ON STABILITY OF THE FUNCTIONAL EQUATIONS HAVING RELATION WITH A MULTIPLICATIVE DERIVATION

EUN HWI LEE, ICK-SOON CHANG, AND YONG-SOO JUNG

ABSTRACT. In this paper we study the Hyers-Ulam-Rassias stability of the functional equations related to a multiplicative derivation.

1. Introduction

In 1940, the stability problem of functional equations has originally been stated by S. M. Ulam [26]. As an answer to the problem of Ulam, D. H. Hyers has proved the stability of the linear functional equation [8] in 1941, which states that if $\delta > 0$ and $f : X \to Y$ is mapping with X, Y Banach spaces, such that

$$\|f(x + y) - f(x) - f(y)\| \leq \delta$$

(1.1)

for all $x, y \in X$, then there exists a unique additive mapping $T : X \to Y$ such that

$$\|f(x) - T(x)\| \leq \delta$$

for all $x, y \in X$.

In such a case, the additive functional equation $f(x + y) = f(x) + f(y)$ is said to have the Hyers-Ulam stability property on (X, Y). This terminology is applied to all kinds of functional equations which have been studied by many authors (for instance, [9]-[11], [17]-[23]).

In 1978, Th. M. Rassias [17] succeeded in generalizing the Hyers’ result by weakening the condition for the bound of the left side of the inequality (1.1). Due to the fact, the additive functional equation $f(x + y) = f(x) + f(y)$ is said to have the Hyers-Ulam-Rassias stability property on (X, Y). Since then, a number of results concerning the stability of different functional equations can be found in [3, 4, 5, 7, 9, 11, 14, 17].

Received September 20, 2006.
2000 Mathematics Subject Classification. 39B52, 39B72.
Key words and phrases. Hyers-Ulam-Rassias stability, multiplicative (Jordan) derivation.
We now consider functional equations which define multiplicative derivations and multiplicative Jordan derivations in algebras:

\begin{align}
(1.2) & \quad d(xy) = xd(y) + yd(x), \\
(1.3) & \quad g(x^2) = 2xg(x). \\
\end{align}

It is immediate to observed that the real-valued function \(f(x) = x \ln x \) is a solution of the functional equations (1.2) and (1.3).

During the 34-th International Symposium on Functional Equations, Gy. Maksa [1] posed the Hyers-Ulam stability problem for the functional equation (1.2) on the interval (0,1]. The first result concerning the superstability of this equation for functions between operator algebras was obtained by P. Šemrl [24]. On the other hand, Zs. Páles [16] remarked that the functional equation (1.2) for real-valued functions on \([1, \infty)\) is stable in the sense of Hyers and Ulam. In 1997, C. Borelli [2] demonstrated the stability of the equation (1.2). In particular, J. Tabor gave an answer to the question of Maksa in [25].

Here we introduce the next functional equation due to the functional equation (1.3):

\begin{align}
(1.4) & \quad h(rx^2 + 2x) = 2rxh(x) + 2h(x),
\end{align}

where \(r \) is a nonzero real number, and consider the following functional equation motivated by the functional equation (1.2):

\begin{align}
(1.5) & \quad h(x + y + rxy) = h(x) + h(y) + rxh(y) + ryh(x),
\end{align}

where \(r \) is a nonzero real number.

The purpose of this paper is to solve the functional equation (1.4), (1.5) and investigate the Hyers-Ulam-Rassias stability of the functional equation (1.4), (1.5), respectively.

2. Stability of Eq. (1.4) and Eq. (1.5)

It is easy to see that the real-valued function \(f(x) = (rx+1) \ln(rx+1) \), where \(r \) is a nonzero real number, is a solution of the functional equation (1.4) on the interval. Now we are ready to find out the general solution of the functional equation (1.4).

Theorem 2.1. Let \(X \) be a real (complex) vector space and \(r > 0 \). A function \(h : (-\frac{1}{r}, \infty) \rightarrow X \) satisfies the functional equation (1.4) for all \(x \in (-\frac{1}{r}, \infty) \) if and only if there exists a solution \(G : (0, \infty) \rightarrow X \) of the functional equation (1.3) such that

\[h(x) = G(rx + 1) \]

for all \(x \in (-\frac{1}{r}, \infty) \).

Proof. Assume that a function \(h : (-\frac{1}{r}, \infty) \rightarrow X \) satisfies (1.4) for all \(x \in (-\frac{1}{r}, \infty) \). Then we can define the mapping \(G : (0, \infty) \rightarrow X \) by \(G(x) = h(\frac{x-1}{r}) \).
So we get
\[G(x^2) = h\left(\frac{x^2 - 1}{r}\right) = h\left(r \left(\frac{x - 1}{r}\right)^2 + 2\left(\frac{x - 1}{r}\right)\right) \]
\[= 2r\left(\frac{x - 1}{r}\right)h\left(\frac{x - 1}{r}\right) + 2h\left(\frac{x - 1}{r}\right) \]
\[= 2xG(x) \]
for all \(x \in (0, \infty) \). Therefore \(G \) is a solution of the functional equation (1.3), as desired, and \(h(x) = G(rx + 1) \) for all \(x \in \left(-\frac{1}{r}, \infty\right) \).

The converse is obvious. \(\square \)

We here present the general solution of the functional equation (1.5).

Theorem 2.2. Let \(X \) be a real (complex) vector space and \(r > 0 \). A function \(h : (-\frac{1}{r}, \infty) \to X \) satisfies the functional equation (1.5) for all \(x \in (-\frac{1}{r}, \infty) \) if and only if there exists a solution \(D : (0, \infty) \to X \) of the functional equation (1.2) such that
\[h(x) = D(rx + 1) \]
for all \(x \in (-\frac{1}{r}, \infty) \).

Proof. The arguments used in Theorem 2.1 carry over almost verbatim. \(\square \)

In particular, the previous two theorems hold for the case \(r < 0 \). Throughout this paper, \(\mathbb{R}^+ \) denotes the set of all nonnegative real numbers and \(X \) a real Banach space with the norm \(|\cdot| \).

Theorem 2.3. [15, Theorem 2.1] Let \(f : [c, \infty) \to X \) be a given function for some \(c \geq 1 \) and let \(\varphi : [c, \infty) \to \mathbb{R}^+ \) be a function such that
\[|f(x^2) - 2xf(x)| \leq \varphi(x) \]
for all \(x \in [c, \infty) \). If the series \(\sum_{i=1}^{\infty} 2^{-i} \varphi(x^{2^{i-1}}) \) converges, then there exists a unique solution \(g : [c, \infty) \to X \) of equation (1.3) such that
\[|f(x) - g(x)| \leq \sum_{i=1}^{\infty} 2^{-i} \varphi(x^{2^{i-1}}) \]
for all \(x \in [c, \infty) \).

Theorem 2.4. Let \(f : [0, \infty) \to X \) be a given function and \(r > 0 \). Assume that \(\varphi : [0, \infty) \to \mathbb{R}^+ \) is a function such that
\[|f(rx^2 + 2x) - 2rxf(x) - 2f(x)| \leq \varphi(x) \]
for all \(x \in [0, \infty) \). If the series \(\sum_{i=1}^{\infty} 2^{-i} \varphi((rx+1)^{2^{i-1}}) \) converges, then there exists a unique solution \(h : [0, \infty) \to X \) of equation (1.4) such that
\[|f(x) - h(x)| \leq \sum_{i=1}^{\infty} 2^{-i} \varphi((rx+1)^{2^{i-1}}) \]
for all \(x \in [0, \infty) \).
Proof. Now put \(x = \frac{t-1}{r} \) in (2.3) to obtain
\[
\left| f\left(\frac{t^2-1}{r}\right) - 2tf\left(\frac{t-1}{r}\right) \right| \leq \varphi\left(\frac{t-1}{r}\right).
\]

Let us define functions \(e, \psi : [1, \infty) \to X \) by
\[
e(t) = f\left(\frac{t-1}{r}\right), \quad \psi(t) = \varphi\left(\frac{t-1}{r}\right).
\]

Then, by Theorem 2.3, there exists a unique solution \(g : [1, \infty) \to X \) of equation (1.3) such that
\[
|e(t) - g(t)| \leq \sum_{i=1}^{\infty} 2^{-i}\psi(t^{2^{i-1}})
\]
for all \(t \in [1, \infty) \). Since \(t = rx + 1 \), we have
\[
|f(x) - g(rx + 1)| \leq \sum_{i=1}^{\infty} 2^{-i}\varphi\left(\frac{(rx + 1)^{2^{i-1}} - 1}{r}\right).
\]

Hence we can define a function \(h : [0, \infty) \to X \) by \(h(x) = g(rx + 1) \), and so
\[
h(rx^2 + 2x) = g((rx + 1)^2) = 2(rx + 1)g(rx + 1) = 2rxg(rx + 1) + 2g(rx + 1) = 2rxh(x) + 2h(x).
\]

The proof of the theorem is complete. \(\square \)

The following two corollaries are immediate consequences of Theorem 2.1.

Corollary 2.5. Let \(f : [0, \infty) \to \mathbb{R} \) be a given function and \(r > 0 \). Assume that \(\Delta : [0, \infty)^2 \to \mathbb{R}^+ \) is a function such that for any \(x, y \in [0, \infty) \),
\[
|f(x + y + rxy) - f(x) - f(y) - rxf(y) - ryf(x)| \leq \Delta(x, y).
\]

If the series
\[
\sum_{i=1}^{\infty} 2^{-i}\Delta\left(\frac{(rx + 1)^{2^{i-1}} - 1}{r}, \frac{(rx + 1)^{2^{i-1}} - 1}{r}\right)
\]
converges and
\[
2^{-n}\Delta\left(\frac{(rx + 1)^{2^n} - 1}{r}, \frac{(ry + 1)^{2^n} - 1}{r}\right)
\]
converges to zero for all \(x \in [0, \infty) \) then there exists a unique solution \(h : [0, \infty) \to \mathbb{R} \) of equation (1.5) such that
\[
|f(x) - h(x)| \leq \sum_{i=1}^{\infty} 2^{-i}\Delta\left(\frac{(rx + 1)^{2^{i-1}} - 1}{r}, \frac{(rx + 1)^{2^{i-1}} - 1}{r}\right)
\]
for all \(x \in [0, \infty) \).
Proof. For \(x = y \) in (2.5), we have
\[
|f(rx^2 + 2x) - 2rx f(x) - 2f(x)| \leq \Delta(x, x).
\]
Putting \(\varphi(x) = \Delta(x, x) \) and applying Theorem 2.4, one obtains
\[
h(x) = g(rx + 1) = \lim_{n \to \infty} \frac{f\left(\frac{(rx+1)^{2^n} - 1}{r}\right)}{2^n(rx + 1)^{2^n-1}}
\]
satisfying (2.6). We claim that \(h \) satisfies
\[
h(x + y + rxy) = h(x) + h(y) + rxh(y) + ryh(x).
\]

Note that
\[
(2.7) \quad f\left(\frac{(rx+1)^{2^n} (ry + 1)^{2^n} - 1}{r}\right) = f\left(\frac{(rx+1)^{2^n} - 1}{r}\right) + (\frac{ry + 1}{r})^{2^n-1} + r \cdot (\frac{rx+1}{r})^{2^n-1} \cdot (\frac{ry + 1}{r})^{2^n-1}.
\]

In the inequality (2.5), replace \(x \) by \(\frac{(rx+1)^{2^n} - 1}{r} \), \(y \) by \(\frac{(ry+1)^{2^n} - 1}{r} \) and consider the equality (2.7) to find that
\[
(2.8) \quad \left| f\left(\frac{(rx+1)^{2^n} (ry + 1)^{2^n} - 1}{r}\right) - (\frac{rx+1}{r})^{2^n-1} f\left(\frac{(rx+1)^{2^n} - 1}{r}\right)
- (rx+1)^2 \cdot f\left(\frac{(ry + 1)^{2^n} - 1}{r}\right) - r x (rx+1)^2 \cdot f\left(\frac{(ry + 1)^{2^n} - 1}{r}\right)
- r y (ry+1)^2 \cdot f\left(\frac{(rx+1)^{2^n} - 1}{r}\right) \right| \leq \Delta\left(\frac{(rx+1)^{2^n} - 1}{r}, \frac{(ry + 1)^{2^n} - 1}{r}\right).
\]

Now if we divide the inequality (2.8) by \(2^n (rx + 1)^{2^n-1} (ry + 1)^{2^n-1} \), then, since
\[
\frac{1}{2^n (rx + 1)^{2^n-1} (ry + 1)^{2^n-1}} \leq 1,
\]
we get
\[
\frac{1}{2^n (rx + 1)^{2^n-1} (ry + 1)^{2^n-1}} f\left(\frac{(rx+1)^{2^n} (ry + 1)^{2^n} - 1}{r}\right)
- \frac{1}{2^n (rx + 1)^{2^n-1}} f\left(\frac{(rx+1)^{2^n} - 1}{r}\right) - \frac{1}{2^n (ry + 1)^{2^n-1}} \leq 1.
\]
\[f\left(\frac{(ry + 1)2^n - 1}{r}\right) - \frac{rx}{2^n(ry + 1)^{2^n - 1}} f\left(\frac{(ry + 1)^{2^n} - 1}{r}\right) - \frac{ry}{2^n(rx + 1)^{2^n - 1}} f\left(\frac{(rx + 1)^{2^n} - 1}{r}\right) \leq 2^{-n} \Delta \left(\frac{(rx + 1)^{2^n} - 1}{r}, \frac{(ry + 1)^{2^n} - 1}{r}\right). \]

Taking the limit in the last inequality as \(n \to \infty \), we have
\[h(x + y + rxy) - h(x) - h(y) - rxf(y) - ryf(x) = 0. \]

The proof of the corollary is complete. \(\square \)

Corollary 2.6. Let \(f : [0, \infty) \to X \) be a given function such that for some \(r > 0 \), \(\theta \geq 0 \) and \(p, q \leq 0 \),
\[|f(x + y + rxy) - f(x) - f(y) - rxf(y) - ryf(x)| \leq \theta(x^p + y^q) \]
for all \(x, y \in [0, \infty) \). Then there exists a unique solution \(h : [0, \infty) \to X \) of equation (1.5) such that
\[|f(x) - h(x)| \leq \sum_{i=1}^{\infty} 2^{-i\theta} \left[\left(\frac{(rx + 1)^{2^i-1} - 1}{r}\right)^p + \left(\frac{(rx + 1)^{2^i-1} - 1}{r}\right)^q \right] \]
for all \(x \in [0, \infty) \).

Proof. Setting \(\Delta(x, y) = \theta(x^p + y^q) \) in the previous Corollary 2.5, we can obtain the desired result. \(\square \)

Theorem 2.7. [15, Theorem 2.5] Let \(f : (0, 1] \to X \) be a given function and let \(\varphi : (0, 1] \to \mathbb{R}^+ \) be a function satisfying
\[|f(x^2) - 2xf(x)| \leq \varphi(x) \]
for all \(x \in (0, 1] \). If the series \(\sum_{i=0}^{\infty} 2^i \varphi(x^{2^{-i-1}}) \) converges, then there exists a unique solution \(h : (0, 1] \to X \) of the equation (1.3) such that
\[|f(x) - h(x)| \leq \sum_{i=0}^{\infty} 2^i \varphi(x^{2^{-i-1}}) \]
for all \(x \in (0, 1] \).

Theorem 2.8. Let \(f : (-1/r, 0] \to X \) be a given function and let \(\varphi : (-1/r, 0] \to \mathbb{R}^+ \) be a function satisfying for some \(r > 0 \),
\[|f(rx^2 + 2x) - 2rx^2f(x) - 2f(x)| \leq \varphi(x) \]
for all \(x \in (-1/r, 0] \). If the series \(\sum_{i=1}^{\infty} 2^i \varphi\left(\frac{(rx+1)^{2^i-1} - 1}{r}\right) \) converges, then there exists a unique solution \(h : (-1/r, 0] \to X \) of equation (1.4) such that
\[|f(x) - h(x)| \leq \sum_{i=0}^{\infty} 2^i \varphi\left(\frac{(rx+1)^{2^i-1} - 1}{r}\right) \]
for all \(x \in (-1/r, 0]\).

Proof. As the proof of Theorem 2.4, if we set \(t = rx + 1\) in (2.12), then we have

\[
|f\left(\frac{t^2 - 1}{r}\right) - 2tf\left(\frac{t - 1}{r}\right)| \leq \varphi\left(\frac{t - 1}{r}\right).
\]

Define \(e, \psi : (0, 1] \to X\) by

\[
e(t) = f\left(\frac{t - 1}{r}\right), \quad \psi(t) = \varphi\left(\frac{t - 1}{r}\right).
\]

Then, by Theorem 2.7, there exists a unique solution \(d : (0, 1] \to X\) of the equation (1.3) such that

\[
|e(t) - d(t)| \leq \sum_{i=0}^{\infty} 2^i \varphi\left(\frac{t^{2^{-i-1}} - 1}{r}\right),
\]

where

\[
d(t) = \lim_{n \to \infty} 2^nt^{1-2^{-n}}f\left(\frac{t^{2^{-n}} - 1}{r}\right).
\]

Since \(e(t) = f\left(\frac{t-1}{r}\right)\) and \(t = rx + 1\),

\[
|f(x) - d(rx + 1)| \leq \sum_{i=0}^{\infty} 2^i \varphi\left(\frac{(rx + 1)^{2^{-i}} - 1}{r}\right).
\]

Now we can define \(h : (-1/r, 0] \to X\) by \(h(x) = d(rx + 1)\). Then

\[
\begin{align*}
 h(rx^2 + 2x) &= d((rx + 1)^2) = 2(rx + 1)d(rx + 1) \\
 &= 2rxd(rx + 1) + 2d(rx + 1) = 2rxh(x) + 2h(x),
\end{align*}
\]

which completes the proof. \(\square\)

Corollary 2.9. Let \(f : (-1/r, 0] \to \mathbb{R}\) be a given function and let \(\Delta : (-1/r, 0]^2 \to \mathbb{R}^+\) be a function satisfying for some \(r > 0\),

(2.14) \[|f(x + y + rxy) - f(x) - f(y) - rxf(y) - ryf(x)| \leq \Delta(x, y)\]

for all \(x, y \in (-1/r, 0]\). If the series

\[
\sum_{i=1}^{\infty} 2^i \Delta\left(\frac{(rx + 1)^{2^{-i-1}} - 1}{r}, \frac{(ry + 1)^{2^{-i-1}} - 1}{r}\right)
\]

converges and

\[
2^n \Delta\left(\frac{(rx + 1)^{2^{-i}} - 1}{r}, \frac{(ry + 1)^{2^{-i}} - 1}{r}\right)
\]

converges to zero, then there exists a unique solution \(h : (-1/r, 0] \to \mathbb{R}\) of equation (1.5) such that

(2.15) \[|f(x) - h(x)| \leq \sum_{i=1}^{\infty} 2^i \Delta\left(\frac{(rx + 1)^{2^{-i-1}} - 1}{r}, \frac{(ry + 1)^{2^{-i-1}} - 1}{r}\right)\]

for all \(x \in (-1/r, 0].\)
Proof. For $y = x$ in (2.14), we have

$$|f(rx^2 + 2x) - 2rx f(x) - 2f(x)| \leq \Delta(x, x).$$

Putting $\varphi(x) = \Delta(x, x)$ and applying Theorem 2.8, one obtains

$$h(x) = \lim_{n \to \infty} 2^n (rx + 1)^{1-2^{-n}} f\left(\frac{(rx + 1)^{2^{-n}} - 1}{r}\right),$$

which satisfies (2.15). We claim that h satisfies

$$h(x + y + rxy) = h(x) + h(y) + r x h(y) + ry h(x).$$

Observed that

$$f\left(\frac{(rx + 1)^{2^{-n}} (ry + 1)^{2^{-n}} - 1}{r}\right) = f\left(\frac{(rx + 1)^{2^{-n}} - 1}{r}\right)$$

$$+ \frac{(ry + 1)^{2^{-n}} - 1}{r} + r \cdot \frac{(rx + 1)^{2^{-n}} - 1}{r} \cdot \frac{(ry + 1)^{2^{-n}} - 1}{r}.$$}

Now replacing x and y by $\frac{(rx + 1)^{2^{-n}} - 1}{r}$ and $\frac{(ry + 1)^{2^{-n}} - 1}{r}$ in (2.14), then

$$|f\left(\frac{(rx + 1)^{2^{-n}} (ry + 1)^{2^{-n}} - 1}{r}\right) - (rx + 1)^{2^{-n}}|.$$}

$$f\left(\frac{(ry + 1)^{2^{-n}} - 1}{r}\right) - (ry + 1)^{2^{-n}} f\left(\frac{(rx + 1)^{2^{-n}} - 1}{r}\right)$$

$$- r x (rx + 1)^{2^{-n}} - 1 f\left(\frac{(ry + 1)^{2^{-n}} - 1}{r}\right) - ry (ry + 1)^{2^{-n}} - 1.$$}

$$f\left(\frac{(rx + 1)^{2^{-n}} - 1}{r}\right) \leq \Delta\left(\frac{(rx + 1)^{2^{-n}} - 1}{r}, \frac{(ry + 1)^{2^{-n}} - 1}{r}\right).$$

Multiplying in the last inequality by $2^n (rx + 1)^{1-2^{-n}} (ry + 1)^{1-2^{-n}} (\leq 1)$, we have

$$2^n (rx + 1)^{1-2^{-n}} (ry + 1)^{1-2^{-n}} f\left(\frac{(rx + 1)^{2^{-n}} (ry + 1)^{2^{-n}} - 1}{r}\right)$$

$$- 2^n (ry + 1)^{1-2^{-n}} f\left(\frac{(ry + 1)^{2^{-n}} - 1}{r}\right) - 2^n (rx + 1)^{1-2^{-n}}.$$}

$$f\left(\frac{(rx + 1)^{2^{-n}} - 1}{r}\right) - 2^n r x (ry + 1)^{1-2^{-n}} f\left(\frac{(ry + 1)^{2^{-n}} - 1}{r}\right)$$

$$- 2^n r y (rx + 1)^{1-2^{-n}} f\left(\frac{(rx + 1)^{2^{-n}} - 1}{r}\right)\big|$$

$$\leq 2^n \Delta\left(\frac{(rx + 1)^{2^{-n}} - 1}{r}, \frac{(ry + 1)^{2^{-n}} - 1}{r}\right).$$

Taking the limit in the last inequality as $n \to \infty$, one obtains

$$h(x + y + r xy) - h(x) - h(y) - r x h(y) - r y h(x) = 0.$$
This completes the proof of the theorem. □

Example 1. For some \(\theta, p \leq 0 \), let
\[
f(x) = (rx + 1) \ln(rx + 1) + \theta(rx + 1)^{p-1}, \quad x \leq 0, \quad r > 0.
\]

Note that
\[
|f(rx^2 + 2x) - 2rf(x) - 2f(x)| = \theta |2(rx + 1)^p - (rx + 1)^{2(p-1)}|.
\]

In Theorem 2.4 setting \(\varphi(x) = \theta |2(rx + 1)^p - (rx + 1)^{2(p-1)}| \), we obtain the desired mapping \(h(x) = (rx + 1) \ln(rx + 1) \) satisfying (1.4).

Example 2. Consider
\[
f(x) = (rx + 1) \ln(rx + 1) + (\ln(rx + 1))^2, \quad -\frac{1}{r} < x \leq 0, \quad r > 0.
\]

Then
\[
|f(rx^2 + 2x) - 2rf(x) - 2f(x)| = 2(\ln(rx + 1))^2 - 2rx(\ln(rx + 1))^2.
\]

Taking \(\varphi(x) = 2(\ln(rx + 1))^2 - 2rx(\ln(rx + 1))^2 \) in Theorem 2.8, we have the desired mapping \(h(x) = (rx + 1) \ln(rx + 1) \) satisfying (1.4).

Acknowledgement. The authors would like to thank referees for their valuable comments. The second author dedicates this paper to his late father.

References

EUN HWI LEE
DEPARTMENT OF MATHEMATICS
JEONJU UNIVERSITY
JEONJU 302-729, KOREA
E-mail address: ehhj@jju.ac.kr

ICK-SOON CHANG
DEPARTMENT OF MATHEMATICS
MOKWON UNIVERSITY
TAEJON 302-729, KOREA
E-mail address: ischang@mokwon.ac.kr

YONG-SOO JUNG
DEPARTMENT OF MATHEMATICS
CHUNGNAM NATIONAL UNIVERSITY
TAEJON 305-764, KOREA
E-mail address: ysjung@math.cnu.ac.kr