A LOCAL APPROXIMATION METHOD
FOR THE SOLUTION OF K–POSITIVE
DEFINITE OPERATOR EQUATIONS

C. E. CHIDUME AND S. J. ANEKE

ABSTRACT. In this paper we extend the definition of K-positive
definite operators from linear to Fréchet differentiable operators.
Under this setting, we derive from the inverse function theorem a
local existence and approximation results corresponding to those of
Theorems 1 and 2 of the authors [8], in an arbitrary real Banach
space. Furthermore, an asymptotically K-positive definite operator
is introduced and a simplified iteration sequence which converges
to the unique solution of an asymptotically K-positive definite op-
erator equation is constructed.

1. Introduction

Let H_1 be a dense subspace of a Hilbert space, H. An operator T with
domain $D(T) \supseteq H_1$ is called continuously H_1 invertible if the range of T,
$R(T)$, with T considered an operator restricted to H_1 is dense in H and
T has a bounded inverse on $R(T)$. Let H be a complex and separable
Hilbert space and A be a linear unbounded operator defined on a dense
domain $D(A)$ in H with the property that there exists a continuously
$D(A)$–invertible closed linear operator K with $D(A) \subseteq D(K)$, and a
constant $c > 0$ such that

$$\langle Au, Ku \rangle \geq c||Ku||^2, \quad u \in D(A),$$

then A is called K–positive definite (Kpd) (see e.g. [13]). If $K = I$ (the
identity operator) inequality (1.1) reduces to $\langle Au, u \rangle \geq c||u||^2$, and in
this case, A is called positive definite. If in addition $c = 0$, A is called
positive operator (or accretive operator). Positive definite operators have
been studied by various authors (see, e.g. [1, 2, 3, 6, 7, 15]. It is clear that

Received April 1, 2002.
2000 Mathematics Subject Classification: 47H04, 47H06, 47H30, 47J05, 47J25.
Key words and phrases: K–positive definite operators, asymptotically K–positive
definite operators, Fréchet differentiable operators.
the class of Kpd operators contains among others, the class of positive
definite operators, and also contains the class of invertible operators
(when $K = A$ as its subclasses. Furthermore, Petryshyn [13] remarked
that for a proper choice of K, the ordinary differential operators of odd
order, the weakly elliptic partial differential operators of odd order, are
members of the class of Kpd operators. Moreover, if the operators are
bounded, the class of Kpd operators forms a subclass of symmetrically
operators studied by Reid [15].

In [13], Petryshyn proved the following theorem.

Theorem P. If A is a Kpd operator and $D(A) = D(K)$, then there
exists a constant $\alpha > 0$ such that for all $u \in D(K)$,

$$||Au|| \leq \alpha ||Ku||.$$

Furthermore, the operator A is closed, $R(A) = H$ and the equation
$Au = f$, $f \in H$, has a unique solution.

In the case that K is bounded and A is closed, F. E. Browder [3]
obtained a result similar to the second part of Theorem P.

In [8], the authors extended the notion of a K-positive definite (Kpd)
operator to real separable Banach spaces, X. In particular, if X is a
real separable Banach space with a strictly convex dual, we proved that
the equation $Au = f$, $f \in X$, where A is a Kpd operator with the same
domain as K has a unique solution. Furthermore, if $X = Lp$ (or l_p), $p \geq
2$, and is separable, we constructed an iteration process which converges
strongly to this solution.

Precisely, the following theorems were proved in [8].

Theorem CA1. Let X be a real separable Banach space with a
strictly convex dual and let A be a Kpd operator with $D(A) = D(K)$.
Suppose that for all $x, y \in D(K)$,

$$\langle Ax, j(Ky) \rangle = \langle Kx, j(j(Ay)) \rangle,$$

then there exists a constant $\omega > 0$ such that for $x \in D(A)$,

$$||Ax|| \leq \omega ||Kx||.$$

Furthermore, the operator A is closed, $R(A) = X$ and the equation
$Ax = h$, for each $h \in X$, has a unique solution.

Theorem CA2. Suppose $X = Lp$ or l_p, $p \geq 2$, and is separable.
Suppose $A : D(A) \subseteq X \to X$ is a Kpd operator with $D(A) = D(K) =$
$R(K)$ and that for all $x, y \in D(A), \langle Ax, j(Ky) \rangle = \langle Kx, j(Ay) \rangle$. Define the sequence $\{x_n\}$ iteratively by

\begin{align*}
(1.2) \quad & x_0 \in D(K) \\
(1.3) \quad & x_{n+1} = x_n + t_n K^{-1} r_n, \ n \geq 0, \\
(1.4) \quad & t_n = \frac{\langle Br_n, j(Kr_n) \rangle}{(p-1)||Br_n||^2}, \text{ where } B = KAK^{-1}
\end{align*}

and

\begin{align*}
(1.5) \quad & r_n = f - Ax_n, \quad f \in R(K).
\end{align*}

If A and K commute, then $\{x_n\}_{n=1}^\infty$ converges strongly to the unique solution of $Ax = f$ in X.

In [10], the authors extended the above result to a larger space, the q-uniformly smooth Banach spaces.

Let K be a subset of a real Banach space E. A map $T : K \to K$ is called a strict contraction if there exists $k \in [0, 1)$ such that $\|Tx - Ty\| \leq k \|x - y\|$, and it is called nonexpansive if, for arbitrary $x, y \in K$, $\|Tx - Ty\| \leq \|x - y\|$. The map T is called pseudocontractive if, for each $x, y \in K$, there exists $j(x - y) \in J(x - y)$ such that

\begin{align*}
\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2.
\end{align*}

In 1972, Goebel and Kirk [11] introduced a class of mappings generalizing the class of nonexpansive operators.

Let K be a nonempty subset of a normed space E. A mapping $T : K \to K$ is called asymptotically nonexpansive if there exists a sequence $\{k_n\}, k_n \geq 1$, such that $\lim_{n \to \infty} k_n = 1$, and $\|T^nx - T^ny\| \leq k_n \|x - y\|$ for each x, y in K and for each integer $n \geq 1$.

Later in 1993, Bruck et. al. introduced and studied another class of asymptotic nonexpansive maps. A mapping $T : K \to K$ is called asymptotically nonexpansive in the intermediate sense (see e.g., Bruck et. al. [5]) provided T is uniformly continuous and

\begin{align*}
\lim_{n \to \infty} \sup_{x,y \in K} \{ \sup_{x,y \in K} (\|T^nx - T^ny\| - \|x - y\|) \} \leq 0.
\end{align*}

Asymptotic pseudocontractive operators have also been introduced and studied, first by Schu (see e.g., [16]) and then by a host of other authors, as a generalization of asymptotic nonexpansive maps. $T : K \to K$ is called asymptotically pseudocontractive if there exists a sequence $\{k_n\}$, $k_n \geq 1$, $\lim k_n = 1$ such that

\begin{align*}
\langle T^nx - T^ny, j(x - y) \rangle \leq k_n \|x - y\|^2
\end{align*}
for each $x, y \in K$.

It is easy to see that asymptotically pseudocontractive maps include the asymptotic nonexpansive ones. These classes of maps have been studied by various authors.

Motivated by Goebel and Kirk [11], Bruck et. al. [5] and Schu [16], we now introduce the class of asymptotically K-positive definite operators.

Definition 1.1. Let X be a Banach space and let A be a linear unbounded operator defined on a dense domain, $D(A)$, in X. The operator A will be called asymptotically K-positive definite Kpd if there exist a continuously $D(A)$-invertible closed linear operator K with $D(K) \supseteq D(A) \supseteq R(A)$, and a constant $c > 0$ such that for $j(Ku) \in J(Ku)$,

$$
\langle K^{n-1}Au, j(K^n u) \rangle \geq c k_n \|K^n u\|^2,
$$

$u \in D(A),$

where $\{k_n\}$ is a real sequence such that $k_n \geq 1, \lim_{n \to \infty} k_n = 1$.

It is our purpose in this paper to extend the notion of a kpd operator to Fréchet differentiable operators. Under this setting, a local existence theorem and an iterative scheme which converges to the unique solution of the Kpd operator equation in an arbitrary Banach spaces, are derived from the inverse function theorem. Moreover, we introduce and study a new notion-asymptotically K-positive definite operators.

2. Preliminaries

Let E be a real normed linear space with dual E^*. We denote by J the normalized duality mapping from E to 2^{E^*} defined by

$$
Jx = \{f \in E^* : \langle x, f \rangle = ||x||^2 = ||f||^2\},
$$

where $\langle ., . \rangle$ denotes the generalized duality pairing. It is well known that if E^* is strictly convex then J is single-valued and if E is uniformly smooth (equivalently if E^* is uniformly convex) then J is uniformly continuous on bounded subsets of E. We shall denote the single-valued duality mapping by j. The modulus of smoothness of E is the function $\rho_E : [0, \infty) \to [0, \infty)$ defined by

$$
\rho_E(\tau) := \sup\left\{ \frac{||x + y|| + ||x - y||}{2} - 1 : ||x|| = 1, ||y|| = \tau \right\}.
$$

E is said to be uniformly smooth if $\lim_{\tau \to 0^+} \frac{\rho_E(\tau)}{\tau} = 0$.

Lemma 2.1. (see, e.g., [14]) Let E be a real uniformly smooth Banach space and let J be the normalized duality map on E. Then for any given
$x, y \in E$, the following inequality holds:

$$\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x) \rangle + \max\{\|x\|, 1\}\|y\|\|b(||y||), \forall j(x) \in J(x),$$

where b is a continuous nondecreasing function satisfying the conditions: $b(0) = 0$, $b(ct) \leq cb(t), \forall c \geq 1$, where b is a continuous nondecreasing function satisfying the conditions: $b(0) = 0$, $b(ct) \leq cb(t), \forall c \geq 1$.

3. Main results

Now, we state the inverse function theorem and sketch its proof. We derive from the proof of the theorem that the iteration scheme in Theorem 2 of [8] converges to the unique solution of $Ax = f$ in an arbitrary real Banach space, provided $\|f - Ax_0\|$ is sufficiently small.

Theorem 3.1. (The inverse function Theorem) Suppose X, Y are Banach spaces and $A : X \to Y$ is such that A has uniformly continuous Fréchet derivatives in a neighborhood of some point x_0 of X. Then if $A'(x_0)$ is a linear homeomorphism of X onto Y, then A is a local homeomorphism of a neighborhood $U(x_0)$ of x_0 to a neighborhood of $A(x_0)$.

Proof. Let $A(x_0) = y_0$. We first determine ρ so that $A(x_0 + \rho) = y$ provided $\|y - y_0\|$ is sufficiently small, or equivalently

(3.1) $$A(x_0 + \rho) - A(x_0) = y - y_0.$$

Since A is C^1 at x_0 and $A'(x_0)$ is invertible, then (3.1) and Taylor’s Theorem imply that $A'(x_0)\rho + R(x_0, \rho) = y - y_0$, i.e.,

$$\rho = [A'(x_0)]^{-1}(y - y_0) - R(x_0, \rho),$$

where the remainder

$$R(x_0, \rho) = A(x_0 + \rho) - A(x_0) - A'(x_0)\rho = o(||\rho||).$$

We show that (3.1) has one and only one solution for $||\rho||$ sufficiently small, by proving that the operator

$$T \rho = [A'(x_0)]^{-1}\{y - y_0 - R(x_0, \rho)\}$$
is a contraction mapping of a sphere $S(0, \epsilon)$ in X into itself, for some ϵ sufficiently small. For any $\rho_1, \rho_2 \in S(0, \epsilon)$,

$$\begin{align*}
A'(x_0)(T\rho_2 - T\rho_1) &= R(x_0, \rho_1) - R(x_0, \rho_2) \\
&= A(x_0 + \rho_1) - A(x_0 + \rho_2) - A'(x_0)(\rho_1 - \rho_2) \\
&= \int_0^1 \{A'(x_0 + t\rho_1 + (1 - t)\rho_2) - A'(x_0)\}(\rho_1 - \rho_2)dt.
\end{align*}$$

Hence

$$\begin{align*}
(3.2) & \quad \|T\rho_2 - T\rho_1\| \\
& \leq \int \|A'(x_0)^{-1}\|\|A'(x_0 + t\rho_1 + (1 - t)\rho_2) - A'(x_0)\|\|\rho_1 - \rho_2\|dt.
\end{align*}$$

Since A is a C^1 mapping, the middle term of the last integral can be made arbitrarily small by choosing $\|\rho_1\|, \|\rho_2\|$ sufficiently small; and hence for some constant $0 \leq \alpha < 1$ (and independent of $y - y_0$) and sufficiently small $\epsilon > 0$, $\|T\rho_2 - T\rho_1\| \leq \alpha\|\rho_2 - \rho_1\|$ for all $\rho_1, \rho_2 \in S(0, \epsilon)$. Furthermore, T maps $S(0, \epsilon)$ into itself. For, if $\|T\rho\| = \|T\rho - T(0)\| + \|T(0)\| \leq \alpha\|\rho\| + \|T(0)\|$ and $\|T(0)\| = \|A'(x_0)^{-1}(y - y_0)\| < (1 - \alpha)\epsilon$ provided $\|y - y_0\| < (1 - \alpha)\epsilon\|A'(x_0)^{-1}\|^{-1}$. Hence T is a contraction map of $S(0, \epsilon)$ into itself. By the contraction mapping theorem, T has a unique fixed point ρ^* in $S(0, \delta)$ where $\delta \leq \epsilon$ is chosen so small that $A(S(0, \delta) \subset S(y_0, (1 - \alpha)\epsilon\|A'(x_0)^{-1}\|^{-1})$. Reversing the steps in the argument, one finds that $A(x_0 + \rho) = y$ has one and only one solution when $\|y - y_0\|$ and $\|\rho\|$ are sufficiently small. Also, $A^{-1}(y) = x$ is a well-defined and continuous mapping from a sphere $S(y_0, \eta)$ in Y to X. \hfill \Box

Corollary 3.2. Under the conditions of Theorem 3.1, the iteration sequence

$$x_{n+1} = x_n + [A'(x_0)]^{-1}r_n, \quad r_n = [y - A(x_n)],$$

converges to the unique solution of $A(x) = y$ in $U(x_0)$.

Proof. Since the operator T in the proof of Theorem 3.1 is a contraction map, the sequence $\rho_n = T\rho_{n-1}$ converges to the unique fixed point of T. From Theorem 3.1, for $\|y - A(x_0)\|$ sufficiently small, $A(x) = y$ has a unique solution $x = x_0 + \rho^*$, where ρ^* is the limit of the sequence $\rho_0 = 0, \rho_{n+1} = T\rho_n$. It then follows that the sequence $x_n = x_0 + \rho_n$.
converges to $x_0 + \rho^*$, the unique solution of $A(x) = y$ in $U(x_0)$. Now,

$$x_n = x_0 + \rho_n = x_0 + T\rho_{n-1} = x_0 + [A'(x_0)]^{-1}[y - A(x_0)] - R(x_0, \rho_{n-1})$$
$$= x_0 + [A'(x_0)]^{-1}[y + A'(x_0)\rho_{n-1} - A(x_0 + \rho_{n-1})]$$
$$= x_0 + \rho_{n-1} + [A'(x_0)]^{-1}[y - A(x_{n-1})]$$
$$= x_{n-1} + [A'(x_0)]^{-1}[y - A(x_{n-1})].$$

Henceforth, an operator A defined on a dense domain $D(A)$ of a real Banach space will be called K-positive definite if A is Fréchet differentiable and there exist a continuously $D(A)$—invertible closed linear operator K with $D(A) \subseteq D(K)$, and a constant $c > 0$ such that for $j \in J(Ku)$, we have

$$\langle Au, j \rangle \geq ||Ku||^2, \quad u \in D(A).$$

Corollary 3.3. Suppose A is a Kpd operator defined on a dense domain $D(A)$ of a real Banach space, X with range $R(T)$ in X. If for some $x_0 \in X$, $A'(x_0)$ is a linear homeomorphism of X onto Y, then A is a linear homeomorphism of a neighborhood $U(x_0)$ of x_0 to a neighborhood of $A(x_0)$. Furthermore, if $||y - A(x_0)||$ is sufficiently small, the sequence $x_{n+1} = x_n + K^{-1}r_n$, where $r_n = [y - A(x_n)]$ converges to the unique solution of $A(x) = y$ in $U(x_0)$.

Proof. $A'(x_0)$ satisfies the condition for K in the definition of a Kpd operator. Hence setting $K = A'(x_0)$ in Theorem 3.1, we are done. \[\square \]

Remark 3.4. If X is a separable Banach space, with a strictly convex dual and the operator A is linear, a global existence result was obtained in the domain of A, $D(A)$ in Theorem 1 of [8].

Remark 3.5. The iteration scheme $\{x_n\}$ in Corollary 3.3 above corresponds to the one of Theorem 2 in [8] by setting $\iota_n \equiv 1$. In Theorem 2 of [8], the scheme $x_{n+1} = x_n + t_nK^{-1}$ converges globally to the unique solution of $A(x) = y$ in L^p (or l_p), $p \geq 2$, while in Corollary 3.2 above the corresponding scheme converges locally to the unique solution of $A(x) = y$ in some neighborhood of a point x_0 in a real Banach space X. Furthermore, under this setting, the operator A need not be linear but Fréchet differentiable.

By writing our iteration scheme in the form of Theorem CO [10], we prove the following Theorem for asymptotically K-positive definite operators in a uniformly convex Banach space.
THEOREM 3.6. Suppose X is a real uniformly smooth Banach space. Suppose A is an asymptotically K-positive definite operator defined in a neighborhood $U(x_0)$ of a real uniformly smooth Banach space, X. Define the sequence $\{x_n\}$ by $x_0 \in U(x_0)$, $x_{n+1} = x_n + r_n$, $n \geq 0$, $r_n = K^{-1}y - K^{-1}A(x_n)$, $y \in R(A)$. Then $\{x_n\}$ converges strongly to the unique solution of $A(x) = y \in U(x_0)$.

Proof. By the linearity of K we obtain $Kr_{n+1} = Kr_n - Ar_n$. Using Lemma 2.1 and Definition 1.1, we obtain the following estimates:

$$
\begin{align*}
||K^nr_{n+1}||^2 &\leq ||K^nr_n - K^{n-1}Ar_n||^2 \\
&\leq ||K^nr_n||^2 - 2\langle K^{n-1}Ar_n, J(K^nr_n) \rangle \\
&\quad + \max\{||K^nr_n||, 1\}||K^{n-1}Ar_n||b(||K^{n-1}Ar_n||) \\
(3.3) &\leq ||K^nr_n||^2 - 2ck_n||K^nr_n||^2 \\
&\quad + \max\{||K^nr_n||, 1\}||K^{n-1}Ar_n||b(||K^{n-1}Ar_n||) \\
&\leq ||K^nr_n||^2 - 2ck_n||K^nr_n||^2 \\
&\quad + (||K^nr_n|| + 1)||K^{n-1}Ar_n||b(||K^{n-1}Ar_n||).
\end{align*}
$$

Since A is Fréchet differentiable and by the properties of the function b, the quantity $||K^{n-1}Ar_n||b(||K^{n-1}Ar_n||)$ can be made as small as possible in a small neighborhood $U(x_0)$ of X. Infact there exists c such that

$$
(3.4) ||K^{n-1}Ar_n||b(||K^{n-1}Ar_n||) \leq ck_n||K^nr_n||^2.
$$

Inequality (3.4) implies that the sequence $||K^nr_n||_{n=0}^\infty$ is monotone decreasing and hence converges to some real number $\beta \geq 0$. Inequalities (3.3) and (3.4) imply that

$$
\lim_{n \to \infty} ||K^nr_n|| = 0.
$$

Since K is continuously $D(A)$-invertible, this implies that $r_n \to 0$. Since A has a bounded inverse, this implies $x_n \to A^{-1}y$, the unique solution of $Ax = y$ in $U(x_0)$.

References

Department of Mathematics, University of Nigeria, Nsukka, Nigeria

E-mail: chidume@ictp.trieste.it
anekes@ictp.trieste.it