X)\) in the compact-open topology. So by Theorem 2.1, \(M_{\text{FLip}(X, \alpha)} = M_{C(X)} = X\). Indeed, one can show that the Gelfand topology on \(X\) inherited from \(M_{\text{FLip}(X, \alpha)}\) coincides on the metric topology and so \(M_{\text{FLip}(X, \alpha)} \cong X\).

Example 2.4. Let \(0 < \alpha \leq 1\) and \(X\) a perfect compact plane set which is a finite union of regular sets. The algebra of all functions \(f\) on \(X\) which are \(n\) times differentiable and for each \(k\), \(0 \leq k \leq n\), \(f^{(k)} \in C(X)\) (resp. \(f^{(k)} \in \text{Lip}(X, \alpha)\)) is denoted by \(D^n(X)\) (resp. \(\text{Lip}^n(X, \alpha)\)) and the algebra of all functions \(f\) with derivatives of all orders (resp. \(f^{(k)} \in \text{Lip}(X, \alpha) \; \forall k \in \mathbb{N}\)) is denoted by \(D^\infty(X)\) (resp. \(\text{Lip}^\infty(X, \alpha)\)).

It is well-known (see \([3, 5]\)) that for each \(n \in \mathbb{N}\), \(D^n(X)\) and \(\text{Lip}^n(X, \alpha)\) are natural Banach function algebras on \(X\) under the norms, defined by

\[
\| f \|_n = \sum_{k=0}^{n} \frac{\| f^{(k)} \|_X}{k!}
\]

and

\[
\| f \|_n = \sum_{k=0}^{n} \frac{\| f^{(k)} \|_X + p_\alpha(f^{(k)})}{k!},
\]
respectively.

Now for each \(n \in \mathbb{N} \), set \(K_n = X \) and \(A_n = D^n(X) \) (resp. \(\text{Lip}^n(X, \alpha) \)). Then \(A = \{ f \in C(X) : f|_{K_n} \in A_n, \ n \in \mathbb{N} \} = D^\infty(X) \) (resp. \(A = \text{Lip}^\infty(X, \alpha) = \cap A_n \) and \((A, (\| \cdot \|_n)) \) is an \(Ff \)-algebra on \(X \). Moreover, we have the following inclusions:

\[
R_0(X) \subseteq \text{Lip}^\infty(X, \alpha) \subseteq \text{Lip}^n(X, \alpha) \subseteq D^n(X) \subseteq D^1(X)
\]

and \(D^1(X) \subseteq R(X) \), where \(R_0(X) \) is the algebra of all rational functions with poles off \(X \) and \(R(X) \) is the uniform closure of \(R_0(X) \) (see [3]). Thus \(A \) is dense in \(R(X) \), and since each \(A_n \) is natural, we have \(M_A = M_{R(X)} = X \) by Theorem 2.1. Indeed, by the compactness of \(X \), \(M_A \) is homeomorphic to \(X \).

Remark 3.

(a) Notice that the algebra \(\text{FLip}(X, \alpha) \), defined in Example 2.3, is not in general a Banach algebra. Indeed, it is a Banach algebra if and only if \(X \) is compact.

(b) In Example 2.4, the algebras \(\text{Lip}^\infty(X, \alpha) \) and \(D^\infty(X) \) are \(Q \)-algebras, since each \(A_n \) is inverse closed. Moreover, there is no topology which makes these algebras Banach algebras, since \(f \mapsto f' \) defines a nontrivial derivation.

Now let \((A_n) \) and \((A, (p_n)) \) be as defined before such that \(A \) is an \(Ff \)-algebra on \(X \). Set \(b(A) = \{ f \in A : \sup p_n(f) < \infty \} \) and \(\| f \|_\infty = \sup p_n(f) \) for each \(f \in b(A) \). Then it is not difficult to check that \((b(A), \| \cdot \|_\infty) \) is a Banach algebra. For instance, if \(A = \text{FLip}(X, \alpha) \), then \(b(A) = \text{Lip}(X, \alpha) \) and \(\| f \|_\infty \) is the Banach algebra norm on \(\text{Lip}(X, \alpha) \), which was defined earlier, and if \(A = \text{Lip}^\infty(X, \alpha) \) then \(b(A) = \text{Lip}(X, M, \alpha) = \{ f \in \text{Lip}^\infty(X, \alpha) : \sum_{k=0}^\infty \| f^{(k)} \|_X + p_n(f^{(k)}) < \infty \} \), and \(\| \cdot \|_\infty \) is the summation applied in the definition of \(\text{Lip}(X, M, \alpha) \) which makes \(\text{Lip}(X, M, \alpha) \) a Banach algebra (see [5]), where \(M = (k!) \).

Assume that \(b(A) = A \). Since \(A \) is semisimple and the identity map \(I : (b(A), \| \cdot \|_\infty) \mapsto (A, (p_n)) \) is continuous, the identity map \(I \) is a homeomorphism. So \((A, (p_n)) \) is a Banach algebra.

Proposition 2.5. Let \((A, (p_n)) \) be as in Theorem 2.2. If \(A \) is regular then it is a \(Q \)-algebra if and only if \(X \) is compact.

Proof. Assume that \(X \) is compact. Then it is also a compact subset of \(M_A \). If \(U \) is an open subset of \(M_A \) containing \(X \), then by the regularity of \(A \), there exists an \(f \in A \) with \(\widehat{f}(\varphi_x) = 0, \ x \in X \), and \(\widehat{f}|_{M_A \setminus U} = 1 \),
which is impossible if $U \neq M_A$. So M_A is the only open subset which contains X. This shows that A is dense in M_A, and so $M_A = X$. In particular, M_A is compact and so A is a Q-algebra (see [1, 6.3-2]).

The converse is a consequence of Remark 2. □

The following theorem is known for a regular Banach function algebra A and a Banach algebra B (see [2]). Applying [1, Proposition 5.6-1], we can obtain the same result when A is a regular Fréchet function algebra and B is a Fréchet algebra.

Theorem 2.6. Let $(A, (p_n))$ be a regular Fr-algebra on its spectrum M_A which is locally compact. Let $(B, (q_n))$ be a commutative Fréchet algebra and $\theta : A \to B$ a continuous monomorphism with a dense range. Then $\theta^*(M_B) = M_A$.

Proof. Since $\theta(A)$ is dense in B, $\theta^*(\psi) = \psi \circ \theta \neq 0$ for each $\psi \in M_B$.

The continuity of θ shows that $\theta^*(M_B) \subseteq M_A$. Let $S = \overline{\theta^*(M_B)}$ and $\varphi \in M_A \setminus S$. Since A is Gelfand normal (see [1]) and M_A is locally compact, there exists an $f \in A$ with compact support such that $\widehat{f}(\varphi) = 1$ and $\text{supp} \widehat{f} \subset M_A \setminus S$. Let $I = \{f \in A : \widehat{f}|_S = 0\}$, $K = \text{supp} \widehat{f}$, and $J = k(K) = \{f \in A : \varphi(f) = 0, \varphi \in K\}$. Then I and J are closed ideals in A with $h(I) \cap h(J) = \phi$, where $h(I)$ is the set of all closed maximal ideals containing I. Hence $I + J = A$ by [1, Proposition 5.6-1], and so there are $h \in J$ and $g \in I$ with $h + g = 1$. Since $h \in J$, $g|_K = 1$.

Consequently, $f = fg$. Since $g = 0$ on S, $\theta^*(\psi)(g) = 0$ for each $\psi \in M_B$ so that $\theta(g) \in \text{rad}(B)$. So we show that $\theta(f) = 0$ and hence $f = 0$, which is a contradiction. Suppose that $q_{n_0}(\theta(f)) \neq 0$ for some $n_0 \in \mathbb{N}$. The equality $\theta(f) = \theta(f)\theta(g)$ implies that $\theta(f) = \theta(f)\theta(g^n)$ for each $n \in \mathbb{N}$. So $q_{n_0}(\theta(f)) \leq q_{n_0}(\theta(f))q_{n_0}(\theta(g^n))$ and hence $q_{n_0}(\theta(g^n)) \geq 1$ for each $n \in \mathbb{N}$. But $\theta(g) \in \text{rad}(B)$ and so $\lim_{n \to \infty} \sqrt[n]{q_{n_0}(\theta(g^n))} = 0$. □

Remark 4.

(a) In Theorem 2.6, if B is a Q-algebra, then M_B is compact and so $\theta^*(M_B) = M_A$, that is, $M_B = M_A$ as sets.

(b) With the hypotheses of Theorem 2.6, θ^* is not surjective even if A is a regular Banach function algebra. For example, let X be a hemicompact noncompact metric space, $A = \text{Lip}(X, \alpha)$, $B = F\text{Lip}(X, \alpha)$ and θ the canonical inclusion map. Then $\theta^*(M_B) = \overline{X} = M_A$.

266 Sequence of Banach function algebras
(c) The regularity of A cannot be omitted in Theorem 2.6. For example, let A be as given in Remark 1, $B = C([-1, 1])$, and θ the canonical inclusion map.

References

Department of Mathematics, Tarbiat Modarres University, Tehran 14115-175, Iran
E-mail: sady@net1cs.modares.ac.ir