ON THE SPECIAL FINSLER METRIC

Nany Lee

Abstract. Given a Riemannian manifold \((M, \alpha)\) with an almost Hermitian structure \(f\) and a non-vanishing covariant vector field \(b\), consider the generalized Randers metric \(L = \alpha + \beta\), where \(\beta\) is a special singular Riemannian metric defined by \(b\) and \(f\). This metric \(L\) is called an \((a, b, f)\)-metric. We compute the inverse and the determinant of the fundamental tensor \((g_{ij})\) of an \((a, b, f)\)-metric. Then we determine the maximal domain \(D\) of \(TM \setminus O\) for an \((a, b, f)\)-manifold where a \(\gamma\)-local Finsler structure \(L\) is defined. And then we show that any \((a, b, f)\)-manifold is quasi-C-reducible and find a condition under which an \((a, b, f)\)-manifold is C-reducible.

1. Introduction

Let \(M\) be a smooth \(2m\)-dimensional manifold. We will consider a Finsler metric \(L = \alpha + \beta\), where \(\alpha\) is a Riemannian metric on \(M\) and \(\beta\) is a singular Riemannian metric on \(M\). We call such a Finsler metric a generalized Randers metric. In case where \(\beta\) is a 1-form on \(M\), \(L\) is a usual Randers metric.

We denote a point of \(M\) by \(x = (x^i)\) and a tangent vector at that point \(x\) by \(y = (y^j)\). Let \(\alpha(x, y) = (a_{ij}(x)y^i y^j)^{1/2}\) be a Riemannian metric on \(M\). Given an almost Hermitian structure \(f^i_j(x)\) of \((M, \alpha)\) and a non-vanishing covariant vector field \(b_i(x)\) on \(M\), we have a singular Riemannian metric \(\beta(x, y) = (b_{ij}(x)y^i y^j)^{1/2}\), where \(b_{ij} = b_i b_j + f_i f_j\) and \(f_i = b_i f^i\). Such \(L = \alpha + \beta\) is an interesting example of a generalized Randers metric, which we call an \((a, b, f)\)-metric. For the further study about \((a, b, f)\)-metrics, we refer to [3] and [4].

Received November 6, 2002.
2000 Mathematics Subject Classification: Primary 53B40; Secondary 53C60, 58B20.
Key words and phrases: Finsler metric, generalized Randers metric, \((a, b, f)\)-metric, Rizza manifold, C-reducible.

Partially supported by the University of Seoul, 2000.
Note that a manifold with an \((a, b, f)\)-metric becomes a Rizza manifold. A Rizza manifold \((M, L, f)\) is by definition a Finsler manifold \((M, L)\) with an almost complex structure \(f_j^i(x)\) satisfying the condition
\[
L(x, \phi \theta(y)) = L(x, y),
\]
where \(\phi \theta = \cos \theta \cdot \delta_j^i + \sin \theta \cdot f_j^i\). But an \((a, b, f)\)-metric is not a \(y\)-global Finsler metric. And so we have to restrict a domain in the tangent bundle \(T(M)\) over \(M\), say, \(\{y : \beta(y) \neq 0\}\). In section 4, we show that the \(n \times n\) Hessian matrix \((g_{ij}) := (\frac{1}{2}L^2)_{y_i y_j}\) is positive definite on \(\{y : \beta(y) \neq 0\}\) by checking the sign of determinant of \((g_{ij})\). For this purpose, we compute the determinant of \((g_{ij})\).

It is interesting and valuable to study Finsler space with some important tensors of special form. For example, M. Matsumoto[6] initiated the study of a Finsler metric whose Cartan tensor \(A_{ijk} := \frac{L^2}{\beta}(L^2)_{y_i y_j y_k}\) satisfies
\[
A_{ijk} = \mathcal{G}_{(ijk)}\{Q_{ij} R_k\},
\]
where \(Q_{ij}\) is a symmetric Finsler tensor field satisfying \(Q_{ij} y^j = 0\) and \(R_k\) is assumed to satisfy \(R_k y^k = 0\). Here we use the notation \(\mathcal{G}_{(ijk)}\) to denote the summation of the cyclic permutation of indices \(i, j, k\), i.e.,
\[
\mathcal{G}_{(ijk)}\{S_{ijk}\} = S_{ijk} + S_{jki} + S_{kij}.
\]
In case \(R_k = A_k\) with \(A_k := g^{ij} A_{ijk}\), the Finsler manifold is called quasi-C-reducible. Furthermore, if \(Q_{ij} = \frac{1}{n+1} h_{ij}\) where \(h_{ij}\) is the angular metric \(h_{ij} := g_{ij} - L_i L_j\), we call the Finsler manifold to be \(C\)-reducible. In section 4, we show that any \((a, b, f)\)-manifold is quasi-C-reducible and find a sufficient condition that an \((a, b, f)\)-manifold is \(C\)-reducible. To get \(A_k\), we compute the inverse \((g^{ij})\) of \((g_{ij})\).

2. Preliminaries

Let \((M, \alpha)\) be a \(2m\)-dimensional Riemannian manifold and let \(f_j^i(x)\) be an almost Hermitian structure of \((M, \alpha)\). For a non-vanishing covariant vector field \(b_i(x)\) on \(M\), we have a singular Riemannian metric
\[
\beta(x, y) = (h_{ij}(x) y_i y_j)^{1/2},
\]
where \(b_{ij} = b_i b_j + f_i f_j\), \(f_i = b_i f_i\) and we consider a generalized Randers metric \(L = \alpha + \beta\). Such a generalized Randers metric \(L = \alpha + \beta\) is called an \((a, b, f)\)-metric and \((M, L)\) an \((a, b, f)\)-manifold.

Recall the definition of a \(y\)-global Finsler metric \(F\) on \(M\).
Definition 2.1. A \(y \)-global Finsler metric on \(M \) is a function \(F : TM \to \mathbb{R} \) such that

(P1) Nonnegativity: \(F \geq 0 \) on \(TM \).
(P2) Regularity: \(F \) is smooth on \(TM \setminus O \).
(P3) Absolute homogeneity: \(F(x, \lambda y) = |\lambda|F(x, y) \) for all \(\lambda \in \mathbb{R} \).
(P4) Strong convexity: The \(n \times n \) Hessian matrix \((g_{ij}) := ((\frac{1}{2}F^2)_{ij}) \) is positive definite at every point of \(TM \setminus O \).

Note that for the most important physical applications, the assumptions are too restrictive. And so we have to consider a \(y \)-local Finsler structure \(F \) defined only on a domain \(\mathcal{D} \) of \(TM \setminus O \) with \(\mathcal{D} \cap T_x M \neq \emptyset \) for every \(x \in M \).

Now we find the maximal domain \(\mathcal{D} \) of \(TM \setminus O \) for \((a, b, f)\)-metric. Because \(L(y) = \alpha(y) + \beta(y) \) is positive for any \(y \in TM \setminus O \) and both \(\alpha \) and \(\beta \) are regular away from \(\{y : \beta(y) = 0\} = \ker B \) with \(B = (b_{ij}) \), our possible domain \(\mathcal{D} \) is the complement \(\mathcal{C}(\ker B) \) of \(\ker B \). In section 4, we show that \((g_{ij}) \) is positive definite on \(\mathcal{C}(\ker B) \), i.e., all the eigenvalues of \((g_{ij}) \) are positive on \(\mathcal{C}(\ker B) \).

We use the following lemma extensively in the next section. For its proof, see [1].

Lemma 2.1. Let \((P_{ij}) \) be a real symmetric non-singular matrix with the inverse \((P'^{ij}) \). And let \((Q_{ij}) = (P_{ij} \pm c_{ij}c_{ij}) \) with \(1 \pm c^2 \neq 0 \) and \(c^2 := c_iP^{ij}c_j \). Then the matrix \((Q_{ij}) \) is non-singular and its inverse is \((Q'^{ij}) = (P'^{ij} \pm \frac{1}{1 \pm c^2}c'i c') \) where \(c' = P'^{ij}c_j \) and \(\det(Q_{ij}) = (1 \pm c^2) \det(P_{ij}) \).

3. The computation of the determinant and the inverse of \((g_{ij})\)

In this section, we compute the inverse and the determinant of the fundamental tensor \((g_{ij})\) of \((a, b, f)\)-metric. Here we assume that \(y \in \mathcal{C}\ker B \).

For \(L = \alpha + \beta \), we have

\[
g_{ij} = \frac{L}{\alpha}a_{ij} + \frac{L}{\beta}b_i b_j + \frac{L}{\beta} f_i f_j + L_i L_j - \frac{L}{\alpha} \alpha_i \alpha_j - \frac{L}{\beta} \beta_i \beta_j,
\]

where \(\alpha_i = \frac{\partial \alpha}{\partial y^i} \), \(\beta_i = \frac{\partial \beta}{\partial y^i} \), \(L_i = \alpha_i + \beta_i \). We put \(\alpha^i = a^{ir} \alpha_r \), \(\beta^i = a^{ir} \beta_r \), \(b^i = a^{ij} b_j \) and \(f^i = a^{ij} f_j \). Then we can apply Lemma 2.1 to \((g_{ij})\) five times.
PROPOSITION 3.1. For the fundamental tensor \((g_{ij}) \) of an \((a, b, f)\)-
metric \(L = \alpha + \beta \), the determinant of \((g_{ij})\) is

\[
\det(g_{ij}) = \frac{L\gamma}{\alpha\beta} \det A
\]

and the inverse \((g^{ij})\) of \((g_{ij})\) is given by

\[
g^{ij} = \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^{ij} + \frac{\alpha^2\gamma}{L^3} \alpha^i \alpha^j - \frac{\alpha}{L^2} (\alpha^i \beta^j + \alpha^j \beta^i) + \frac{\alpha^2}{L\gamma} \beta^i \beta^j,
\]

where \(A = \left(\frac{\gamma}{\alpha} a_{ij} \right) \), \(\gamma = \beta + b^2 \alpha \), \(b^{ij} = b^i b^j + f^i f^j \).

Proof. First, we set

\[
P_{ij} = -\frac{L}{\alpha} a_{ij}, \quad c_{1i} = \sqrt{\frac{\gamma}{\beta}} b_i \quad \text{and} \quad (Q_1)_{ij} = \frac{L}{\alpha} a_{ij} + \frac{L}{\beta} b_i b_j.
\]

Note that \(c_1^2 = c_{1i} P^{ij} c_{1j} = \frac{\gamma}{\beta} b^2 \), where \(b^2 = a^{ij} b_i b_j \) and \((a^{ij})\) is the inverse of \((a_{ij})\). And note also that \(b^2 = a^{ij} b_i b_j \) is positive, because \((a_{ij})\) is positive definite. In particular, the quantity \(1 + c_1^2 = \frac{\gamma}{\beta} > 0 \), where \(\gamma = \beta + b^2 \alpha > 0 \). By Lemma 2.1, we have

\[
\det Q_1 = \frac{\gamma}{\beta} \det \left(\frac{L}{\alpha} a_{ij} \right) = \frac{\gamma}{\beta} \det A,
\]

\[
(Q_1)_{ij} = \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^i b^j.
\]

Secondly, let

\[
(Q_2)_{ij} = (Q_1)_{ij} + \frac{L}{\beta} f_i f_j, \quad c_{2i} = \sqrt{\frac{L}{\beta}} f_i
\]

and apply Lemma 2.1 in the same way. Then we have \(c_2^2 = c_{2i} (Q_1)_{ij} c_{2j} = \frac{\gamma}{\beta} b^2, 1 + c_2^2 = \frac{\gamma}{\beta} > 0 \). And Lemma 2.1 says that

\[
\det Q_2 = \frac{\gamma}{\beta} \det Q_1 = \frac{\gamma^2}{\beta^2} \det A,
\]

\[
(Q_2)_{ij} = \frac{\alpha}{L} a^{ij} - \frac{\alpha^2}{\gamma L} b^i b^j.
\]

Thirdly, let

\[
(Q_3)_{ij} = (Q_2)_{ij} + L_i L_j, \quad c_{3i} = L_i.
\]
Then we have \(c_3^2 = c_{3i}(Q_2)_{ij} c_{3j} = 1 \), 1 + \(c_3^2 = 2 \). And by Lemma 2.1,

\[
\det Q_3 = \frac{2\gamma}{\beta^2} \det A,
\]

\[
(Q_3)_{ij} = \frac{\alpha}{L} a_{ij} - \frac{\alpha^2}{\gamma L} b_{ij} - \frac{1}{2L^2} y^i y^j.
\]

Fourthly, let

\[
(Q_4)_{ij} = (Q_3)_{ij} - \frac{L}{\beta} \beta_i \beta_j, \quad c_{4i} = \sqrt{\frac{L}{\beta}} \beta_i.
\]

Then we have \(c_4^2 = c_{4i}(Q_3)_{ij} c_{4j} = \frac{1}{\beta} \left(b^2 \alpha - \frac{b^2 \alpha^2}{\gamma} - \frac{\beta^2}{2L} \right), 1 - c_4^2 = \frac{\beta(2L + \gamma)}{2L \gamma} > 0 \). And by Lemma 2.1,

\[
\det Q_4 = \frac{(2L + \gamma) e}{L \beta} \det A,
\]

\[
(Q_4)_{ij} = \frac{\alpha L}{\alpha} a_{ij} - \frac{\alpha^2}{\gamma L} b_{ij} - \frac{1}{(2L + \gamma)} y^i y^j
\]

\[- \frac{\alpha}{L(2L + \gamma) \beta} \left(a^i b_k y^j y^j + y^i y^j b_i k \alpha_{ij} \right)
\]

\[+ \frac{2\alpha^2}{(2L + \gamma) \beta^2} a^i b_k y^j y^m b_m n a_{nj}.\]

Finally, let

\[
g_{ij} = (Q_4)_{ij} - \frac{L}{\alpha} \alpha_i \alpha_j, \quad c_{5i} = \sqrt{\frac{L}{\alpha}} \alpha_i.
\]

Then we get \(c_5^2 = c_{5i}(Q_4)_{ij} c_{5j} = \frac{L + \gamma}{2L + \gamma} - \frac{L \beta}{\alpha(2L + \gamma)}, 1 - c_5^2 = \frac{L^2}{\alpha(2L + \gamma)} > 0 \). And by Lemma 2.1,

\[
\det(g_{ij}) = \frac{L^2}{\alpha(2L + \gamma)} \cdot \frac{(2L + \gamma) e}{L \beta} \det A = \frac{L \gamma}{\beta} \det A,
\]

\[
g_{ij} = \frac{\alpha}{L} a_{ij} - \frac{\alpha^2}{\gamma L} b_{ij} + \frac{\gamma}{L^3} y^i y^j
\]

\[- \frac{\alpha}{L^2 \beta} \left(a^i b_k y^j y^j + y^i y^j b_i k \alpha_{ij} \right) + \frac{\alpha^2}{L \beta^2} a^i b_k y^j y^m b_m n a_{nj}.\]

If we set \(\alpha^i = \frac{y^i}{\alpha} \) and \(\beta^i = \frac{a^i \rho}{\beta} \), then the last equation yields equation (3.1). \(\square \)
4. Theorems

In this section, with the aid of Proposition 3.1, we show the positivity of g_{ij} and the quasi-C-reducibility of an (a, b, f)-metric and find a sufficient condition of being C-reducible.

Now we are ready to prove that (g_{ij}) is positive definite on $\mathcal{C}(\ker B)$. This implies that $\mathcal{C}(\ker B)$ is the maximal domain \mathcal{D} of $TM \setminus O$ for an (a, b, f)-manifold where a y-local Finsler structure L is defined.

Theorem 4.1. (g_{ij}) is positive definite on $\mathcal{C}(\ker B)$.

Proof. Consider a one-parameter family of the (a, b, f)-metric $L^\epsilon = \alpha + \epsilon \beta$ with $0 \leq \epsilon \leq 1$. Let g^ϵ be the fundamental tensor of L^ϵ. For $\epsilon > 0$, by Proposition 3.1, we have

$$\det(g^\epsilon_{ij}) = \frac{L^\epsilon \gamma^\epsilon}{\epsilon \alpha \beta} \det A^\epsilon,$$

where $A^\epsilon = (\frac{L^\epsilon}{\alpha} a_{ij})$, $\gamma^\epsilon = \epsilon \beta + \epsilon^2 b^2 \alpha > 0$, and so $\det(g^\epsilon_{ij})$ is positive. In particular, none of the eigenvalues of (g^ϵ_{ij}) can vanish. For $\epsilon = 0$, $L^0 = \alpha$ and all the eigenvalues of $(g^0_{ij}) = (g_{ij})$ are positive. Since $\det(g^\epsilon_{ij})$ is continuous for ϵ, all the eigenvalues of (g^ϵ_{ij}) are positive by the intermediate value theorem. And so all the eigenvalues of (g_{ij}) are positive. This means that (g_{ij}) is positive definite.

Next, we show that (a, b, f)-manifolds are quasi-C-reducible and we determine a sufficient condition under which (a, b, f)-manifolds are C-reducible. We start with the definitions of quasi-C-reducibility and of C-reducibility.

Definition 4.1. A Finsler manifold of dimension n, $n \geq 3$, is quasi-C-reducible if there exists a symmetric Finsler tensor field Q_{ij} satisfying $Q_{ij}y^i = 0$ and $A_{ijk} = \mathcal{G}_{(ijk)} \{Q_{ij} A_k\}$, where $A_k := g^{ij} A_{ijk}$.

Definition 4.2. A Finsler manifold of dimension n, $n \geq 3$, is C-reducible if A_{ijk} is in the form $A_{ijk} = \frac{1}{n+1} \mathcal{G}_{(ijk)} \{h_{ij} A_k\}$, where $h_{ij} := g_{ij} - L_i L_j$ is the angular metric of L.

Note that for (a, b, f)-metric, the Cartan tensor is

$$A_{ijk} := \frac{L}{4}(L^2)(y^i y^j y^k) = \frac{L}{2} (g_{ij}) y^k$$

$$= \frac{L}{2} \mathcal{G}_{(ijk)} \left\{ \left(\frac{\alpha_{ij}}{\alpha} - \frac{\beta_{ij}}{\beta} \right) (\alpha \beta_k - \beta \alpha_k) \right\}.$$
By Proposition 3.1, we get

\[A_k = \frac{\lambda}{2} (\alpha \beta_k - \beta \alpha_k), \]

where \(\lambda = \left(\frac{n+1}{\alpha} - \frac{\alpha}{\beta^2} \right) \). Since \(\text{rank}(b_{ij}) = 2 \), \(\lambda \neq 0 \). And if we let

\[Q_{ij} = \frac{L}{\lambda} \left(\frac{\alpha_{ij}}{\alpha} - \frac{\beta_{ij}}{\beta} \right), \]

we have \(A_{ijk} = \mathcal{G}_{(ijk)} \{ Q_{ij} A_k \} \). Because \(Q_{ij} \) is symmetric and \(Q_{ij} y^j = 0 \) by Euler’s theorem, we have

Theorem 4.2. (\(a, b, f \))-manifolds are quasi-C-reducible.

Since the angular metric \(h_{ij} \) for \((a, b, f) \)-manifold is \(L \cdot (\alpha_{ij} + \beta_{ij}) \), we can conclude

Theorem 4.3. If an \((a, b, f) \)-metric \(L = \alpha + \beta \) satisfies

\[\frac{\alpha_{ij}}{\alpha} - \frac{\beta_{ij}}{\beta} = \frac{\lambda}{n+1} (\alpha_{ij} + \beta_{ij}), \]

or equivalently \(\beta^2 \alpha \alpha_{ij} = (n \gamma + \beta) \beta_{ij} \), then the \((a, b, f) \)-manifold is C-reducible.

Remark. If \(A_i = 0 \) for a C-reducible manifold, then \(A_{ijk} = 0 \) immediately. And so the manifold is Riemannian. For a C-reducible \((a, b, f) \)-manifold with \(A_i = 0 \), we can show that

\[g_{ij}(x) = g_{pq}(x) f_i^p f_j^q. \]

In other words, such an \((a, b, f) \)-manifold is an almost Hermitian manifold. For its proof, we refer the readers to [2].

Acknowledgement. The author would like to thank Prof. M. Hashiguchi for his valuable comments on the use of notations. This simplifies the appearance of many equations.

References

Department of Mathematics, The University of Seoul, Seoul 130-743, Korea
E-mail: nany@uos.ac.kr