CONTRACTIONS OF CLASS Q
AND INVARIANT SUBSPACES

B. P. DUGGAL, C. S. KUBRUSLY, AND N. LEVAN

ABSTRACT. A Hilbert Space operator T is of class Q if $T^2 T^2 - 2T^* T + I$ is nonnegative. Every paranormal operator is of class Q, but class-Q operators are not necessarily normaloid. It is shown that if a class-Q contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator $Q = T^2 T^2 - 2T^* T + I$ also is a proper contraction.

1. Introduction

Let \mathcal{H} be a nonzero complex Hilbert space. By a subspace \mathcal{M} of \mathcal{H} we mean a closed linear manifold of \mathcal{H}, and by an operator T on \mathcal{H} we mean a bounded linear transformation of \mathcal{H} into itself. A subspace \mathcal{M} is invariant for T if $T(\mathcal{M}) \subseteq \mathcal{M}$, and nontrivial if $\{0\} \neq \mathcal{M} \neq \mathcal{H}$. Let $\mathcal{B}[\mathcal{H}]$ denote the algebra of all operators on \mathcal{H}. For an arbitrary operator T in $\mathcal{B}[\mathcal{H}]$ set, as usual, $|T| = (T^* T)^{1/2}$ (the absolute value of T) and $[T^*, T] = T^* T - T T^* = |T|^2 - |T_*|^2$ (the self-commutator of T), where T^* is the adjoint of T, and consider the following standard definitions: T is hyponormal if $[T^*, T]$ is nonnegative (i.e., $|T_*|^2 \leq |T|^2$; equivalently, $|T_* x| \leq |T x|$ for every x in \mathcal{H}), T is of class \mathcal{U} if $|T|^2 - |T_*|^2$ is nonnegative (i.e., $|T|^2 \leq |T_*|^2$), paranormal if $|T x|^2 \leq \|T^2 x\| \|x\|$ for every x in \mathcal{H}, and normaloid if $r(T) = \|T\|$ (where $r(T)$ denotes the spectral radius of T). These are related by proper inclusion:

Hyponormal \subset Class $\mathcal{U} \subset$ Paranormal \subset Normaloid.

A contraction is an operator T such that $\|T\| \leq 1$ (i.e., $\|T x\| \leq \|x\|$ for every x in \mathcal{H}; equivalently, $T^* T \leq I$). A proper contraction is an operator T such that $\|T x\| < \|x\|$ for every nonzero x in \mathcal{H} (equivalently,
A strict contraction is an operator T such that $\|T\| < 1$ (i.e., $\sup_{x \neq 0}(\|T^*x\|/\|x\|) < 1$ or, equivalently, $T^*T < I$, which means that $T^*T \leq \gamma I$ for some $\gamma \in (0,1)$). Again, these are related by proper inclusion: Strict Contraction \subset Proper Contraction \subset Contraction.

It was recently proved in [10] that if a hyponormal contraction T has no nontrivial invariant subspace, then T is a proper contraction and its self-commutator $[T^*, T]$ is a strict contraction. This was extended in [5] to contractions of class \mathcal{U} (if a contraction T in \mathcal{U} has no nontrivial invariant subspace, then both T and the nonnegative operator $[T^2] - |T|^2$ are proper contractions), and to paranormal contractions in [6]: If a paranormal contraction T has no nontrivial invariant subspace, then T is a proper contraction and so is the nonnegative operator $[T^2]^2 - 2|T|^2 + I$. In the present paper we extend this result to contractions of class \mathcal{Q}. Operators of class \mathcal{Q} are defined below. This is a class of operators that properly includes the paranormal operators.

2. Operators of class \mathcal{Q}

In this section we define operators of class \mathcal{Q} and consider some basic properties, examples and counterexamples, in order to put this class in its due place. Recall that, for any real λ and any operator $T \in \mathcal{B}[\mathcal{H}]$,

$$
\lambda \|T^2x\| \|x\| \leq \frac{1}{2}(\|T^2x\|^2 + \lambda^2 \|x\|^2)
$$

and, in particular, for $\lambda = 1$,

$$
\|T^2x\| \|x\| \leq \frac{1}{2}(\|T^2x\|^2 + \|x\|^2),
$$

for every $x \in \mathcal{H}$. An operator $T \in \mathcal{B}[\mathcal{H}]$ is paranormal if

$$
\|Tx\|^2 \leq \|T^2x\| \|x\|
$$

for every $x \in \mathcal{H}$. Paranormal operators have been much investigated since [8] (see e.g., [7] and [9]). The following alternative definition is well-known. An operator $T \in \mathcal{B}[\mathcal{H}]$ is paranormal if and only if

$$
O \leq T^2*T^2 - 2\lambda T^*T + \lambda^2 I
$$

for all $\lambda > 0$ (cf. [1], also see [12]). Equivalently, T is paranormal if and only if

$$
\lambda \|Tx\|^2 \leq \frac{1}{2}(\|T^2x\|^2 + \lambda^2 \|x\|^2)
$$

for every $x \in \mathcal{H}$, for all $\lambda > 0$. Note that the above inequalities hold trivially for every $\lambda \leq 0$ for all operators $T \in \mathcal{B}[\mathcal{H}]$. Take any operator T in $\mathcal{B}[\mathcal{H}]$ and set
\[Q = T^{2*}T^2 - 2T^*T + I. \]

Definition 1. An operator \(T \) is of class \(Q \) if \(O \leq Q \). Equivalently, \(T \in Q \) if
\[
\|Tx\|^2 \leq \frac{1}{2} \left(\|T^2x\|^2 + \|x\|^2 \right) \quad \text{for every } x.
\]

Since \(O \leq T^{2*}T^2 - 2\lambda T^*T + \lambda^2 I \) if and only if \(\lambda^{-1}T \in Q \) for any \(\lambda > 0 \),

\(T \) is paranormal if and only if \(\lambda T \in Q \) for all \(\lambda > 0 \).

Every paranormal operator is a normaloid of class \(Q \). That is, with \(N \) and \(P \) standing for the classes of all normaloid and paranormal operators from \(B[\mathcal{H}] \), respectively, it is clear that
\[P \subseteq Q \cap N. \]

However, \(Q \not\subseteq N \) and \(Q \cap N \not\subseteq P \). Indeed, \(S = \lambda \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in Q \) for every \(\lambda \in (0, 1/\sqrt{2}] \) but \(S \not\in N \) (nonzero nilpotent) for all \(\lambda \neq 0 \). Moreover, \(T = I \oplus S \) lies in \((Q \cap N) \setminus P \) for any \(\lambda \in (0, 1/\sqrt{2}] \). In fact, \(S \) is not normaloid, and hence not paranormal, which implies that \(T \) is not paranormal (restriction of a paranormal to an invariant subspace is again paranormal), and \(r(T) = \|T\| = 1 \). Thus \(T \) is a normaloid contraction of class \(Q \) that is not paranormal.

Proposition 1. Let \(T \in B[\mathcal{H}] \) be an operator of class \(Q \).

(a) The restriction of \(T \) to an invariant subspace is again a class-\(Q \) operator.

(b) If \(T \) is invertible, then \(T^{-1} \) is of class \(Q \).

Proof. Let \(T \) be an operator of class \(Q \) and let \(M \) be a \(T \)-invariant subspace.

(a) If \(u \in M \), then
\[
2\|T|_Mu\|^2 = 2\|Tu\|^2 \leq \|T^2u\|^2 + \|u\|^2 = \|(T|_M)^2u\|^2 + \|u\|^2,
\]
and so \(T|_M \) is of class \(Q \).

(b) If \(T \) is invertible, then
\[
2\|x\|^2 = 2\|TT^{-1}x\|^2 \leq \|T^2(T^{-1}x)\|^2 + \|T^{-1}x\|^2 \quad \text{for every } x \in \mathcal{H}. \]
Take any \(y \) in \(\mathcal{H} = \text{ran}(T) \) so that \(y = Tx \), \(x = T^{-1}y \) and \(T^{-1}x = T^{-2}y \) for some \(x \) in \(\mathcal{H} \). Thus \(2\|T^{-1}y\|^2 \leq \|y\|^2 + \|T^{-2}y\|^2 \) by the above inequality, and so \(T^{-1} \) is of class. \(\square \)

Some properties that the paranormal operators inherit from the hyponormals survive up to class \(Q \), as in the case of Proposition 1. However, many important properties shared by the hyponormals do not travel well up to class \(Q \). For instance, there exist nonzero quasinilpotent operators of class \(Q \) (a quasinilpotent normaloid is obviously null),
compact operators of class Q that are not normal (every compact paranormal is normal [11]), and also operators of class Q for which isolated points of the spectrum are not eigenvalues (isolated points of the spectrum of a paranormal are eigenvalues [2]). Here is an example. The compact weighted unilateral shift $T = \text{shift}(\{\frac{1}{k+1}\}_{k=1}^{\infty})$ is a quasinilpotent ($r(T) = 0$) contraction ($\|T\| = \frac{1}{2}$) with no eigenvalues (0 is in the residual spectrum of T). Clearly, since T is not normaloid, it is not paranormal. But it is of class Q. Indeed,

$$O < \text{diag}(\{1 - \frac{2}{(k+1)^2}\}_{k=1}^{\infty}) = I - 2T^*T < T^{2*}T^2 - 2T^*T + I.$$

Another common property of hyponormal and paranormal operators that does not apply to class Q is that a multiple of a class-Q operator may not be of class Q. For example, $S = \lambda \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in Q$ for every $\lambda \in (0,1,\sqrt{2})$, but $S \notin Q$ for all $\lambda > 1/\sqrt{2}$. Actually, Q is not a cone in $B[H]$, although its intersection with the closed unit ball is balanced (a subset A of a linear space is balanced if $\alpha A \subseteq A$ whenever $|\alpha| \leq 1$).

Proposition 2. Let T be a Hilbert space operator.

(a) If $\|T\| \leq 1/\sqrt{2}$, then $T \in Q$.

(b) If $T^2 = O$, then $T \in Q$ if and only if $\|T\| \leq 1/\sqrt{2}$.

(c) If $T \in Q$, $T^2 \neq O$ and $|\alpha| \leq \min\{1, \|T^2\|^{-1}\}$, then $\alpha T \in Q$. In particular, if $T \in Q$ is a contraction, then $\alpha T \in Q$ whenever $|\alpha| \leq 1$.

(d) A contraction T in Q is paranormal if and only if $O \leq T^{2*}T^2 - 2\lambda T^*T + \lambda^2 I$ for all $\lambda \in (0,1)$.

Proof. Let T be any operator in $B[H]$.

(a) Since $O \leq I - 2T^*T$ (that is, $2T^*T \leq I$) if and only if αT for $|\alpha| = \sqrt{2}$ is a contraction, it follows that $\|\sqrt{2}T\| \leq 1$ implies $T \in Q$ because

$$I - 2T^*T \leq T^{2*}T^2 - 2T^*T + I.$$

(b) If $T^2 = O$, then $T \in Q$ if and only if $O \leq I - 2T^*T$.

(c) If T lies in Q, then

$$2|\alpha|^2T^*T \leq |\alpha|^2T^{2*}T^2 + |\alpha|^2 I$$

and hence, for every scalar α,

$$2|\alpha|^2T^*T - |\alpha|^4T^{2*}T^2 - I \leq (1 - |\alpha|^2)(|\alpha|^2T^{2*}T^2 - I).$$
Suppose $T^2 \neq O$. Note: $|\alpha| \leq \|T^2\|^{-1}$ (i.e., αT^2 is a contraction) if and only if $|\alpha|^2 T^{2*} T^2 \leq I$. If, in addition, $|\alpha| \leq 1$, then $(1 - |\alpha|^2) (|\alpha|^2 T^{2*} T^2 - I) \leq O$, and therefore $\alpha T \in Q$.

(d) If $T \in Q$ is a contraction, then αT lies in Q for all $\alpha \in (0, 1]$ or, equivalently (with $\lambda = \alpha^{-1}$), $O \leq T^{2*} T^2 - 2\lambda T^* T + \lambda^2 I$ for all $\lambda \geq 1$. Thus, if $T \in Q$ is a contraction, then the above inequality holds for all $\lambda > 0$ if and only if it holds for all $\lambda \in (0, 1)$. Therefore, a contraction T of class Q is paranormal if and only if $O \leq T^{2*} T^2 - 2\lambda T^* T + \lambda^2 I$ for all $\lambda \in (0, 1)$. \hfill \Box

Corollary 1. If $T \in Q$ is invertible, then $\alpha T \in Q$ for every scalar α such that either $|\alpha| \leq \min\{1, \|T^2\|^{-1}\}$ or $|\alpha| \geq \max\{1, \|T^{-2}\|\}$.

Proof. Take an invertible $T \in Q$ and any scalar α. Proposition 2 ensures that

$$\alpha T \in Q \quad \text{whenever} \quad |\alpha| \leq \min\{1, \|T^2\|^{-1}\},$$

and Proposition 1 says that $T^{-1} \in Q$. Then $\beta T^{-1} \in Q$ for every nonzero scalar β such that $|\beta| \leq \min\{1, \|T^{-2}\|^{-1}\}$ by Proposition 2. Put $\gamma = \beta^{-1}$ so that $(\gamma T)^{-1}$ lies in Q for each scalar γ such that $|\gamma|^{-1} \leq \min\{1, \|T^{-2}\|^{-1}\}$; equivalently, such that $|\gamma| \geq \max\{1, \|T^{-2}\|\}$. Therefore, applying Proposition 1 again, it follows that

$$\gamma T \in Q \quad \text{whenever} \quad |\gamma| \geq \max\{1, \|T^{-2}\|\},$$

which completes the proof. \hfill \Box

If T is an invertible operator in Q and $\min\{1, \|T^2\|^{-1}\} = \max\{1, \|T^{-2}\|\}$, then the above corollary ensures that T is paranormal. In particular, if T is an invertible contraction in Q for which the above min and max coincide, then T is an invertible paranormal contraction; a unitary operator, actually, as we shall see in Proposition 3 below (every invertible contraction for which the above min and max coincide is unitary). Note that there exist invertible normaloid contractions in Q that are not unitary so that the above min and max do not coincide. For instance, a weighted bilateral shift with increasing positive weights in $(1/2, 1)$ is a nonunitary invertible hyponormal contraction, thus paranormal, and so a normaloid of class Q.

Proposition 3. If T is an invertible contraction and

$$\min\{1, \|T^n\|^{-1}\} = \max\{1, \|T^{-n}\|\}$$

for some positive integer n, then T is unitary.
Proof. Take any positive integer \(n \). If \(T \) is an invertible operator, then so is \(T^n \). If \(\| T \| \leq 1 \), then \(\| T^n \|^{-1} \geq 1 \) and hence \(\min\{ 1, \| T^n \|^{-1} \} = 1 \). But \(1 \leq \| T^{-n} \| \| T^n \| \), and so \(\| T^{-n} \| \geq 1 \), which implies that \(\max\{ 1, \| T^{-n} \| \} = \| T^{-n} \| \). If \(\min \) and \(\max \) coincide, then \(\| T^{-n} \| = 1 \) and \(T^n \) is unitary (reason: \(\| T^n \| \leq 1 \), and an invertible operator \(U \) such that \(U \) and \(U^{-1} \) are both contractions must be unitary). But if \(T \) is a contraction and \(T^n \) is an isometry, then \(T \) is an isometry. Indeed, if \(T \) is a contraction, then so is \(T^{(n-1)} \), which means that \(T^{(n-1)} T^{(n-1)} \leq I \), and therefore

\[
I = T^{*n} T^n = T^* (T^{*(n-1)} T^{(n-1)}) T \leq T^* T \leq I
\]

so that \(T \) is an isometry. Dually, if \(T \) is a contraction and \(T^n \) is a coisometry, then \(T \) is a coisometry. Thus, if \(T \) contraction and \(T^n \) unitary, then \(T \) unitary.

\[\square \]

Proposition 4. Suppose \(T \) is an operator of class \(\mathcal{Q} \).

(a) If \(T^2 \) is a contraction, then so is \(T \).

(b) If \(T^2 \) is an isometry, then \(T \) is paranormal.

Proof. Let \(T \in \mathcal{B}[\mathcal{H}] \) be an operator of class \(\mathcal{Q} \).

(a) Observe that \(T \) is of class \(\mathcal{Q} \) if and only if

\[
2(T^* T - I) \leq T^*^2 T^2 - I.
\]

Thus \(T^*^2 T^2 \leq I \) implies \(T^* T \leq I \); that is, \(T \) is a contraction whenever \(T^2 \) is.

(b) Take any \(x \) in \(\mathcal{H} \) and note that \(T \) is of class \(\mathcal{Q} \) if and only if

\[
2 \| T x \|^2 \leq (\| T^2 x \| - \| x \|)^2 + 2 \| T^2 x \| \| x \|.
\]

Hence \(\| T^2 x \| = \| x \| \) implies \(\| T x \|^2 \leq \| T^2 x \| \| x \| \), for every \(x \in \mathcal{H} \). \[\square \]

Therefore, if \(T \) is an operator of class \(\mathcal{Q} \) for which \(T^2 \) is an isometry, then \(T \) is a paranormal contraction. Since \(T^*^2 T^2 = I \) implies \(Q = 2(I - T^* T) \), it follows that if \(T^2 \) is an isometry, then \(T \in \mathcal{Q} \) if and only if \(T \) is a contraction and, in this case, \(T \) is paranormal. Note that the converses fail. For instance, the weighted unilateral shift \(T = \text{shift}(2, \frac{1}{2}, 2, \frac{1}{2}, \ldots) \) is such that \(T^2 \) coincides with the square of the "unweighted" unilateral shift. Thus \(T^2 \) is an isometry, but \(T \) is not a contraction (\(\| T \| = 2 \)), and hence \(T \notin \mathcal{Q} \) by Proposition 4 (so that \(T \) is not paranormal — in fact, \(T \) is not even normaloid: \(r(T) = 1 \)).

A part of an operator is a restriction of it to an invariant subspace. An operator \(T \) is *hereditarily normaloid* if every part of it is normaloid,
and \emph{totally hereditarily normaloid} if it is hereditarily normaloid and every invertible part of it has a normaloid inverse \cite{3}. The class of all hereditarily normaloid operators from $B[\mathcal{H}]$ is denoted by \mathcal{HN}, and the class of all totally hereditarily normaloid operators from \mathcal{HN} is denoted by $T\mathcal{HN}$. Recall that (see e.g., \cite{4})

$$\mathcal{P} \subset T\mathcal{HN} \subset \mathcal{HN} \subset \mathcal{N}.$$

Let \mathcal{M} be any invariant subspace for T. Proposition 1 ensures that the following assertions hold true.

(a) If $T \in \mathcal{Q} \cap \mathcal{HN}$, then $T|_{\mathcal{M}} \in \mathcal{Q} \cap \mathcal{HN}$.

(b) If $T \in \mathcal{Q} \cap T\mathcal{HN}$ then $T|_{\mathcal{M}} \in \mathcal{Q} \cap T\mathcal{HN}$ and, if $T|_{\mathcal{M}}$ is invertible, then $(T|_{\mathcal{M}})^{-1} \in \mathcal{Q} \cap \mathcal{N}$.

Note that $T = I \oplus S$, with $S = \lambda\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ for any $\lambda \in (0, 1/\sqrt{2})$, is a contraction in $(\mathcal{Q} \cap \mathcal{N}) \setminus \mathcal{HN}$. In fact, S is not normaloid so that T is not in \mathcal{HN}. There are two ways for an operator T to be in $T\mathcal{HN}$: either $T \in \mathcal{HN}$ has no invertible part, or it has invertible parts and all of them have a normaloid inverse. The latter case prompts the question: are the invertible operators in $\mathcal{Q} \cap T\mathcal{HN}$ paranormal? More generally, is it true that, if T is an invertible normaloid operator with a normaloid inverse, then $T \in \mathcal{Q}$ implies $T \in \mathcal{P}$? (i.e., $T \in \mathcal{Q}$ implies $\lambda T \in \mathcal{Q}$ for all $\lambda > 0$?)

\section{Invariant subspace theorem for contractions of class \mathcal{Q}}

Take any operator T in $B[\mathcal{H}]$ and set $D = I - T^*T$. Recall that T is a contraction if and only if D is nonnegative. In this case, $D^{1/2}$ is the defect operator of T.

\textbf{Proposition 5}. A contraction T lies in \mathcal{Q} if and only if $\|D^{1/2}Tx\| \leq \|D^{1/2}x\|$ for every $x \in \mathcal{H}$.

\textbf{Proof}. For any $T \in B[\mathcal{H}]$ put $Q = T^{2*}T^2 - 2T^*T + I$ and $D = I - T^*T$. Since

$$Q = D - T^*DT,$$

it follows that $O \leq Q$ if and only if $\langle T^*DTx ; x \rangle \leq \langle Dx ; x \rangle$ for every $x \in \mathcal{H}$ or, equivalently, $\|D^{1/2}Tx\|^2 \leq \|D^{1/2}x\|^2$ for every $x \in \mathcal{H}$ if T is a contraction. \qed
If a contraction T has no nontrivial invariant subspace, then D is a proper contraction. Indeed, if T is a contraction with no nontrivial invariant subspace, then $\ker(T) = \{0\}$ so that $\|D^{\frac{1}{2}} x\|^2 = \|x\|^2 - \|T x\|^2 < \|x\|^2$ for every nonzero x in \mathcal{H}, which means that $D^{\frac{1}{2}}$ (and so D) is a proper contraction. If, in addition, T is of class Q, then more is true.

Theorem 1. If a contraction $T \in Q$ has no nontrivial invariant subspace, then both T and Q are proper contractions.

Proof. Let $T \neq O$ be a contraction of class Q. Since $\ker(D) = \ker(D^{\frac{1}{2}})$, it follows by Proposition 5 that $\ker(D)$ is an invariant subspace for T. Suppose T has no nontrivial invariant subspace so that either $\ker(D) = \mathcal{H}$ or $\ker(D) = \{0\}$. In the former case $D = O$; that is, $T^* T = I$, and so T is an isometry, which is a contradiction: isometries have nontrivial invariant subspaces. In the latter case $D > O$; that is, $T^* T < I$, which means that T is a proper contraction. Moreover, if T is a contraction of class Q, then the nonnegative operator Q is such that the power sequence $\{Q^n\}_{n \geq 1}$ converges strongly to P (i.e., $Q^n \xrightarrow{\text{s}} P$), where P is an orthogonal projection, and $TP = O$ so that $PT^* = O$ (P is self-adjoint) [6]. If T has no nontrivial invariant subspace, then T^* has no nontrivial invariant subspace as well. Since $\ker(P)$ is a nonzero invariant subspace for T^* whenever $PT^* = O$ and $T \neq O$, it follows that $\ker(P) = \mathcal{H}$. Hence $P = O$, and therefore $Q^n \xrightarrow{\text{s}} O$; that is, the nonnegative operator Q is strongly stable. But strong stability coincides with proper contractiveness for quasinormal operators [6]; in particular, for nonnegative operators. Thus Q also is a proper contraction. \(\square\)

References

B. P. Duggal, 5 Tudor Court, Amherst Road, London W13 8NE, England
E-mail: bpduggal@yahoo.co.uk

C. S. Kubrusly, Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil
E-mail: carlos@ele.puc-rio.br

N. Levan, University of California in Los Angeles, Los Angeles, CA 90024-1594, USA
E-mail: levan@ee.ucla.edu