ON THE STABILITY OF A JENSEN TYPE
FUNCTIONAL EQUATION ON GROUPS

VALERIĬ A. FAĬZIEV AND PRASANNA K. SAHOO

ABSTRACT. In this paper we establish the stability of a Jensen type
functional equation, namely \(f(xy) - f(xy^{-1}) = 2f(y) \), on some
classes of groups. We prove that any group \(A \) can be embedded
into some group \(G \) such that the Jensen type functional equation is
stable on \(G \). We also prove that the Jensen type functional equation
is stable on any metabelian group, \(GL(n, \mathbb{C}) \), \(SL(n, \mathbb{C}) \), and \(T(n, \mathbb{C}) \).

1. Introduction

Given an operator \(T \) and a solution class \(\{u\} \) with the property that
\(T(u) = 0 \), when does \(\|T(v)\| \leq \varepsilon \) for an \(\varepsilon > 0 \) imply that \(\|u - v\| \leq \delta(\varepsilon) \)
for some \(u \) and for some \(\delta > 0 \)? This problem is called the stability
of the functional transformation [28]. It happened in 1940 that the
audience of the Mathematics Club of the University of Wisconsin had the
pleasure to listen to the talk of S.M. Ulam presenting a list of unsolved
problems. One of these problems can be considered as the starting point
of a new line of investigation: The stability problem. This problem can
be formulated as follows. If we replace a given functional equation by
a functional inequality, then under what conditions we can state that
the solutions of the inequality are close to the solutions of the equation.
For instance, given a group \(G_1 \), a metric group \((G_2, d) \) and a positive
number \(\varepsilon \). The Ulam question is: does there exist a \(\delta > 0 \) such that
if \(f : G_1 \to G_2 \) satisfies \(d(f(xy), f(x)f(y)) < \delta \) for all \(x, y \in G_1 \), then
a homomorphism \(T : G_1 \to G_2 \) exists with \(d(f(x), T(x)) < \varepsilon \) for all
\(x, y \in G_1 \)?
In the case of a positive answer to this problem, we say that the homomorphisms $G_1 \to G_2$ are stable or that the Cauchy functional equation

$$f(x \cdot y) = f(x) \ast f(y)$$

is stable for the pair (G_1, G_2).

See S. M. Ulam[27] for a discussion of such problems, as well as D. H. Hyers[11, 12], D. H. Hyers and S. M. Ulam[16, 17], J. Aczél and J. Dhombres[1]. The first affirmative answer was given by D. H. Hyers[11] in 1941. We present his result in theorem below.

Theorem 1.1. (Hyers[11]) Let E_1 and E_2 be Banach spaces. If $f : E_1 \to E_2$ satisfies the inequality

$$(1.1) \quad \| f(x + y) - f(x) - f(y) \| < \varepsilon$$

for some $\varepsilon > 0$ and for all $x, y \in E_1$, then there exists a unique map $T : E_1 \to E_2$ such that

$$(1.2) \quad T(x + y) - T(x) - T(y) = 0 \text{ for all } x, y \in E_1$$

and

$$(1.3) \quad \| f(x) - T(x) \| < \varepsilon \text{ for all } x \in E_1.$$
when the domain of the function is replaced by an arbitrary group. The equation (1.5) was studied in the papers [2], [4] and [23]. The question of stability of equation (1.5) was investigated in [18]–[21] and [26]. In all these papers domain of f is either an abelian group or some of its subsets. In [9], the present authors studied the stability of the equation (1.5) on arbitrary groups.

In the paper [24], the stability of the following Jensen type functional equation

$$2f\left(\frac{x-y}{2}\right) = f(x) - f(y)$$

(1.6)

was considered. Here again $f : \mathbb{R} \to \mathbb{R}$. Setting $\frac{1}{2}(x+y) = u$ and $\frac{1}{2}(x-y) = v$ we can rewrite the equation (1.6) as

$$2f(v) = f(u+v) - f(u-v).$$

The latter is equivalent to

$$f(xy) - f(xy^{-1}) = 2f(y)$$

(1.7)

and can be considered over an arbitrary group.

In the paper [24], the stability of equation (1.7) over a real normed space was considered. In the present paper we consider the stability of the Jensen type functional equation (1.7) over an arbitrary group.

2. Auxiliary results

Suppose that G is an arbitrary group and E is an arbitrary real Banach space.

Definition 2.1. We will say that a function $f : G \to E$ is a $(G;E)$-Jensen type function if for any $x, y \in G$ we have

$$f(xy) - f(xy^{-1}) - 2f(y) = 0.$$

(2.1)

We denote the set of all $(G;E)$-Jensen type functions by $JT(G;E)$.

Definition 2.2. We will say that a function $f : G \to E$ is a $(G;E)$-quasisjensen type function if there is a $c > 0$ such that for any $x, y \in G$ we have

$$\|f(xy) - f(xy^{-1}) - 2f(y)\| \leq c.$$

(2.2)
It is clear that the set of \((G; E)\)-quasijensen type functions is a real linear space. Denote it by \(KJT(G; E)\). From (2.2) we obtain
\[
\|f(y) - f(y^{-1}) - 2f(y)\| \leq c,
\]
therefore
\[(2.3) \quad \|f(y) + f(y^{-1})\| \leq c.
\]
Now letting \(y\) for \(x\) in (2.2), we get
\[
\|f(y^2) - f(1) - 2f(y)\| \leq c.
\]
Hence
\[(2.4) \quad \|f(x^2) - 2f(x)\| \leq c_2,
\]
where \(c_2 = c + \|f(1)\|\). Again substitution of \(x = y^2\) in (2.2) yields
\[
\|f(y^3) - f(y) - 2f(y)\| \leq c
\]
which is
\[(2.5) \quad \|f(y^3) - 3f(y)\| \leq c.
\]
Let \(c\) be as in (2.2) and define the set \(C\) as follows: \(C = \{ c_m \mid m \in \mathbb{N} \}\), where \(c_0 = 0, c_2 = c + \|f(1)\|\), and \(c_m = c + c_{m-2}\), if \(m > 2\).

Lemma 2.3. Let \(f \in KJT(G; E)\) such that
\[
\|f(xy) - f(xy^{-1}) - 2f(y)\| \leq c.
\]
Then for any \(x \in G\) and any \(m \in \mathbb{N}\) the following relation holds:
\[(2.6) \quad \|f(x^m) - mf(x)\| \leq c_m.
\]

Proof. The proof is by induction on \(m\). For \(m = 3\) the lemma is established. Suppose that for \(m\) the lemma has been already established and let us verify it for \(m + 1\). Letting \(x = y^m\) in (2.2), we have
\[
\|f(y^{m+1}) - f(y^{m-1}) - 2f(y)\| \leq c.
\]
By induction hypothesis, we have
\[
\|f(y^{m-1}) - (m - 1)f(y)\| \leq c_{m-1}
\]
and hence,
\[
\|f(y^{m+1}) - (m + 1)f(y)\| \leq c_{m+1} = c + c_{m-1}.
\]
Now the lemma is proved.
Lemma 2.4. Let \(f \in KJT(G; E) \). For any \(m > 1, k \in \mathbb{N} \) and \(x \in G \) we have
\[
\| f(x^{m^k}) - m^k f(x) \| \leq c_m (1 + m + \cdots + m^{k-1})
\]
and
\[
\left\| \frac{1}{m^k} f(x^{m^k}) - f(x) \right\| \leq c_m.
\]

Proof. The proof will be based on induction on \(k \). If \(k = 1 \), then (2.7) follows from (2.6). Suppose (2.7) is true for \(k \) and let us verify it for \(k + 1 \). Substituting \(x^m \) for \(x \) in (2.7) implies
\[
\| f(x^{m^{k+1}}) - m^k f(x^m) \| \leq c_m (1 + m + \cdots + m^{k-1}).
\]
Now using (2.6) we obtain
\[
\| m^k f(x^m) - m^{k+1} f(x) \| \leq c_m m^k
\]
and hence
\[
\| f(x^{m^{k+1}}) - m^{k+1} f(x) \| \leq c_m (1 + m + \cdots + m^k).
\]
The latter implies
\[
\left\| \frac{1}{m^{k+1}} f(x^{m^{k+1}}) - f(x) \right\| \leq c_m (1 + m + \cdots + m^k) \frac{1}{m^{k+1}} \leq c_m.
\]
This completes the proof of the lemma.

From (2.8) it follows that for any \(x \in G \) the set
\[
\left\{ \frac{1}{m^k} f(x^{m^k}) \right\}_{k \in \mathbb{N}}
\]
is bounded. Substituting \(x^{m^n} \) in place of \(x \) in (2.8), we obtain
\[
\left\| \frac{1}{m^k} f(x^{m^{n+k}}) - f(x^{m^n}) \right\| \leq c_m
\]
Thus
\[
\left\| \frac{1}{m^{n+k}} f(x^{m^{n+k}}) - \frac{1}{m^n} f(x^{m^n}) \right\| \leq \frac{c_m}{m^n} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]
From the latter, it follows that the sequence
\[
\left\{ \frac{1}{m^k} f(x^{m^k}) \right\}_{k \in \mathbb{N}}
\]
is a Cauchy sequence. Since the real Banach space \(E \) is complete, the above sequence has a limit and we denote it by \(\varphi_m(x) \). Thus

\[
\varphi_m(x) = \lim_{k \to \infty} \frac{1}{m^k} f(x^{mk}).
\]

From (2.8), it follows that

\[
\|\varphi_m(x) - f(x)\| \leq c_m, \quad \forall x \in G.
\]

Lemma 2.5. Let \(f \in KJT(G; E) \) such that

\[
\|f(xy) - f(xy^{-1}) - 2f(y)\| \leq c \quad \forall x, y \in G.
\]

Then for any \(m \in \mathbb{N} \), we have \(\varphi_m \in KJT(G; E) \).

Proof. Indeed, by (2.9)

\[
\|\varphi_m(xy) - \varphi_m(xy^{-1}) - 2\varphi_m(y)\|
\]

\[
= \|\varphi_m(xy) - f(xy) - \varphi_m(xy^{-1}) + f(xy^{-1}) - 2\varphi_m(y) + 2f(y)
\]

\[
+ f(xy) - f(xy^{-1}) - 2f(y)\|
\]

\[
\leq \|\varphi_m(xy) - f(xy)\| + \|\varphi_m(xy^{-1}) - f(xy^{-1})\|
\]

\[
+ 2\|\varphi_m(x) - f(x)\| + \|f(xy) - f(xy^{-1}) - 2f(y)\|
\]

\[
\leq 4c_m + c.
\]

This completes the proof of the lemma.

For any \(x \in G \) we have the relation

\[
\varphi_m(x^{mk}) = m^k \varphi_m(x).
\]

Indeed,

\[
\varphi_m(x^{mk}) = \lim_{\ell \to \infty} \frac{1}{m^\ell} f((x^{mk})^{m^\ell}) = \lim_{\ell \to \infty} \frac{m^k}{m^{k+\ell}} f(x^{mk+\ell})
\]

\[
= m^k \lim_{p \to \infty} \frac{1}{m^p} f(x^{mp}) = m^k \varphi_m(x).
\]

Lemma 2.6. If \(f \in KJT(G; E) \), then \(\varphi_2 = \varphi_m \) for any \(m \geq 2 \).

Proof. By Lemma 2.5, we have \(\varphi_2, \varphi_m \in KJT(G; E) \). Hence the function

\[
g(x) = \lim_{k \to \infty} \frac{1}{m^k} \varphi_2(x^{mk})
\]

is well-defined and is a \((G; E)\)-quasijensen type function.
It is clear that \(g(x^{m^k}) = m^k g(x) \) and \(g(x^{2^k}) = 2^k g(x) \) for any \(x \in G \) and any \(k \in \mathbb{N} \). From (2.9), it follows that there are \(d_1, d_2 \in \mathbb{R}_+ \) such that for all \(x \in G \)

\[
\| \varphi_2(x) - g(x) \| \leq d_1 \quad \text{and} \quad \| \varphi_m(x) - g(x) \| \leq d_2.
\]

Hence \(g \equiv \varphi_2 \) and \(g \equiv \varphi_m \) and we obtain \(\varphi_2 \equiv \varphi_m \).

Definition 2.7. By \((G; E)\)-pseudojensen type function we will mean a \((G; E)\)-quasijensen type function \(f \) such that \(f(x^n) = nf(x) \) for any \(x \in G \) and any \(n \in \mathbb{N} \).

The space of \((G; E)\)-pseudojensen type function will be denoted by \(PJT(G; E) \).

Lemma 2.8. For any \(f \in KJT(G; E) \), the function

\[
\hat{f}(x) = \lim_{k \to \infty} \frac{1}{2^k} f(x^{2^k})
\]

is well-defined and is a \((G; E)\)-pseudojensen function such that for any \(x \in G \)

\[
\| \hat{f}(x) - f(x) \| \leq c_2.
\]

Proof. By Lemma 2.5, \(\hat{f} \) is a \((G; E)\)-quasijensen type function. Now by Lemma 2.6, we have \(\hat{f}(x^m) = \varphi_m(x^m) = m \varphi_m(x) = m \hat{f}(x) \). Thus \(\varphi_m(x) = \hat{f}(x) \) and hence \(\varphi_2(x) = \hat{f}(x) \) by Lemma 2.6. From equality \(\hat{f} = \varphi_2 \) we have \(\| \hat{f}(x) - f(x) \| = \| \varphi_2(x) - f(x) \| \leq c_2 \).

Remark 2.9. If \(f \in PJT(G; E) \), then:

1. \(f(x^{-n}) = -nf(x) \) for any \(x \in G \) and \(n \in \mathbb{N} \);
2. if \(y \in G \) is an element of finite order then \(f(y) = 0 \);
3. if \(f \) is a bounded function on \(G \), then \(f \equiv 0 \).

Proof. Suppose for some \(c > 0 \) the following relation holds

\[
\| f(xy) - f(xy^{-1}) - 2f(y) \| \leq c.
\]

From (2.3) it follows that

\[
\| f(y^k) + f(y^{-k}) \| \leq c, \forall y \in G, \forall k \in \mathbb{N}.
\]

The last inequality is equivalent to \(k \| f(y) + f(y^{-1}) \| \leq c \) or \(\| f(y) + f(y^{-1}) \| \leq \frac{c}{k} \) for all \(y \in G \) and all \(k \in \mathbb{N} \). The latter implies \(f(y^{-1}) = -f(y) \). Thus for any \(n \in \mathbb{N} \), we have

\[
f(y^{-n}) = f((y^n)^{-1}) = -f(y^n) = -nf(y).
\]

Hence, the assertion 1 is established.

Similarly we verify the assertions 2 and 3.
We denote by $B(G; E)$ the space of all bounded mappings on a group G that take values in E.

Theorem 2.10. For an arbitrary group G the following decomposition holds

$$KJT(G; E) = PJT(G; E) \oplus B(G; E).$$

Proof. It is clear that $PJT(G; E)$ and $B(G; E)$ are subspaces of $KJT(G; E)$, and $PJT(G; E) \cap B(G; E) = \{0\}$. Hence the subspace of $KJT(G; E)$ generated by $PJT(G; E)$ and $B(G; E)$ is their direct sum. That is $PJT(G; E) \oplus B(G; E) \subseteq KJT(G; E)$. Let us verify that $KJT(G; E) \subseteq PJT(G; E) \oplus B(G; E)$. Indeed, if $f \in KJT(G; E)$, then by Lemma 2.8 we have $\hat{f} \in PJT(G; E)$ and $\hat{f} - f \in B(G; E)$.

Definition 2.11. Let E be a Banach space and G be a group. A mapping $f : G \to E$ is said to be a $(G; E)$-quasiadditive mapping of a group G if the set $\{f(xy) - f(x) - f(y) \mid x, y \in G\}$ is bounded.

Definition 2.12. By a $(G; E)$-pseudoadditive mapping of a group G we mean its $(G; E)$-quasiadditive mapping f that satisfies $f(x^n) = nf(x)$ for all $x \in G$ and for all $n \in \mathbb{Z}$.

Definition 2.13. A quasicharacter of a group G is a real-valued function f on G such that the set $\{f(xy) - f(x) - f(y) \mid x, y \in G\}$ is bounded.

Definition 2.14. By a pseudocharacter of a group G we mean its quasicharacter f that satisfies $f(x^n) = nf(x)$ for all $x \in G$ and all $n \in \mathbb{Z}$.

The set of all $(G; E)$-quasiadditive mappings is a vector space (with respect to the usual operations of addition of functions and their multiplication by numbers), which will be denoted by $KAM(G; E)$. The subspace of $KAM(G; E)$ consisting of $(G; E)$-pseudoadditive mappings will be denoted by $PAM(G; E)$ and the subspace consisting of additive mappings from G to E will be denoted by $\text{Hom}(G; E)$. We say that a $(G; E)$-pseudoadditive mapping φ of the group G is nontrivial if $\varphi \notin \text{Hom}(G; E)$.

The space of quasicharacters will be denoted by $KX(G)$, the space of pseudocharacters will be denoted by $PX(G)$, and the the space of real additive characters on G will be denoted by $X(G)$.

Remark 2.15. If a group G has nontrivial pseudocharacter, then for any Banach space E there is nontrivial $(G; E)$-pseudoadditive mapping.
Proof. Let f be a nontrivial pseudocharacter of the group G and $e \in E$ such that $e \neq 0$. Consider a mapping $\varphi : G \to E$ such that $\varphi(x) = f(x) \cdot e$. It easy to see that φ is nontrivial $(G; E)$-pseudoadditive mapping.

In [7] and [8], some classes of groups having nontrivial pseudocharacters are considered.

Theorem 2.16. For any group G the following relations hold:

1. $KAM(G; E) \subseteq KJT(G; E), \ PAM(G; E) \subseteq PJT(G; E)$, and $\text{Hom}(G; E) \subseteq JT(G; E)$;

2. If $f \in PJT(G; E)$, and $f(xy) = f(yx)$ for any $x, y \in G$, then $f \in PAM(G; E)$.

3. If $f \in PJT(G; E)$, and for some $a, b \in G$ we have $ab = ba$, then $f(ab) = f(a) + f(b)$.

Proof. (1) Let $f \in KAM(G; E)$ and $c > 0$ such that $\|f(xy) - f(x) - f(y)\| \leq c$ for all $x, y \in G$. Then we have

$$
\|f(xy) - f(xy^{-1}) - 2f(y)\| \\
= \|f(xy) - f(x) - f(y) - f(xy^{-1}) + f(x) + f(y^{-1})\| \\
= \|f(xy) - f(x) - f(y) - (f(xy^{-1}) - f(x) - f(y^{-1}))\| \\
\leq \|f(xy) - f(x) - f(y)\| + \|f(xy^{-1}) - f(x) - f(y^{-1})\| \leq 2c,
$$

that is, $KAM(G; E) \subseteq KJT(G; E)$. Hence, $PAM(G; E) \subseteq PJT(G; E)$.

(2) Let $f \in PJT(G; E)$, $c > 0$ such that $\|f(xy) - f(xy^{-1}) - 2f(y)\| \leq c$ and $f(xy) = f(yx)$ for all $x, y \in G$. Then we have

$$
2\|f(xy) - f(x) - f(y)\| \\
= \|f(xy) - f(xy^{-1}) - 2f(y) + f(xy) - f(yx^{-1}) - 2f(x)\| \\
\leq \|f(xy) - f(xy^{-1}) - 2f(y)\| + \|f(yx) - f(yx^{-1}) - 2f(x)\| \leq 2c.
$$

Hence $\|f(xy) - f(x) - f(y)\| \leq c$ and $f \in PAM(G; E)$.

(3) Let A be the subgroup of G generated by elements a and b. From the previous item we have $PJT(A; E) = PAM(A; E)$. Then for some $c > 0$ and for any $n \in \mathbb{N}$, we get

$$
n \| f(ab) - f(a) - f(b) \| = \| f((ab)^n) - f(a^n) - f(b^n) \| \\
= \| f(a^n b^n) - f(a^n) - f(b^n) \| \leq c.
$$

The latter is possible only if $f(ab) - f(a) - f(b) = 0$.

Corollary 2.17. If \(G \) is an abelian group, then \(\text{PJT}(G; E) = \text{Hom}(G; E) \).

3. Stability

Suppose that \(G \) is a group and \(E \) is a real Banach space.

Definition 3.1. We shall say that the equation (2.1) is stable for the pair \((G; E)\) if for any \(f : G \to E \) satisfying functional inequality

\[
\|f(xy) - f(xy^{-1}) - 2f(y)\| \leq c \quad \forall x, y \in G
\]

for some \(c > 0 \) there is a solution \(j \) of the functional equation (2.1) such that the function \(j(x) - f(x) \) belongs to \(B(G; E) \).

It is clear that the equation (2.1) is stable on \(G \) if and only if \(\text{PJT}(G; E) = \text{JT}(G; E) \). From Corollary 2.17 it follows that the equation (2.1) is stable on any abelian group. We will say that a \((G; E)\)-pseudojensen function \(f \) is nontrivial if \(f \notin \text{JT}(G; E) \).

Theorem 3.2. Let \(E_1, E_2 \) be a Banach spaces over reals. Then the equation (2.1) is stable for the pair \((G; E_1)\) if and only if it is stable for the pair \((G; E_2)\).

Proof. Let \(E \) be a Banach space and \(\mathbb{R} \) be the set of reals. Suppose that the equation (2.1) is stable for the pair \((G; E)\). Suppose that (2.1) is not stable for the pair \((G, \mathbb{R})\), then there is a nontrivial real-valued pseudojensen type function \(f \) on \(G \). Now let \(e \in E \) and \(\|e\| = 1 \). Consider the function \(\varphi : G \to E \) given by the formula \(\varphi(x) = f(x) \cdot e \). It is clear that \(\varphi \) is a nontrivial pseudojensen type \(E \)-valued function, and we obtain a contradiction.

Now suppose that the equation (2.1) is stable for the pair \((G, \mathbb{R})\), that is, \(\text{PJT}(G, \mathbb{R}) = \text{JT}(G, \mathbb{R}) \). Denote by \(E^* \) the space of linear bounded functionals on \(E \) endowed by functional norm topology. It is clear that for any \(\psi \in \text{PJT}(G, E) \) and any \(\lambda \in E^* \) the function \(\lambda \circ \psi \) belongs to the space \(\text{PJT}(G, \mathbb{R}) \). Indeed, for some \(c > 0 \) and any \(x, y \in G \) we have

\[
\|\psi(xy) - \psi(xy^{-1}) - 2\psi(y)\| \leq c.
\]

Hence

\[
|\lambda \circ \psi(xy) - \lambda \circ \psi(xy^{-1}) - \lambda \circ 2\psi(y)| = |\lambda(\psi(xy) - \psi(xy^{-1}) - 2\psi(y))| \\
\leq c\|\lambda\|.
\]

Obviously, \(\lambda \circ \psi(x^n) = n\lambda \circ \psi(x) \) for any \(x \in G \) and for any \(n \in \mathbb{N} \). Hence the function \(\lambda \circ \psi \) belongs to the space \(\text{PJT}(G, \mathbb{R}) \). Let \(f : G \to H \) be a nontrivial pseudojensen type mapping. Then there are \(x, y \in G \) such
that \(f(xy) - f(xy^{-1}) - 2f(y) \neq 0 \). Hahn–Banach Theorem implies that there is a \(\ell \in E^* \) such that \(\ell(f(xy) - f(xy^{-1}) - 2f(y)) \neq 0 \), and we see that \(\ell \circ f \) is a nontrivial pseudojensen type real–valued function on \(G \). This contradiction proves the theorem.

In what follows the space \(KJT(G, \mathbb{R}) \) will be denoted by \(KJT(G) \), the space \(PJT(G, \mathbb{R}) \) will be denoted by \(PJT(G) \), the space \(JT(G, \mathbb{R}) \) will be denoted by \(JT(G) \).

Corollary 3.3. The equation (2.1) over a group \(G \) is stable if and only if \(PJT(G) = JT(G) \).

Due to the previous theorem we may simply say that the equation (2.1) is stable or not stable.

Remark 3.4. For any group \(G \) and any Banach space \(E \) the following relation \(PAM(G; E) \cap JT(G; E) = \text{Hom}(G; E) \) holds.

Proof. It is clear that \(\text{Hom}(G; E) \subseteq PAM(G; E) \cap JT(G; E) \).

Lemma 1 from [6] asserts that if \(f \in PAM(G; E) \), then for any \(x, y \in G \) we have \(f(xy) = f(yx) \).

Suppose that \(f \in PAM(G; E) \cap JT(G; E) \). Since \(f \in JT(G; E) \), the map \(f \) satisfies

\[
(3.1) \quad f(xy) - f(xy^{-1}) - 2f(y) = 0.
\]

Interchanging \(x \) with \(y \) in (3.1), we have

\[
f(yx) - f(yx^{-1}) - 2f(x) = 0.
\]

Taking into account the relations

\[
f(yx) = f(xy) \quad \text{and} \quad f(yx^{-1}) = -f(xy^{-1}),
\]

we get

\[
(3.2) \quad f(xy) + f(xy^{-1}) - 2f(x) = 0.
\]

Adding (3.1) and (3.2), we obtain \(2f(xy) - 2f(x) - 2f(y) = 0 \). Hence \(f(xy) = f(x) + f(y) \) and \(f \in \text{Hom}(G; E) \), so

\[
(3.3) \quad PAM(G; E) \cap JT(G; E) = \text{Hom}(G; E).
\]

Remark 3.5. If a group \(G \) has nontrivial pseudocharacter, then the equation (2.1) is not stable on \(G \).

Proof. Let \(\varphi \) be a nontrivial pseudocharacter of \(G \). Suppose that there is \(j \in JT(G) \) such that the function \(\varphi - j \) is bounded. Then there is a \(c > 0 \) such that \(|\varphi(x) - j(x)| \leq c \) for any \(x \in G \). Hence for any \(n \in \mathbb{N} \) we have \(c \geq |\varphi(x^n) - j(x^n)| = n|\varphi(x) - j(x)| \) and we see that
the latter is possible if $\varphi(x) = j(x)$. So, $\varphi \in PX(G) \cap JT(G)$. Hence, $\varphi \in X(G)$ and we come to a contradiction with the assumption about φ.

Let G be an arbitrary group. For $a, b, c \in G$, we set $[a, b] = a^{-1}b^{-1}ab$ and $[a, b, c] = [[a, b], c]$.

Definition 3.6. We shall say that G is *metabelian* if for any $x, y, z \in G$ we have $[[x, y], z] = 1$.

It is clear that if $[x, y] = 1$, then $[[x, y], z] = 1$, and hence any abelian group is metabelian.

Our next goal is to prove a stability theorem for any metabelian group. Consider the group H over two generators a, b and the following defining relations:

$$[b, a]a = a[b, a], \quad b[b, a] = [b, a]b.$$

If we set $c = [b, a]$ we get the following representation of H in terms of generators and defining relations:

$$(3.4) \quad H = \langle a, b, c \mid c = [b, a], \quad [c, a] = [c, b] = 1 \rangle.$$

It is well known that each element of H can be uniquely represented as $g = a^mb^n c^k$, where $m, n, k \in \mathbb{Z}$. The mapping

$$g = a^mb^n c^k \rightarrow \begin{bmatrix} 1 & n & k \\ 0 & 1 & m \\ 0 & 0 & 1 \end{bmatrix}$$

is an isomorphism between H and $UT(3, \mathbb{Z})$.

Lemma 3.7. Let $f \in PJT(H)$ and $f(c) = 0$, then $f \in X(H)$.

Proof. Let $x = a^mb^n c^k$ and $y = a^{m_1}b^{n_1} c^{k_1}$ be two elements from H, then from the representation (3.4) it follows

$$xy = a^{m+m_1}b^{n+n_1}c^{m_1n+k+k_1}, \quad yx = a^{m+m_1}b^{n+n_1}c^{mn_1+k+k_1}.$$

Hence by Theorem 2.16 we have

$$f(xy) = f(a^{m+m_1}b^{n+n_1}) + f(c^{m_1n+k+k_1}) = f(a^{m+m_1}b^{n+n_1}),$$

$$f(yx) = f(a^{m+m_1}b^{n+n_1}) + f(c^{mn_1+k+k_1}) = f(a^{m+m_1}b^{n+n_1}).$$

Thus $f(xy) = f(yx)$ for any $x, y \in H$. By Theorem 2.16 we obtain that $f \in PX(H)$. From the representation (3.4) it follows that the subgroup of H generated by element c is the commutator subgroup of H. Lemma 2 from [6] establishes that if G is a group and $\varphi \in PX(G)$ such that $\varphi|_{G'} \equiv 0$, then $\varphi \in X(G)$. Here G' is the commutator subgroup of G. Hence, $f \in X(H)$.

LEMMA 3.8. Let \(f \in PJT(H) \), then \(f(c) = 0 \).

Proof. Let \(x = a^{m}b^{n}c^{k} \), \(y = a^{m_{1}}b^{n_{1}}c^{k_{1}} \), then
\[
x y^{-1} = a^{m}b^{n}c^{k} c^{-k_{1}} b^{-n_{1}} a^{-m_{1}} = a^{m-m_{1}}b^{n-n_{1}}c^{m_{1}n_{1}-m_{1}n+k-k_{1}}.
\]

Hence by Theorem 2.16, we obtain
\[
f(xy) - f(xy^{-1}) - 2f(y) = f(a^{m+m_{1}}b^{n+n_{1}}c^{nm_{1}+k+k_{1}})
- f(a^{m-m_{1}}b^{n-n_{1}}c^{m_{1}n_{1}-nm_{1}+k-k_{1}}) - 2f(a^{m_{1}}b^{n_{1}}c^{k_{1}})
= f(a^{m+m_{1}}b^{n+n_{1}}) + f(c^{nm_{1}+k+k_{1}})
- f(a^{m-m_{1}}b^{n-n_{1}}) - f(c^{m_{1}n_{1}-nm_{1}+k-k_{1}})
- 2f(a^{m_{1}}b^{n_{1}}) - 2f(c^{k_{1}})
= f(a^{m+m_{1}}b^{n+n_{1}}) - f(a^{m-m_{1}}b^{n-n_{1}}) - 2f(a^{m_{1}}b^{n_{1}})
+ f(c^{nm_{1}+k+k_{1}}) - f(c^{m_{1}n_{1}-nm_{1}+k-k_{1}}) - 2f(c^{k_{1}})
= f(a^{m+m_{1}}b^{n+n_{1}}) - f(a^{m-m_{1}}b^{n-n_{1}}) - 2f(a^{m_{1}}b^{n_{1}})
+ f(c^{nm_{1}+k+k_{1}-m_{1}n_{1}+nm_{1}+k-k_{1}-2k_{1}})
+ f(c^{2nm_{1}-m_{1}n_{1}})
\]

Hence the set
\[
M = \left\{ f(a^{m+m_{1}}b^{n+n_{1}}) - f(a^{m-m_{1}}b^{n-n_{1}}) - 2f(a^{m_{1}}b^{n_{1}})
+ f(c^{2nm_{1}-m_{1}n_{1}}) \mid m, n, k, m_{1}, n_{1} \in \mathbb{Z} \right\}
\]
is bounded. Let us set \(n_{1} = n = 2l \), then for some \(\Delta \), we have
\[
|f(a^{m+m_{1}}b^{n+n_{1}}) - f(a^{m_{1}}b^{n_{1}}) - 2f(b^{l})| \leq \Delta, \tag{3.5}
\]
\[
|f(a^{m_{1}}b^{n_{1}}) - f(a^{m_{1}}) - 2f(b^{l})| \leq \Delta. \tag{3.6}
\]

Taking into account these two relations, we see that the set
\[
M_{1} = \left\{ f(a^{m+m_{1}}b^{n+n_{1}}) - f(a^{m-m_{1}}b^{n-n_{1}})
- 2f(a^{m_{1}}b^{n_{1}}) \mid m, n, k, m_{1}, n_{1} \in \mathbb{Z} \right\}
\]
is bounded. Now from boundedness of the sets \(M \) and \(M_1 \) it follows that the set
\[
\left\{ f(c^{2nm_1-m_1n}) = f(c^{nm_1}) \, | \, n, m_1 \in \mathbb{Z} \right\}
\]
is bounded too. But it is possible only if \(f(c) = 0 \).

Lemma 3.9. \(PJT(H) = X(H) \).

Proof. The proof follows from Lemma 3.7 and Lemma 3.8.

Theorem 3.10. The equation (2.1) is stable on any metabelian group.

Proof. Let \(G \) be a metabelian group and \(f \in PJT(G) \). If \(x, y \in G \), then there is a homomorphism \(\tau \) of \(H \) into \(G \) such that \(\tau(a) = x \) and \(\tau(b) = y \). Obviously, the function \(f^*(g) = f(\tau(g)) \) belongs to \(PJT(H) \).

Now if \(f(xy) - f(xy^{-1}) - 2f(y) \neq 0 \), then \(f^*(ab) - f^*(ab^{-1}) - 2f^*(b) \neq 0 \) and we arrive at a contradiction with the previous Lemma 3.9. Thus \(f \in JT(G) \) and \(PJT(G) = JT(G) \). Therefore the equation (2.1) is stable on \(G \).

4. Some classic groups \(GL(n, \mathbb{C}), SL(n, \mathbb{C}), T(n, \mathbb{C}) \)

For any group \(G \) denote by \(G^2 \) its subset \(\{ x^2 \mid x \in G \} \).

Theorem 4.1. Let \(G \) be a group such that \(G = G^2 \), then \(PJT(G) = PX(G) \).

Proof. Let \(f \in PJT(G) \). For some \(c > 0 \) and any \(x, y \in G \), we have
\[
|f(xy^2) - f(xy^{-1}) - 2f(y)| \leq c,
\]
hence
\[
|f(xy^2) - f(x) - 2f(y)| = |f(xy^2) - f(x) - f(y^2)| \leq c.
\]

Let \(x, z \) be an arbitrary elements from \(G \), then for some \(y \in G \) we have \(z = y^2 \). Now from (4.1) it follows \(|f(xz) - f(x) - f(y)| = |f(xy^2) - f(x) - f(y^2)| \leq c \). Hence \(f \in PX(G) \).

Theorem 4.2. Let \(G \) denote the group \(GL(n, \mathbb{C}), SL(n, \mathbb{C}) \) or \(T(n, \mathbb{C}) \). Then the equation (2.1) is stable over \(G \).

Proof. Let \(G \) be one of the groups \(GL(n, \mathbb{C}), SL(n, \mathbb{C}) \) or \(T(n, \mathbb{C}) \). For any \(x \in G \) there is \(y \in G \) such that \(y^2 = x \). By Theorem 4.1, we have \(PJT(G) = PX(G) \). Let us show that \(PX(G) = X(G) \). The group \(T(n, \mathbb{C}) \) is solvable, hence by Theorem 1 from [6] we have \(PJT(T(n, \mathbb{C})) = \)
Proof. Let G be one of the groups $GL(n, \mathbb{C}), SL(n, \mathbb{C})$ or $T(n, \mathbb{C})$. For any $x \in G$ there is $y \in G$ such that $y^2 = x$. By Theorem 4.1, we have $PJT(G) = PX(G)$. Let us show that $PX(G) = X(G)$. The group $T(n, \mathbb{C})$ is solvable, hence by Theorem 1 from [6] we have $PJT(T(n, \mathbb{C})) = PX(T(n, \mathbb{C})) = X(T(n, \mathbb{C}))$. Consider the group $SL(n, \mathbb{C})$. It is well known that the group $SL(n, \mathbb{C})$ is generated by the set of elementary matrices, and that every elementary matrix is conjugate with its inverse. Hence, if $f \in PX(SL(n, \mathbb{C}))$ and x an elementary matrix, then $f(x) = 0$. It is well known that for any $n \in \mathbb{N}$ there exists $k(n)$ such that every element from $SL(n, \mathbb{C})$ can be represented as product no more then $k(n)$ elementary matrices.

If $|f(xy) - f(x) - f(y)| \leq c$ for all $x, y \in SL(n, \mathbb{C})$, then for any $g \in SL(n, \mathbb{C})$ we have $|f(g)| \leq k(n)c$, and we see that f is a bounded function of $SL(n, \mathbb{C})$. Therefore $f \equiv 0$ and $PX(SL(n, \mathbb{C})) = 0$. It is well known that $SL(n, \mathbb{C})$ is commutator subgroup of $GL(n, \mathbb{C})$. By Lemma 2 from [6] it follows that if a pseudocharacter of a group G is zero on its commutator subgroup G' then this pseudocharacter is a character of G. Hence, we get $PX(GL(n, \mathbb{C})) = X(GL(n, \mathbb{C}))$. So in any cases we have $PX(G) = X(G)$ and the equation (2.1) is stable over G.

Remark 4.3. Note that the Jensen type functional equation (2.1) is not stable on the group G if G is either $GL(2, \mathbb{Z})$ or $SL(2, \mathbb{Z})$. This is due to the fact that $SL(2, \mathbb{Z})$ has a nontrivial pseudocharacter (see Remark 3.5). Thus, in general, the equation (2.1) is not stable on groups $GL(n, \mathbb{Z})$ and $SL(n, \mathbb{Z})$.

5. The theorem of embedding

Definition 5.1. Let G be a group, $f \in PJT(G; E)$, and b an automorphism of G. We will say that f is invariant relative to b if for any $x \in G$ the relation $f(x^b) = f(x)$ holds. If the latter relation is valid for any $b \in B$, where B is a group of automorphism of G, then we will say that f is invariant relative to B.

From now on, the set of pseudojensen type functions on G invariant relative to B will be denoted by $PJT(G, B; E)$ and if $E = R$, then the space $PJT(G, B; R)$ will be denoted $PJT(G, B)$.

Theorem 5.2. Let H and A be a groups such that A is an abelian group and $H = H^2, A = A^2$. Let $Q = A \cdot H$ be a semidirect product of groups A and H, A acts by automorphism on H, and $H < Q$. Then $PJT(Q) = PX(Q) = X(A) \oplus PX(H, A)$ and $X(Q) = X(A) \oplus X(H, A)$.

Proof. Suppose that \(f \in PJT(Q) \) and for some \(c > 0 \) and for any \(x, y \in Q \), we have

\[
|f(xy) - f(xy^{-1}) - 2f(y)| \leq c.
\]

We can assume that \(f|_A \equiv 0 \). Indeed, the restriction of \(f \) to \(A \) is an element of the space \(PJT(A) \). Hence by Corollary 2.17 it is an element of the space \(X(A) \). Let \(\varphi = f \circ \tau \), where \(\tau : Q \to A \) a natural epimorphism with \(\ker \tau = H \). It is clear \(\varphi \in X(Q) \). Hence in order to show that \(f \in PX(Q) \) it is necessary and sufficient to show that \(\pi = f - \varphi \in PX(Q) \). But it is clear that \(\pi|_A \equiv 0 \). So we can assume \(f|_A \equiv 0 \).

Let \(a, b \in A , u, v \in H \). Then we have

\[
|f(uaa) - f(uaa^{-1}) - 2f(a)| \leq c.
\]

Hence

\[
|f(ua^2) - f(u)| \leq c.
\]

Since \(A = A^2 \) we get that for any \(a \in A \) the following relation

\[
|f(ua) - f(u)| \leq c,
\]

or

\[
|f(au^a) - f(u)| \leq c.
\]

It follows that

\[
|f(au) - f(ua^{-1})| \leq c.
\]

For any \(b \in A \) and \(v \in H \), we have \(2f(bv) = f((bv)^2) = f(b^2v^b v) \).

Taking into account (5.2), we get

\[
|f(b^2v^b v) - f(v^{b^2}v^b)| \leq c
\]

or

\[
|2f(bv) - f(v^{b^{-1}}v^{b^{-2}})| \leq c.
\]

From the latter inequality and (5.2), we get

\[
|2f(v^{b^{-1}}) - f(v^{b^{-1}}v^{b^{-2}})| \leq 3c.
\]

Now by Theorem 4.1, we obtain

\[
|2f(v^{b^{-1}}) - f(v^{b^{-1}}) - f(v^{b^{-2}})| \leq 4c
\]

or

\[
|f(v^{b^{-1}}) - f(v^{b^{-2}})| \leq 4c.
\]
Let us put \(d = b^{-1} \) and \(w = v^d \). Now from (5.4) it follows that for any \(d \in A \) and any \(w \in H \) the following relation

(5.5) \[|f(w) - f(w^d)| \leq 4c \]

holds. Changing \(w \) by \(w^n \) in the last relation we get

\[|f(w^n) - f((w^n)^d)| \leq 4c. \]

Hence

\[|f(w) - f(w^d)| = \frac{1}{n} |f(w^n) - f((w^n)^d)| \leq \frac{1}{n} 4c. \]

And we see that for any \(d \in A \) and any \(w \in H \) the following relation

(5.6) \[f(w) = f(w^d) \]

holds. Now from (5.2), we get

(5.7) \[|f(au) - f(u)| \leq c. \]

Let \(\psi = f|_H \), then from the relation (5.6) we get \(\psi^d = \psi \). Or \(\psi \in PX(H, A) \).

Now let us show that \(f \in PX(Q) \). Let \(x = au \) and \(y = bv \). Taking into account (5.6) and (5.7) we have

\[|f(xy) - f(x) - f(y)| = |f(abu^b v) - f(au) - f(bv)| \]

\[= |f(abu^b v) - f(u^b v) - f(au) + f(u) - f(bv)| \]

\[+ f(v) + f(u^b v) - f(u) - f(v)| \]

\[\leq |f(abu^b v) - f(u^b v)| + |f(au) + f(u)| \]

\[+ |f(bv) + f(v)| + |f(u^b v) - f(u) - f(v)| \]

\[\leq 4c. \]

So, \(f \in PX(Q) \) and \(PJT(Q) = PX(Q) \). Now by Theorem 2 from [5] we obtain \(PX(Q) = X(A) \oplus PX(H, A) \). The latter relation implies \(X(Q) = X(A) \oplus X(H, A) \).

Let \(A \) and \(B \) be an arbitrary groups. For each \(b \in B \) denote by \(A(b) \) a group that is isomorphic to \(A \) under isomorphism \(a \rightarrow a(b) \). Denote by \(D = A^{(B)} = \prod_{b \in B} A(b) \) the direct product of groups \(A(b) \). It is clear that if \(a_1(b_1)a_2(b_2) \cdots a_k(b_k) \) is an element of \(D \), then for any \(b \in B \), the mapping

\[b^* : a_1(b_1)a_2(b_2) \cdots a_k(b_k) \rightarrow a_1(1b_1)a_2(b_2b) \cdots a_k(b_kb) \]

is an automorphism of \(D \) and \(b \rightarrow b^* \) is an embedding of \(B \) into \(\text{Aut} \ D \).

Hence, we can form a semidirect product \(G = B \cdot D \). This group is called the wreath product of the groups \(A \) and \(B \), and will be denoted
by $G = A \cap B$. We will identify the group A with subgroup $A(1)$ of D, where $1 \in B$. Hence, we can assume that A is a subgroup of D.

Lemma 5.3. Any group G can be embedded into a group H such that $H^2 = H$.

Proof. The group H can be constructed by using amalgamated free product (see [22]) or by using wreath product (see [3]).

Theorem 5.4. Let G be an arbitrary group. Then G can be embedded into a group Q such that $PJ(Q) = JT(Q) = X(Q)$. Hence the equation (2.1) stable over Q.

Proof. Let us fix an arbitrary infinite Abelian group A such that $A = A^2$. Let us choose a group H satisfying Lemma 5.3.

Let us verify that the equation (2.1) is stable on $Q = H \cap A$. Denote by D the subgroup of Q generated by $H(b), b \in A$. The group D satisfies condition $D^2 = D$. By Theorem 5.2 we have $PJ(Q) = PX(Q) = X(A) \oplus PX(D, A)$.

Let us verify that $PX(D, A) = X(D, A)$. Suppose that $f \in PX(D, A)$ Let b_i for $i \in \mathbb{N}$ be distinct elements from A. Let $a, \alpha \in H$. Consider elements $u_k = a(b_1)a(b_2)\cdots a(b_k)$ and $v_k = \alpha(b_1)\alpha(b_2)\cdots \alpha(b_k)$. Then by Corollary 2.17, for any $k \in \mathbb{N}$, we have

$$|f(u_kv_k) - f(u_k) - f(v_k)| = \left| \sum_{i=1}^{k} [f(a\alpha(b_i)) - f(a(b_i)) - f(\alpha(b_i))] \right|.$$

By formula (5.6), we have $f(d(b_i)) = f(d(b_i)(1)) = f((1))$ for any $d \in A$ and for any $i \in \mathbb{N}$. Let $r = f(a\alpha) - f(a) - f(\alpha)$. Hence $r = f(a\alpha(b_i)) - f(a(b_i)) - f(\alpha(b_i))$ for any $i \in N$. Therefore

$$|f(u_kv_k) - f(u_k) - f(v_k)| = \left| \sum_{i=1}^{k} [f(a\alpha(b_i)) - f(a(b_i)) - f(\alpha(b_i))] \right|.$$

$$= |k|f(a\alpha(1)) - f(a(1)) - f(\alpha(1))|.$$

$$= k|r|.$$

Further we have

$$|f(u_kv_k) - f(u_k) - f(v_k)| \leq c.$$

Hence

$$k|r| < c.$$
and
\[|r| \leq c \frac{1}{k} \quad \forall k \in \mathbb{N}. \]

The latter is possible only if \(r = 0 \). Thus \(f(a\alpha) - f(a) - f(\alpha) = 0 \) and \(f \in X(D, A) \). Hence \(PJT(Q) = X(A) \oplus X(D, A) \). And we see that \(PJT(Q) = X(Q) \). So the equation is stable (2.1) on the group \(Q \).

Acknowledgments. We would like to thank the referee for the helpful comments and suggestions. The work was partially supported by an IRI Grant from the Office of the Vice President for Research, University of Louisville.

References

VALERIY A. FAIZIEV, TVER STATE AGRICULTURAL ACADEMY, TVER SAKHAROVO, RUSSIA

Current address: Zheleznodorozhnikov Street, 31/1-13, Tver 170043, Russia

E-mail: vfaiz@tvcom.ru

PRASANNA K. SAHOO, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LOUISVILLE, LOUISVILLE, KENTUCKY 40292, U.S.A

E-mail: sahoo@louisville.edu